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Abstract
Recent research on query generation has focused on using Large
Language Models (LLMs), which despite bringing state-of-the-art
performance, also introduce issues with hallucinations in the gen-
erated queries. In this work, we introduce relevance hallucina-
tion and factuality hallucination as a new typology for hallucina-
tion problems brought by query generation based on LLMs. We
propose an effective way to separate content from form in LLM-
generated queries, which preserves the factual knowledge extracted
and integrated from the inputs and compiles the syntactic structure,
including function words, using the powerful linguistic capabili-
ties of the LLM. Specifically, we introduce a model-agnostic and
training-free method that turns the Large Language Model into
a Pointer-Generator (LargePiG), where the pointer attention dis-
tribution leverages the LLM’s inherent attention weights, and the
copy probability is derived from the difference between the vocab-
ulary distribution of the model’s high layers and the last layer. To
validate the effectiveness of LargePiG, we constructed two datasets
for assessing the hallucination problems in query generation, cov-
ering both document and video scenarios. Empirical studies on
various LLMs demonstrated the superiority of LargePiG on both
datasets. Additional experiments also verified that LargePiG could
reduce hallucination in large vision language models and improve
the accuracy of document-based question-answering and factual-
ity evaluation tasks. The source code and dataset are available at
https://github.com/Jeryi-Sun/LargePiG.

CCS Concepts
• Information systems → Information retrieval query pro-
cessing.
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1 Introduction
Query generation is an automatic process of generating queries ac-
cording to the content presented in documents or videos, which not
only facilitates information retrieval from documents [12, 34, 51]
but also serves applications like short video platforms by creating
queries that attract user engagements. There has been notable ad-
vancement in query generation using LLMs [5, 12, 35, 38]. However,
employing LLMs for query generation often introduces hallucina-
tion issues. Factuality hallucination refers to inaccuracies in the
facts presented in the generated queries, often occurring when the
inputs include knowledge not covered by the LLM’s pre-training
data. For example, being misled by the latest facts in the news
documents can make LLMs generate queries that conflict with ac-
tual events. Relevance hallucination occurs when the generated
queries, although factually correct, are irrelevant to the inputs [15].
Both types of hallucinations are not mutually exclusive, with some
generated queries exhibiting both issues (see appendix A.1 for the
experimental validation of hallucination classification).

Previous research has primarily focused on reducing relevance
hallucinations through post-processing methods [5, 12, 15], without
addressing hallucinations at the source of generation. With the ex-
panding range of applications for query generation on short-video
platforms, generating “related search” based on video content to
attract user clicks and enhance user engagement has become crucial
for these platforms [43, 45]. Figure 1 presents some examples of
“related search” on short-video platforms, each of which has hun-
dreds of millions of users 1. If a generated query exhibits relevance
hallucinations, users may not click the query as clicking on “related
search” will not find content related to the video, diminishing user

1TikTok: www.tiktok.com; Kwai: www.kuaishou.com; Xiaohongshu: www.
xiaohongshu.com.
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(a) Relevance Hallucination: The video is
from TikTok, where the “related search” at
the top presents a certain relevance hallucina-
tion, as the person in the video is playing an
electric piano rather than an electric guitar.

(b) Factuality Hallucination: The video is
from Kwai, where the “related search”
presents a certain factuality hallucination.
Singapore itself is a country, so it is illog-
ical to ask which country’s nationality it
belongs to.

(c) Truthful Query: The video is from Xi-
aohongshu, where the “related search” at
the top present is relevant and factual.

Figure 1: Examples of query generation in real applications across different short video platform.

interest. Conversely, if a query demonstrates factuality hallucina-
tions (without relevance hallucinations), it might initially attract
users’ interest through clickbait but fail to deliver content related
to the hallucinatory facts, thereby degrading the user experience.
Therefore, the queries we generate need to be relevant to the video
content, factually accurate, and sufficiently novel to attract user
clicks and improve user engagement.

Unlike other generation tasks, query generation primarily relies
on the inputs. Thus, decoupling the content and form at the output
end of LLMs, ensuring that the factual content of the generated
queries mainly comes from the inputs and that the syntax and
other forms are organized by LLMs, is key to keeping the generated
query truthful and reducing hallucination issues. To this end, we
propose to use the Pointer Generator (PG) technology, a sequence-
to-sequence model that integrates extraction (pointing to words
in the input) and generation (creating new words) strategies to
enhance the accuracy and relevance of the generated text [41, 49].
The PG model, combines pointer attention distribution (determin-
ing the model’s focus on different parts of the inputs), vocabulary
distribution (the probability distribution for choosing the next word
from a fixed vocabulary), and copy probability (deciding whether to
generate a word from the vocabulary distribution or copy directly
from the input), not only increases the probability of mentioning
facts presented in the inputs and decreases the likelihood of gen-
erating unrelated facts but also ensures the correctness of syntax
and other forms generated by LLMs. Although PG technology has
been applied in query generation tasks with traditional language

models [19, 50], considering the enormous parameter size and train-
ing resource consumption of LLMs, adopting the traditional PG
scheme, which requires learning pointer attention distribution and
copy probability, may not only disrupt the original representations
of LLMs but also diminish their generalization capability.

Facing the above challenge, we propose a novel PG implemen-
tation that can achieve PG functionality within LLMs without re-
quiring additional training. Our method is based on two core ob-
servations: (1) Attention modules are more ‘truthful’ than other
modules in LLMs (e.g., FFN modules), allowing the intrinsic atten-
tion weights towards the input sequence within LLMs to serve as
the PG’s pointer attention distribution; (2) LLMs generate different
types of words (function words and factual knowledge words) with
distinct patterns [10, 40]. When generating function words, the
vocabulary distribution obtained from the high layers of LLMs is
relatively consistent, whereas, for factual knowledge words, the
vocabulary distribution from the high layers of LLMs shows signifi-
cant differences. Further analyzing the internal mechanism behind
the occurrence of different patterns in LLMs, we find that this
pattern is rooted in the difference in the amount of information
between function words and factual knowledge words in human
linguistics. We relaxed the requirement for LLMs to generate the
correct words, only needing them to identify the type of word to be
generated and calculate the copy probability through the difference
between the vocabulary distribution of the model’s high layers and
the last layer.
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Based on this concept, we propose that Large Language Models
can essentially act as an implicitPointer-Generator (LargePiG ),
better addressing the hallucination issues in query generation. Our
method has several notable advantages: Firstly, it preserves LLMs’
powerful capabilities and generalizability, as it does not require
significant modifications to the model architecture or additional
training. Secondly, by simplifying the implementation process of
PG, our method reduces additional computational and resource re-
quirements, making it more efficient and easy to implement. Lastly,
this approach retains the advantages of PG, achieving decoupling of
content and form at the output end of LLMs, making the generated
content faithful to the inputs.

To better assess the capability of LargePiG in solving hallucina-
tion issues within query generation, we introduce TruthfulVQG and
TruthfulDQG, two challenging Truthful Query Generation bench-
marks gathered from video and document scenarios, respectively.
Experiments on these datasets demonstrate that LargePiG is capa-
ble of increasing the factuality and relevance of various LLM-based
query generation methods across different LLMs. More experiments
on the LLaVA [24] family validate the effectiveness of LargePiG
in addressing hallucination issues in query generation within mul-
timodal scenarios. Further experiments on relevance testing and
factuality evaluation demonstrate that LargePiG can individually
address relevance hallucination and factuality hallucination. Effi-
ciency analysis shows that LargePiG causes negligible latency in
the query generation process, proving the practical applicability of
LargePiG.

We summarize the major contributions of this paper as follows:
(1) We identify the relevance and factuality hallucination issues

in query generation, which are crucial for ensuring effective “related
search” in short-video platforms.

(2) We propose LargePiG, a training-free, and model-agnostic
decoding method that mitigates query generation hallucinations
without modifying LLM architectures, ensuring ease of deployment.

(3) We introduce two truthful query generation benchmarks,
TruthfulVQG and TruthfulDQG, and demonstrate through ex-
tensive experiments the effectiveness of LargePiG in reducing hal-
lucinations while maintaining efficiency.

2 Related Work
Large language models based query generation. Query gener-
ation is vital for improving information retrieval systems and user
experience on short video platforms. Doc2Query [34] implements
this concept using a sequence-to-sequence model for generating
queries based on document contents. Advancing this, UDP [39]
utilizes LLMs in a zero-shot setting to predict query likelihood
from text passages. Building on this, PQGR [12] and InPars [5]
introduce few-shot and contrastive example approaches, enhanc-
ing the contextual awareness of query generation. AQG [25] fur-
ther develops LLM adaptability to query generation by employing
LoRA [17] for fine-tuning with real user queries and context, along-
side other parameter-efficient methods like soft-prompt tuning and
adapters [35, 36]. Additionally, UDAPDR [38] explores efficiency by
combining large and small models to generate and refine queries.
Our work addresses hallucination in query generation, introduc-
ing LargePiG, a novel decoding method applicable to LLM-based

query generation approaches to reduce relevance and factuality
hallucination.

Hallucination mitigation in large language models. Large
Language Models exhibit a critical tendency to produce halluci-
nations, resulting in content that is inconsistent with real-world
facts or user inputs. Hallucination mitigation strategies can be data-
driven, involving more refined filtering of pretraining data [28]
or high-quality instruction-tuning datasets [55] to reduce the like-
lihood of LLMs learning hallucinatory knowledge. Alternatively,
approaches from the input side, such as Retrieval Augmented Gen-
eration, utilize data to reduce LLM-generated hallucinations by
grounding the model with an external knowledge base [14, 44, 46].
However, Retrieval Augmented Generation is not well-suited for
tasks like query generation, as there is no explicit need for exter-
nal retrieval content. Our LargePiG method focuses on reducing
hallucination for the query generation task from the generation
side, transforming the LLM into a pointer generator by leverag-
ing intrinsic features of the LLM to separate content and form in
LLM-generated queries. Unlike DoLa [10], which contrasts between
transformer layers to correct the next word’s probability, LargePiG
derives the copy probability from the difference between the vo-
cabulary distribution of the model’s high layers and the last layer.
Moreover, these hallucination mitigation methods are orthogonal
to the LargePiG approach taken in this paper and could potentially
be used in conjunction to mitigate hallucinations further.

3 Method
Current Large Language Models are fundamentally based on the
Transformer decoder-only architecture. Initially, the input text is to-
kenized and transformed into numerical vectors by the embedding
layer. Given a sequence of input tokens as 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑡−1},
where the input tokensmay include the instruction 𝐼 = {𝑥1, . . . , 𝑥𝑚−1},
the source document𝐷 = {𝑥𝑚, . . . , 𝑥𝑛}, and part of generated query
𝑄 = {𝑥𝑛+1, . . . , 𝑥𝑡−1}, the embedding layer first converts these to-
kens into a series of vectors 𝐻0 = {ℎ (0)1 , . . . , ℎ

(0)
𝑡−1}. After passing

through multiple Transformer Decoder Layers, 𝐻𝑁 is processed by
a Classification Layer, usually composed of a layer of linear layers
and softmax, mapping to the vocabulary distribution.

To address the hallucination issues present in LLM-based query
generation, we propose to incorporate themechanism of the Pointer-
Generator to enhance the model’s faithfulness to the factual knowl-
edge containedwithin the source document𝐷 . The Pointer-Generator
combines the original decoding vocabulary distribution 𝑃vocab of
the LLM with the newly introduced pointer attention distribution
𝑃source, the latter representing the probability distribution over the
source document 𝐷 . Furthermore, the Pointer-Generator includes a
copy probability 𝑝copy, which determines whether the model selects
the next word from a predefined vocabulary or directly copies a
word from the source document. We propose to use this mechanism
to ensure that the factual content in the generated query mainly
comes from 𝐷 and that the syntax and other forms are organized
by LLMs, significantly reducing the occurrence of hallucinations.

Unlike previous approaches that required retraining the pointer-
generator model to learn the pointer attention distribution and
copy probability, we propose LargePiG, a plug-in and training-free
method, to implement pointer-generator decoding within LLMs
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Figure 2: The architecture of the proposed plug-in and training-freemethod LargePiG. Pointer AttentionDistribution (§ 3.1) from
the LLM’s self-attention weights, Vocabulary Distribution (§ 3.2) from the output of the original LLM, Copy Probability (§ 3.3)
from the difference between the vocabulary distribution of the model’s high layers and the last layer.

(see Figure 2). The pointer attention distribution can utilize the
LLM’s intrinsic attentionweights towards the source document (§ 3.1);
the vocabulary distribution comes from the output of the original
LLM, ensuring the generative capability of the model (§ 3.2); and the
copy probability is derived from the difference between the vocabu-
lary distribution of the model’s high layers and the last layer (§ 3.3).
Finally, we delve into the rationality of why LargePiG can implicitly
transform LLM into a pointer generator (§ 3.4).

3.1 LargePiG: Pointer Attention Distribution
The core module of Large Language Models consists of 𝑁 stacked
Transformer layers. Each Transformer layer contains a self-attention
module and feedforward neural networks (FFN) to process the em-
bedded vectors, allowing the model to focus on the most relevant
parts of the input dynamically. As the vectors in 𝐻0 pass through
each Transformer layer, they are successively transformed, with
the output of the layer 𝑗 represented as 𝐻 𝑗 . In this process, taking
the layer 𝑗 as an example, 𝐻 𝑗−1, the output of the layer ( 𝑗 − 1),
first passes through the 𝑗-th layer’s self-attention module. Here, we
take Multi-Head Attention (MHA) as an example, which can be eas-
ily generalized to Multi-Query Attention [42] and Grouped-Query
Attention [2]:

MHA = Concat(head1, . . . , head𝑀 )𝑊𝑂 , (1)

head𝑖 = 𝐴𝑖 (𝐻 𝑗−1𝑊𝑄

𝑖
, 𝐻 𝑗−1𝑊𝐾

𝑖 , 𝐻 𝑗−1𝑊
𝑉
𝑖 ), (2)

𝐴𝑖 (𝑄,𝐾,𝑉 ) = 𝐴𝑤𝑖 𝑉 , 𝐴
𝑤
𝑖 = softmax

(
𝑄𝐾𝑇
√
𝑑

)
, (3)

where 𝐴𝑤
𝑖
denotes the attention weights of MHA, with 𝑀 as the

number of heads,𝑊𝑄/𝐾/𝑉 /𝑂 are learnable parameters and
√
𝑑 are

scaling factor. Since each head captures a unique attention pattern,
we aggregate these by averaging: 𝐴𝑤 = 1

𝑀

∑𝑀
𝑖=1𝐴

𝑤
𝑖
, enabling a

unified representation of attention mechanisms across heads.
In the context of LargePiG, computing the pointer attention dis-

tribution 𝑃source primarily focuses on the attention weights from
the last token in 𝐻 𝑗−1 (i.e., 𝐴𝑤𝑡−1) to the tokens of the source docu-
ment𝐷 . As the source document𝐷 corresponds to tokens from𝑚 to
𝑛 in the input sequence, we use 𝐴𝑤

𝑡−1,𝑚:𝑛 to compute 𝑃source. First,
for the values in 𝐴𝑤

𝑡−1,𝑚:𝑛 , we normalize them to ensure their sum
equals one, forming a probability distribution. Since we are only
concerned with the tokens corresponding to the source document
in 𝐴𝑤 and we already know this is extracted from a larger softmax
function, direct normalization suffices. Let this normalized vector
be P𝑚:𝑛 :

P𝑚:𝑛 =
𝐴𝑤
𝑡−1,𝑚:𝑛∑𝑛

𝑖=𝑚 𝐴
𝑤
𝑡−1,𝑖

(4)

Next, we construct the probability distribution to match the
vocabulary distribution. We depart from traditional PG by not con-
sidering new word emergence, focusing on maintaining LLM gen-
eration fidelity to input while acknowledging the prevalent use of
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sentence-piece tokenization [23]. LetV be the vocabulary of the
LLM. The probability distribution for each token 𝑥𝑖 in 𝑃source within
V comes from the corresponding attention weight in P𝑚:𝑛 . There-
fore, for each token 𝑥𝑖 in the vocabulary V , its pointer attention
distribution 𝑃source (𝑥𝑖 ) is defined as:

𝑃source (𝑥𝑖 )+ =

{
P𝑚:𝑛 [ 𝑗] for all 𝑗 where 𝑥 𝑗 = 𝑥𝑖 and 𝑥 𝑗 ∈ 𝐷
0 otherwise

(5)
Thus, the probability 𝑃source (𝑥𝑖 ) for each 𝑥𝑖 ∈ 𝐷 directly corre-

sponds to the normalized attention weight P𝑚:𝑛 , while the proba-
bility for vocabulary token not in 𝐷 is 0.

3.2 LargePiG: Vocabulary Distribution
The generation of the vocabulary distribution in the LargePiG
model is seamlessly integrated with the output of the original LLM.
This integration is achieved through the model’s final component,
an affine transformation layer commonly called the classification
layer. This layer maps the output of the last Transformer layer 𝐻𝑁 ,
to the vocabulary distribution 𝑃vocab over the vocabulary set V .
The probability distribution for the next token 𝑥𝑡 given the preced-
ing sequence 𝑥<𝑡 , is computed by applying a softmax function to
the affine-transformed output:

𝑃vocab (𝑥𝑡 ) = 𝑞𝑁 (𝑥𝑡 | 𝑥<𝑡 ) = softmax
(
𝜙

(
ℎ
(𝑁 )
𝑡−1

))
𝑥𝑡
, 𝑥𝑡 ∈ V

(6)
where ℎ (𝑁 )

𝑡−1 is the output vector from the last Transformer layer for
the position (𝑡 − 1) in 𝐻𝑁 , and 𝜙 (·) performs the affine transforma-
tion to project this vector into the vocabulary space. The subscript
𝑥𝑡 indicates that we extract the probability corresponding to the
token 𝑥𝑡 from the softmax output. This approach ensures that the
generative capabilities of the underlying LLM are preserved within
our LargePiG framework. Through this methodology, LargePiG
leverages the extensive linguistic and syntactic knowledge of the
LLM, thereby significantly retaining the richness and fluency of
the generated query.

3.3 LargePiG: Copy Probability
The copy probability in our LargePiGmodel leverages the difference
between the vocabulary distribution of the LLM’s high layers and
the last layer. For the layer 𝑗 , we also compute the vocabulary
distribution using 𝜙 (·) as follows, where J is a set of candidate
layers and this operation is called early exiting [40, 47]:

𝑞 𝑗 (𝑥𝑡 | 𝑥<𝑡 ) = softmax
(
𝜙

(
ℎ
( 𝑗 )
𝑡−1

))
𝑥𝑡
, 𝑗 ∈ J . (7)

Based on the findings of Chuang et al. [10] and early exit decoding
research [13, 40], when LLMs generate function words (e.g., auxil-
iary verbs, prepositions, conjunctions), the vocabulary distribution
𝑞 𝑗 (𝑥𝑡 | 𝑥<𝑡 ) stabilizes at high layers. In contrast, when generating
factual knowledge words (e.g., names, places, dates), the vocabulary
distribution continues to evolve at high layers. In the query gen-
eration task, we expect the factual content in the generated query
primarily comes from the source document, while syntax and other
forms are organized by the LLM. This implies we can use the vo-
cabulary distribution 𝑞𝑁 (𝑥𝑡 | 𝑥<𝑡 ) from the last transformer layer
as an anchor layer, and by calculating the distributional differences

with the vocabulary distributions from other high layers, deter-
mining whether LLM is generating factual knowledge words or
function words. A larger distributional difference suggests a higher
likelihood of generating factual knowledge words. Since our goal
is to ensure that the factual content of the generated query mainly
comes from the input document, the copy probability should be
higher in such cases, and vice versa. Therefore, the copy probability
can be calculated as follows:

𝑝cp = O𝑗∈J𝑑
(
𝑞𝑁 (𝑥𝑡 | 𝑥<𝑡 ) , 𝑞 𝑗 (𝑥𝑡 | 𝑥<𝑡 )

)
, (8)

where O can be an average 1
| J |

∑
, a max, or a min operation,

𝑑 (·, ·) is a distributional distance measure such as Jensen-Shannon
Divergence [10, 32], and J is the set of high-layers around the
anchor layer. We can control the intensity of copying by adjusting
O and J . A larger range of J and O being max increases the
likelihood of copying, while a smaller range of J and O being min
decreases it.

The final distribution generated by LargePiG is given by:

𝑃LargePiG (𝑥𝑡 ) = 𝑝cp𝑃source (𝑥𝑡 ) + (1 − 𝑝cp)𝑃vocab (𝑥𝑡 ). (9)

3.4 The Internal Mechanisms of LargePiG
The key to LargePiG’s functionality lies in LLM’s ability to correctly
reflect the current generated token’s attention weights towards
the source document and generate factual knowledge words and
function words in the pattern we mentioned in § 3.3.

Regarding the pointer attention distribution, we analyzed
the causes of hallucinations in query generation in § 1, concluding
that the attention modules in LLMs are more ‘truthful’ than the
FFN modules and classification layer. The factuality hallucina-
tion mainly arises from the LLM’s insufficient knowledge about
the source document. Some studies have shown that knowledge is
mainly stored in the FFN module of the transformer layer in pre-
trained language model [11]. Even if the self-attention module cor-
rectly focuses on the relevant token, the FFN module may still pro-
duce factuality hallucinations due to insufficient pre-training [31].
Moreover, Jiang et al. [20] found that MLP modules have a more
significant impact on incorrect outputs than attention modules, in-
dicating that in the transformer layers of LLMs, attention modules
are more ‘truthful’ than FFN modules. The relevance hallucina-
tion can be attributed to the softmax bottleneck issue inherent in
LLMs [7, 54], where the model predicts the probability of each word
across the entire vocabulary, struggling to differentiate between
words that are almost equally likely in a given pre-training context
but have different meanings in the current situation. The softmax
bottleneck primarily stems from the final classification layer, which
is structurally unrelated to the attention module in the transformer
layer we use.

Regarding the copy probability, we delve deeper into the
findings of [10, 40], questioning why LLM predictions for function
words stabilize at high layers’ vocabulary distributions, while pre-
dictions for factual knowledge words do not. Research on early exit
decoding [13, 40, 47] has demonstrated that different data samples
(tasks) possess varying complexities. For multi-layer stacked deep
models, such as ResNet [16] and LLaMA [48], simple tasks may
only require shallow layers for completion, whereas complex tasks
demand the involvement of all layers. The scaling law [22] and
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the emergence ability [52] also testify to this, with the model’s
ability to solve more complex tasks increasing alongside its size and
layer number. Returning to our task, predicting function words can
exit at shallower layers, while predicting factual knowledge words
requires deeper layers, indicating that predicting function words is
simpler, whereas predicting factual knowledge is more complex.

Why is predicting function words simpler, and predicting fac-
tual knowledge more complex? Achille et al. [1] demonstrated that
tasks with greater information content are more complex. Since
LLMs learn from human language, if we can verify that factual
knowledge words in human language convey more information
than function words, then the pattern mentioned above is deter-
mined by the nature of human language itself. Our experimental
analysis within our TruthfulVQG and TruthfulDQG benchmarks
investigated the semantic impact of removing factual knowledge
words versus function words, with experimental details provided
in Appendix A.2. The results show that on both datasets, removing
factual knowledge words causes a greater decrease in semantic
similarity scores with the original sentence compared to function
words. These findings confirm that factual knowledge words con-
tribute more significantly to the sentence’s informational content
than function words, highlighting the complexity of predicting fac-
tual knowledge words. Verifying that the pattern found in [10, 40],
rooted in the linguistic properties of human language, is a princi-
ple that holds true across multiple languages, even though initial
studies focused on English scenarios. Our subsequent experiments
expanded this understanding to multiple languages, validating the
feasibility of employing this pattern for calculating copy probabil-
ity in LargePiG. For further analysis of the effectiveness of copy
probability in LargePiG, see Appendix A.2.

4 Experiment
4.1 Experimental Settings
Datasets. To quantitatively assess the truthful query generation
capabilities of LargePiG in both video (e.g., TikTok) and document
(e.g., Bing Search) scenarios, considering the absence of relevant
datasets, we constructed two challenging benchmarks named Truth-
fulVQG and TruthfulDQG. These benchmarks correspond to for-
mats similar to TruthfulQA [29], crafted from video (Chinese cor-
pus) and document (English corpus) respectively, to validate the
model’s query generation truthfulness. The construction of the
benchmarks utilized a combination of LLM and manual methods.
The completed data format is shown in Table 6 of Appendix A.4,
where “Bad queries” are those containing either relevance hallucina-
tions or factuality hallucinations or both, “Good queries” are those
without any hallucinations, and “Best query” represents the optimal
query. The construction process is detailed in Appendix A.3 and
Appendix A.4, and the statistical results of the datasets are shown
in Table 7.

Metrics. To evaluate LLMs in truthful query generation, we inde-
pendently compute each reference query’s log-probability. Drawing
inspiration from the evaluation metrics of TruthfulQA-MC [10, 29],
the metrics used to assess the truthfulness of the model-generated
queries includeMC1 (the percentage of all data where the best query
log-probability is greater than all bad queries log-probability), MC2
(normalized total probability assigned to the set of good queries),

and MC3 (the percentage of all good queries where each good query
log-probability is greater than all bad queries log-probability).

Models and Baselines.We employed two types of backbone
LLMs, Qwen1.5 7B chat [3] and LLaMA2 7B chat [48], and uti-
lized four LLM-based query generation approaches, including (1)
Base: using the backbone LLMs to directly generate queries in a
zero-shot manner; (2) PQGR [12]: prompting the LLM with 8 in-
context examples to generate queries, which achieves more suitable
queries compared to the Base approach; (3) Inpars [5]: includes
not only good queries in the in-context examples but also bad
queries to enable the model to generate better queries through
comparison; (4) AQG [25]: employ LoRA [17] to fine-tuning the
LLM using real-world user-input queries and context data to en-
hance the model’s query generation capability. The implementation
details of these LLM-based query generation approaches are in Ap-
pendix A.5. Our approach, LargePiG, is model-agnostic and can
be applied to different LLM-based query-generation methods, re-
ducing the relevance and factuality hallucinations associated with
model-generated queries. The implementation details of LargePiG
are provided in Appendix A.6. For baseline models, we compared
LargePiG with recent closely related work aimed at reducing hallu-
cinations in LLMs: DoLa [10], which enhances factuality in LLMs
by decoding through contrasting layers, and Contrastive Decod-
ing (CD) [27], which improves factuality in LLMs’ generations by
leveraging the contrasts between LLMs of different sizes, selecting
tokens that maximize their log-likelihood difference. For Qwen1.5
7B chat, we chose Qwen1.5 1.8B chat [3] as the contrast model
for CD. Since there is no smaller-sized model for LLaMA2 7B chat,
we could not perform CD experiments on this model. DoLa, CD,
and LargePiG are all training-free decoding methods for reducing
hallucinations in LLM generation, making them fair for comparison.

4.2 Results
Main result. As shown in Table 1, LargePiG has demonstrated
improvements across two datasets, various backbone methods, and
different metrics, validating LargePiG’s ability to enhance the truth-
fulness of LLM-based query generation methods. The effectiveness
observed across datasets in different languages further corrobo-
rates the analysis presented in Section 3.4. Moreover, our method
has surpassed CD and DoLa, which even exhibited negative gains
on some datasets. The primary reason is that query generation
primarily relies on the factual knowledge in the inputs, requiring
less generated factual knowledge from the model, whereas DoLa
and CD stimulate the model’s knowledge by contrasting shallow
layers’ logits with deep layers’ logits or contrasting large LLM’s
logits with small LLM’s logits, which may lead to the generation of
facts that do not align with the context. In the following analysis
experiments, we will further discuss the respective advantages of
CD, DoLa and LargePiG, and analyze in detail from the perspec-
tives of relevance hallucinations and factuality hallucinations how
LargePiG can improve the truthfulness of LLM generation. The ex-
periments of LargePiG on multimodal datasets can be found in the
appendix A.7, which also shows improvements over the backbone
model, demonstrating the broad applicability of LargePiG.
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Table 1: Performance comparisons between LargePiG and the baselines. The boldface represents the best performance. ‘†’
means improvements are significant (paired t-test at 𝑝-value < 0.05).

Qwen1.5 7B Chat LLaMA2 7B Chat

Model TruthfulVQG TruthfulDQG TruthfulVQG TruthfulDQG

MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3

Base 40.35 66.97 37.70 27.34 85.77 39.83 52.94 75.12 46.01 33.72 71.61 34.29
+ CD 35.79 63.43 36.49 24.25 85.60 37.99 – – – – – –
+ DoLa 37.97 64.73 35.68 23.52 85.05 37.09 52.79 75.25 46.10 35.09 69.97 33.19
+ LargePiG 41.49† 68.12† 38.92† 29.91† 89.33† 42.18† 54.56† 76.15† 47.20† 37.23† 70.95 36.93†

PQGR 43.61 70.08 41.26 25.86 77.23 36.86 52.22 74.21 45.60 32.28 65.74 31.41
+ CD 41.71 66.10 40.69 23.84 77.90 35.58 – – – – – –
+ DoLa 40.13 66.50 38.24 23.79 76.51 35.67 51.83 73.69 44.54 31.92 64.41 31.52
+ LargePiG 45.52† 70.79† 42.54† 27.12† 79.20† 38.35† 52.87† 74.87† 46.27† 34.66† 68.34† 34.21†

InPars 44.35 70.77 41.56 26.09 78.82 37.37 52.53 74.53 45.85 30.66 64.43 30.32
+ CD 43.91 68.90 39.82 24.06 77.20 35.69 – – – – – –
+ DoLa 40.35 66.90 38.48 24.48 77.57 36.96 51.59 74.33 44.86 29.87 63.97 29.52
+ LargePiG 46.26† 71.51† 42.82† 27.34† 81.17† 38.53† 53.03† 74.74 46.20† 33.70† 67.30† 33.36†

AQG 40.50 67.26 37.85 27.41 85.86 39.93 54.00 75.92 46.87 34.82 71.62 34.42
+ CD 36.79 63.36 33.44 24.23 83.56 37.96 – – – – – –
+ DoLa 37.99 64.65 35.62 25.59 85.28 39.21 52.79 75.25 46.10 33.02 70.96 33.17
+ LargePiG 41.56† 68.13† 39.06† 29.99† 89.58† 42.35† 54.84† 76.73† 47.76† 37.09† 71.04 36.82†

Table 2: Experiment results on FACTOR.

LLaMA-7B LLaMA-13B

Model News Wiki News Wiki

Base 58.3 58.6 61.1 62.6
+ CD [26] - - 62.3 64.4
+ DoLa [10] 62.0 62.2 62.5 66.2
+ LargePiG 71.0 60.4 72.1 63.1
+ DoLa + LargePiG 63.4 64.7 65.3 68.8

4.3 Analysis
LargePiG’s ability to reduce factuality hallucinations. To
specifically validate LargePiG’s capability to address factual hallu-
cinations, we selected the News and Wiki categories of FACTOR
dataset [33], which assesses LLMs’ factuality in long-paragraph
settings by completion task. The News’ ground-truth answers are
based on facts from news content, which LLMs may not have suf-
ficiently learned during training; the Wiki contains general facts
well-learned during pre-training, allowing LLMs to respond based
on pre-trained knowledge and also to learn from the context. To
ensure a fair comparison with DoLa, we chose LLaMA-7B and
LLaMA-13B as the backbone LLMs following DoLa’s setting.

The experimental results shown in Table 2 demonstrate that on
the News dataset, LargePiG successfully enhanced the copy ability

Table 3: Relevancewin rate comparison betweenQwen1.5-7B-
Chat with LargePiG and without LargePiG on TruthfulVQG.

Model LargePiG Win Original Model Win Tie

Base 827 70 103
PQGR 749 181 70
InPars 805 141 54
AQG 831 73 96

of Base models to address hallucinations, thereby significantly out-
performing other methods that solely rely on the model’s intrinsic
pre-trained knowledge and original context understanding capa-
bilities. Given the feature of the Wiki dataset, although the results
for LargePiG on Wiki do not surpass other methods that stimu-
late the model’s own pre-trained knowledge, they still exceed the
base model, validating the contribution of LargePiG’s copy ability
to resolving hallucinations. Moreover, LargePiG can be combined
with state-of-the-art methods that are based on the model’s pre-
trained knowledge, achieving advancements beyond the current
state of the art (i.e., +DoLa + LargePiG > +DoLa). This suggests that
LargePiG’s copy ability can be synergistically integrated with the
model’s inherent pre-trained knowledge.

LargePiG’s ability to reduce relevance hallucinations. To
independently verify LargePiG’s capability to resolve relevance
hallucinations, we generated queries using different models and
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Figure 3: Semantic similarity win rate of Qwen1.5-7B-Chat
with LargePiG vs without LargePiG on TruthfulVQG.

then encoded them and the corresponding context using the cur-
rent state-of-the-art text representation model BGE [53] to calcu-
late their cosine semantic similarity. The pairwise comparisons of
cosine similarity are presented on Figure 3, demonstrating that
LargePiG notably outperforms the baseline models. This indicates
that LargePiG effectively reduces the relevance hallucinations of
query generation. In addition, we used GPT-4o (from OpenAI) to
assess LargePiG’s ability to reduce relevance hallucinations. Consid-
ering time and API cost factors, we sampled 1000 data points from
TruthfulVQG for evaluation. The experiments in Table 3, judged
by GPT-4o, further confirm that LargePiG can mitigate relevance
hallucinations.

Short Long Overall
Input Length
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Figure 4: Comparison of the Copying Ability between
Qwen1.5-7B-Chat and Qwen1.5-7B-Chat with LargePiG on
the SQuAD dataset.

LargePiG’s ability to copy. To validate whether LargePiG has
a stronger copy ability compared to the original LLM decoder, we
tested the performance of LLM with and without the addition of
LargePiG on tasks that require copying from the inputs. Following
the setting of Jelassi et al. [18] for validating LLMs’ copy capability,

Table 4: Decoding latency (ms/token).

Baseline DoLa LargePiG

Base / AQG 95.9 (×1.00) 99.9 (×1.04) 101.8 (×1.06)
InPars 135.1 (×1.00) 142.4 (×1.05) 139.8 (×1.03)
PQGR 142.0 (×1.00) 148.3 (×1.04) 149.1 (×1.05)

we selected the SQuAD question-answering dataset [37], which
provides text paragraphs along with several questions pertaining to
the text and features various inputs lengths. We conducted experi-
ments on Qwen1.5-7B-Chat, reported the F1 score, and classified
questions into short and long categories based on whether their
length exceeded 200 words. The results on Figure 4 show that
LargePiG significantly improved the F1 score on Qwen1.5-7B-Chat,
with more pronounced improvements for scenarios with long in-
puts, indicating that LargePiG indeed enhances the copy ability of
LLMs.

Efficiency analysis.We use NVIDIA V100-32G GPUs and 52-
core Intel(R) Xeon(R) Gold 6230R CPUs at 2.10GHz machine to
analyze the efficiency of original decoding (baseline), DoLa, and
LargePiG when applied across different query generation models.
The decoding time of LargePiG in LLaMA2-7B models increases by
a maximum of 6% compared to the baseline and is on par with the
decoding time of DoLa, as shown in Table 4. The results demonstrate
that LargePiG can enhance the truthfulness of query generation
with negligible additional time consumption, proving the practical
applicability of LargePiG.

5 Conclusions
LLM-based query generation significantly improves query quality
and user experience in information retrieval systems, but it also
introduces hallucination challenges, hindering its application in
emerging use cases such as “related search”. To address these, we
propose LargePiG, a training-freemethod transforming an LLM into
a Pointer-Generator. LargePiG separates content and form in LLM-
generated queries, using input knowledge for fact generation and
LLM capabilities for syntactic structure. It combines self-attention
weights for pointer attention distribution, LLM original output as
vocabulary distribution, and high-layer vocabulary distribution for
copy probability. Our empirical evaluations on the proposed Truth-
fulVQG and TruthfulDQG datasets confirm LargePiG’s effectiveness
in reducing hallucination on query generation tasks.
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A Appendix / supplemental material
A.1 Experimental Verification of Hallucination

Classification
Our hallucination classification for generated query is grounded in
real-world observations, aiming to help readers better understand
the distinct types of hallucinations present in query generation.
This categorization is intended to offer valuable insights for future
research in this domain. To further validate our classification, we
conducted an analysis experiment using the TruthfulVQG dataset
(Detailed in Section 4.1). In this experiment, we encoded both the
generated queries and corresponding video content using BGE [53]
and computed the cosine similarity to obtain a Semantic Simi-
larity score. The results demonstrate that factual hallucinations

can occur independently, even in the absence of relevance hallu-
cinations, highlighting the need to decouple these two types of
hallucinations for more precise handling.

The experimental results in Table 5 confirm that factual hallu-
cinations can persist even with high semantic similarity scores.
This finding underscores the importance of treating relevance and
factual hallucinations separately to improve query generation and
retrieval quality.

A.2 Implementation Details of Words Information
In the experiments concerning word information, we conducted
tests using the TruthfulVQG and TruthfulDQG benchmarks con-
structed in this paper. For English in the TruthfulDQG benchmark,
we used Spacy 2 for tokenization and part-of-speech tagging, while
for TruthfulVQG (Chinese corpus), we employed Jieba 3 andHanlp 4.
Factual knowledge words include organizations, personal names,
locations, and dates. Function words include auxiliary verbs, prepo-
sitions, determiners, conjunctions, and coordinating conjunctions.
Subsequently, on both datasets, we removed an equal number of
factual knowledge words and function words and then utilized
BGE embeddings [53] to align and compare the cosine similarity
between the modified sentences and the original sentences. The
results are shown below:

• In the TruthfulDQG benchmark, removing factual knowl-
edge words resulted in a similarity score of 0.7741, while
removing function words led to a higher similarity score of
0.9296.

• In the TruthfulVQGbenchmark, the removal of factual knowl-
edge words produced a similarity score of 0.7415, compared
to 0.9477 when function words were eliminated.

The results show that on both datasets, removing factual knowl-
edge words causes a greater decrease in semantic similarity scores
with the original sentence compared to function words. These find-
ings confirm that factual knowledge words contribute more signifi-
cantly to the sentence’s informational content than function words,
highlighting the complexity of predicting factual knowledge words.
Verifying that the pattern found in [10, 40], rooted in the linguistic
properties of human language, is a principle that holds true across
multiple languages, even though initial studies focused on English
scenarios.

Why Can LLM Identify Factual Knowledge Words and
Function Words?

Considering that LLMs can only directly learn to predict the
next word in the natural language training corpus, they may not
have an intuitive concept of what constitutes factual knowledge
words and function words. Therefore, we conducted an intrinsic
frequency analysis of factual knowledge and function words on the
TruthfulDQG benchmark. The statistical results are shown below:

• Number of different words in function words: 228
• Number of different words in factual knowledge words: 3263
• Total number of words in function words: 33849
• Total number of words in factual knowledge words: 6026
• Average occurrence of function words: 148.46

2https://spacy.io
3https://github.com/fxsjy/jieba
4https://www.hanlp.com
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Table 5: Semantic similarity scores across query types, highlighting that factual hallucinations can occur despite high similarity
with relevant content.

Type Max Semantic Similarity Min Semantic Similarity Average Semantic Similarity
Facticity hallucination queries 0.8492 0.3792 0.6479

Facticity truth queries 0.8607 0.2647 0.6482
Random similarity N/A N/A 0.2709

• Average occurrence of factual knowledge words: 1.85

These results show that function words appear much more fre-
quently than factual knowledge words, particularly evident from
their average occurrences. It is evident that due to the substantially
larger training data of function words compared to factual knowl-
edge words, LLMs can predict function words at shallower layers
while predicting factual knowledge words need deeper layers.

Another Perspective on the Effectiveness of Copy Proba-
bility in LargePiG.

Besides the patternwementioned above, Jiang et al. [20] observes
that in hallucinated cases, the output token’s information rarely
shows abrupt increases and maintains consistent superiority in
high layers of the LLMs. This corresponds to cases in LargePiG
where there is a higher copy probability, thus enabling the reduction
of hallucinations by copying factual knowledge words from the
source document. This further demonstrates the capability of the
copy probability in LargePiG to address the issue of hallucinations.

A.3 Details about Dataset Collection
The TruthfulVQG dataset is collected from a real short video plat-
form used by over one billion users. The TruthfulDQG dataset is
adapted from the MS-MARCO dataset [4]. The data processing for
TruthfulVQG is more complex than TruthfulDQG’s. Thus, we will
use TruthfulVQG as an example to illustrate the process.

Data Collection:
The raw data was collected from Search Click Data and Post-

Watch Search Data, and the final processed public data does not
include any user search information, only video content, and LLM-
generated queries.

• Collected Data Source:
– Search Click Data (30,000 samples): We collect 30,000
samples of users’ clicked videos after searching the corre-
sponding queries with data flowing from query to video.

– Post-Watch Search Data (10,000 samples): We collect
10,000 samples of users’ searched queries after watching
the corresponding videos, which is a smaller subset com-
pared to click data, with data flowing from video to query.

• Criteria for Inclusion:
– Search Click Data: Include only data with positions
greater than one and less than twenty to mitigate position
bias of the top results and low relevance of farther results.

– Post-Watch Search Data: Include only data with total
count numbers greater than five to ensure relevance to
previously viewed videos.

Components of Video Content:

• Title: Accurate representation of video content.

• Video Dialogue Text (ASR): Prone to noise but contain
detailed information about the video.

• Video Text Information (OCR):More reliable than ASR
and contains more information than Title.

Data Preprocessing: Remove examples lacking textual features,
containing sensitive words, or background music that affect ASR
results.

Next, we will use LLMs to generate multiple queries for data
annotation of all videos. To enable the LLMs have the ability to
generate high-quality queries, we first fine-tuned these LLMs. Then,
we combined them with the original LLMs to generate queries.

Model Fine-Tuning:

• Models Used:
– Qwen1.5 7B Chat [3] and InternLM 7B Chat [6] 5:
Among the strongest for Chinese language capabilities.

• Purpose:
– Employing multiple LLMs ensures diversity in generated
queries, reducing the risk of repetitive queries that single
model sampling might produce.

Data Utilization and Query Generation

• Sort data by video quality scores and select the top 10,000
samples for query generation (Generation is time-intensive,
approximately 40 hours per week. Hence, only the top entries
are used).

• Approximately 20+ queries are generated per video using
the following prompt.

Query Generation Prompt:

instruction : Based on the video ' s title , dialog text , and
↩→ text information within the video , generate a
↩→ relevant and engaging search query. This query
↩→ should accurately reflect the video content ,
↩→ adhere to factual information , and stimulate user
↩→ interest to drive clicks . Ensure the query is
↩→ concise and contains key information points .

input : Title : { Title content }
Dialog text : {Dialog text content }
Text information : {Text information content }
Query:

output : {Query content}

This prompt is also used in our experiments to generate queries 6.

5We replace InternLM 7B Chat with LLaMA2 7B Chat on TruthDQG.
6As the TruthfulVQG is a Chinese Dataset, we translate the prompt from Chinese
using ChatGPT-4.
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A.4 Details about Dataset Annotation.
During the data annotation section, we first performed further
cleaning and filtering of the data. We utilized a combination of
LLM and manual annotation to label TruthfulDQG and Truthful-
VQG. This hybrid approach of LLM and manual annotations has
been employed in numerous works on hallucination benchmark
annotation [8, 30].

A.4.1 Phase One: Filter Dataset. Remove sensitive words and per-
form heuristic query quality filtering based on repetitiveness and
length scores.

A.4.2 Phase Two: Relevance Assessment. This phase focuses on
detecting relevance hallucination by measuring the relevance of
generated queries to the video content.

Similarity Calculations
(1) Embedding-Based Similarity: Utilizes BAAI BGE Embed-

ding [53] and cosine similarity to compute similarity scores
between text embeddings.

(2) Word-Based Similarity: Employs Jieba for text segmenta-
tion and calculates similarity using the Jaccard similarity 7.

WeightingMethodAdjusts relevance scoring based on the ASR
noise level:

ASR Score = 0.6 × cos(ASR,OCR) + 0.4 × cos(ASR,Title)

Query Scoring =



0.34 × (Query,Title)+
0.33 × (Query,ASR)+
0.33 × (Query,OCR), if ASR Score > 0.5

0.4 × (Query,Title)+
0.2 × (Query,ASR)+
0.4 × (Query,OCR), if ASR Score > 0.3

0.5 × (Query,Title)+
0.1 × (Query,ASR)+
0.4 × (Query,OCR), otherwise

A.4.3 Phase Three: Factuality Assessment. Detecting the factuality
hallucination of the generated queries by using LLM-based fact-
checking methods–Self-Check (4-shot CoT) and FacTool [9].

Self-Check (4-shot CoT). We implement Self-Check (4-shot
CoT) using the larger andmore powerful LLMQwen1.5-72B-Chat [3]
to detect queries’ factuality hallucination.

Advanced Fact-Checking. For indeterminate cases after Self-
Check, we use advanced fact-checking tools FacTool [9]withQwen1.5
72B Chat [3] and Serper 8 to further check queries’ factuality based
on external data sources from Google Search. The prompt is shown
below 9:

You are an excellent assistant .
You will receive a piece of text . Your task is to

↩→ identify any factual errors within this text .
When judging the factuality of the given text , you may

↩→ refer to provided evidences if necessary .

7https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.
html
8The website of Serper is https://serper.dev/.
9As the TruthfulVQG is a Chinese Dataset, we translate the prompt from Chinese
using ChatGPT-4.

These evidences could be helpful . Some evidences might
↩→ contradict each other . You must be

careful when using evidences to assess the factuality
↩→ of the given text .

The response should be a dictionary containing three
↩→ keys − "reasoning ", " factuality ",

" error ", and " correction ", corresponding to the
↩→ reasoning , whether the given text is

true (Boolean value − True or False ) , the factual error
↩→ present in the text , and the

corrected text .
Below is the given text
[ text ]: {query}
Below is the provided evidence
[evidences ]: {evidence}
You should respond only in the format described below.

↩→ Do not return any other content .
Start your response with '{{'.
[response format ]:
{{
"reasoning ": "Why is the given text factual or not?

↩→ Be careful when you claim
something is not factual . When you claim something is

↩→ not factual , you must provide
multiple pieces of evidence to support your decision

↩→ .",
" error ": " If the text is factual , then None;

↩→ otherwise , describe the error .",
" correction ": " If there is an error , then the

↩→ corrected text .",
" factuality ": " If the given text is factual , then

↩→ True; otherwise , False ."
}}

Finally, the completed data format is shown in Table 6, and the
statistics of TruthfulVQG and TruthfulDQG are shown in Table 7.

Human Assessment. To further ensure the relevance and fac-
tual accuracy of the query, we request three annotatorswith graduate-
level qualifications to manually evaluate the "good queries" to con-
firm factuality and relevance to the context, ensuring they are both
engaging and appropriate.

A.5 Implementation Details of LLM-based
Query Generation Approaches

The prompts used on TruthfulDQG for different LLM-based query
generation approaches are shown below (The prompts used on
TruthfulVQG are just different in the instruction, which has been
demonstrated on Appendix A.3):

Base / AQG:

Given the following document, generate a concise , factual
↩→ and relevant query that a user might type into a
↩→ search engine to find this information .

Document: {Document contents}.
Related Query:

PQGR:
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Table 6: Description of data fields in TruthfulVQG and TruthfulDQG.

Video / Document Content Best query Good Queries Bad Queries
Data Type string string [string] [string]
Description Description of the video / document content Best query (factual and most relevent) Array of good queries Array of bad queries

Table 7: Statistics of TruthfulVQG and TruthfulDQG. # denotes the average number.

Dataset Data Count # Good Queries # Bad Queries # Total Queries Language
TruthfulVQG 4,148 3.82 4.75 8.56 Chinese
TruthfulDQG 2,718 4.04 4.00 8.05 English

Given the following document, generate a concise , factual
↩→ and relevant query that a user might type into a
↩→ search engine to find this information .

Example 1:
Document: {Document contents}.
Related Query: {The query relevant and factual to document

↩→ contents }.
...
Example 9:
Document: {Document contents}.
Related Query:

InPars:

Given the following document, generate a concise , factual
↩→ and relevant query that a user might type into a
↩→ search engine to find this information .

Example 1:
Document: {Document contents}.
Related Query: {The query relevant and factual to document

↩→ contents }.
Hallucination Query: {The query irrelevant and unfactual to

↩→ document contents }.
...
Example 4:
Document: {Document contents}.
Related Query:

The size of the dataset for LoRA fine-tuning AQG is 10,000 pairs.
The fine-tuning targets the q_proj and v_proj within the trans-
former layers. The learning rate is set to 5e-5, the per-device train
batch size is 4, and the gradient accumulation steps are 4.

A.6 Implementation Details of LargePiG.
We run all the experiments on machines equipped with NVIDIA
V100 GPUs and 52-core Intel(R) Xeon(R) Gold 6230R CPUs at
2.10GHz. We utilize the Huggingface Transformers package to
conduct experiments. During the decoding of responses from the
language models, we employ random sampling with a temper-
ature of 0.8 and a maximum of 256 new tokens to generate re-
sponses. The rest of the parameters use the models’ default set-
tings. As for selecting the layer to calculate the pointer attention

Table 8: Experimental results on multimodal data.

Model MC1 MC2 MC3

LLaVA-7B 58.40 80.45 51.54
+ LargePiG 59.80 81.74 52.94

LLaVA-13B 57.20 79.18 50.74
+ LargePiG 58.10 79.93 51.26

distribution, we used the last layer’s attention weights by com-
paring them with other layers. As for selecting the words to cal-
culate the pointer attention distribution, we recommend filtering
the function words in the input using tools detailed in Appen-
dix A.2. Considering that the Jensen-Shannon divergence is usually
small in the high-dimensional space of vocabulary distribution,
we scale the copy probability 𝑝cp in LargePiG by a factor of 𝛼 . To
ensure that the scaled 𝑝𝑐𝑝 remains within a reasonable range, we
clip its value to be less than 0.5, thus maintaining a balance be-
tween copy and generation. The value of 𝛼 is selected from the
set [100, 500, 1000]. The O𝑗∈J in Equation 8 is selected as max

𝑗∈J
,

and J comprises the last 8 or 16 layers of the backbone LLMs,
excluding the anchor layer which is the last layer (for increased effi-
ciency, either even or odd numbered layers may be selected). We use
two-fold validation to select the hyper-parameters. The LLaMA2-
7B-Chat can be downloaded from https://huggingface.co/meta-
llama/Llama-2-7b-chat-hf. The Qwen1.5-7B-Chat can be down-
loaded from https://huggingface.co/Qwen/Qwen1.5-7B-Chat. Due
to the limited Chinese training corpus of LLaMA2-7B-Chat, we used
Llama2-Chinese-7b-Chat on TruthfulVQG, which can be down-
loaded from https://huggingface.co/LinkSoul/Chinese-Llama-2-7b.

A.7 Multimodal Experiments of LargePiG.
LargePiG is effective not only on large language models but can also
be applied to Large Vision-Language Models (LVLM), further en-
hancing the truthfulness of query generation that integrates both vi-
sion and languagemodalities.We selected the recently popular large
vision-language model LLaVA [24] as the backbone model. Detailed
method descriptions about the implementation can be found in Ap-
pendix A.8. To validate LargePiG’s ability to address hallucination
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issues in multimodal query generation tasks, we compiled a multi-
modal version of the TruthfulVQG dataset, named TruthfulVQG-M.
Experimental results on LLaVA-7B/13B, shown in Table 8, indicate
that the truthfulness of queries generated by LargePiG surpasses
those produced by the original decoding method, confirming the ef-
fectiveness of LargePiG in multimodal tasks. We also observed that
LLaVA-13B performs less effectively than LLaVA-7B, a potential
reason being that in the video query generation task, due to the high
noise level in video content, the more complex LLaVA-13B model
might be more sensitive to noise. Furthermore, short videos contain
some new content not present in the pre-training data, which could
lead to easier overfitting to the training data in a zero-shot scenario,
thus resulting in suboptimal performance compared to LLaVA-7B.

A.8 Details about LargePiG Applied to LLaVA
The architecture of LLaVA [24] is straightforward, comprising only
a Vision Encoder, Projection, and Language Model, with training

conducted in two stages: Stage 1: Pre-training for Feature Align-
ment, and Stage 2: Fine-tuning End-to-End. A key issue when ap-
plying LargePiG to LLaVA concerns how to map image tokens to
text tokens, thus establishing an attention distribution based on the
source content. Considering during the Feature Alignment stage,
the primary task is aligning the image features H𝑣 with the pre-
trained LLM word embeddings, we propose mapping each image
token to the closest text token in the embedding space when com-
puting the Pointer Attention Distribution. In the implementation,
we utilize the faiss vector database [21] to store text token embed-
dings and retrieve the corresponding tokens using image token
embeddings, allowing for rapid retrieval of relevant tokens. Case
studies reveal that this retrieval method can accurately reveal the
main information in the images, although many noise tokens are
also retrieved. Therefore, we apply rule-based filtering to remove
tokens with low similarity to the text part and construct the atten-
tion distribution using the remaining tokens together with the text
tokens.
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