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Abstract

In search scenarios, user experience can be hindered by erro-
neous queries due to typos, voice errors, or knowledge gaps.
Therefore, query correction is crucial for search engines. Cur-
rent correction models, usually small models trained on spe-
cific data, often struggle with queries beyond their training
scope or those requiring contextual understanding. While the
advent of Large Language Models (LLMs) offers a potential
solution, they are still limited by their pre-training data and
inference cost, particularly for complex queries, making them
not always effective for query correction. To tackle these, we
propose Trigger3, a large-small model collaboration frame-
work that integrates the traditional correction model and
LLM for query correction, capable of adaptively choosing
the appropriate correction method based on the query and the
correction results from the traditional correction model and
LLM. Trigger3 first employs a correction trigger to filter out
correct queries. Incorrect queries are then corrected by the
traditional correction model. If this fails, an LLM trigger is
activated to call the LLM for correction. Finally, for queries
that no model can correct, a fallback trigger decides to re-
turn the original query. Extensive experiments demonstrate
Trigger3 outperforms correction baselines while maintaining
efficiency.

1 Introduction

In online search scenarios, users may input incorrect queries
due to insufficient knowledge, voice input, etc., resulting
in errors such as typos, missing characters, homophones,
and similar shapes (Ye et al. 2023; Pande et al. 2022). If
we do not correct the queries and use the original queries
for searching, the results may significantly deviate from the
user’s needs. Therefore, to improve the user’s search experi-
ence, search engines must implement query correction ser-
vices that automatically detect and correct errors in queries.
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Original Query
RDESHTHE

(Pull-on jeans)

Original Query
TR REZET IR

(Hang the geranium cuttings)

Small Model Corrected Query Small Model Corrected Query

RISEHTHE ERREE MR

(Zipper jeans) (Fishing for geranium cuttings)
LLM Co{rected Query LLM Corrected Query
RIS HEHREE MR

(Zipper jeans) (Hanging geranium cuttings)

(a) Query correction that re- (b) Query correction that re-
quires common sense. quires context understanding.

Original Query Correct Query

JREETT KT

(Yuan Province Lantern Rite) ( Lantern Rite)
Small Model Corrected Query LLM Corrected Query

TS

(Source Province Lantern Rite)

LB

(Lantern Festival)
(c) Query correction that requires specific domain knowledge.

Figure 1: Examples of query correction, where the red char-
acters are the original errors, the blue characters are the re-
sults of corrected but incorrect, and the green characters are
the correct result. The small model is traditional correction
model GECToR and the LLM is Qwen1.5-7B-Chat.

In the field of query correction, the existing mainstream
correction models can be divided into Seq2Seq and Seq2Edit
methods. The Seq2Seq model (Shao et al. 2024; Xue et al.
2021) treats the correction task as a machine translation task,
that is, translating the incorrect query into the correct query;
the Seq2Edit model (Zhang et al. 2022) treats the correc-
tion task as a sequence labeling task, correcting errors by
marking insertions, deletions, etc. In this paper, we refer to
these two types of traditional correction models as small
models. Nowadays, Large Language Models (LLMs) have
demonstrated robust semantic comprehension in numerous
tasks (Brown et al. 2020; Ouyang et al. 2022), making them
a viable option for query correction. When using the small



model and LLM for query correction, we anticipate the fol-
lowing three observations:

e Some queries are related to grammatical errors, which
can be corrected based on common sense, where com-
mon sense refers to the knowledge that is easily included
in the small model or LLM pre-training data, a capabil-
ity possessed by both small and large models (Ding et al.
2024). For instance, as shown in Figure 1 (a), a user mis-
takenly inputs “pull-on” instead of “zipper” in the query
due to a grammatical error. “pull-on” is not common in
Chinese, while the correct “zipper” is very common, thus
both models can correct it. Therefore, both small models
and LLMs are capable of correcting errors in queries that
can be addressed with common sense.

Some queries necessitate a comprehensive understand-
ing of query context, which may pose challenges for
small models. For example, as depicted in Figure 1 (b), a
user incorrectly inputs “Hanging geranium cuttings” as
“Hang the geranium cuttings”. GECToR corrects it to
“Fishing for geranium cuttings”. The words “fishing”,
“hanging”, and “hang” are all grammatically correct in
Chinese with similar pronunciations but vastly different
meanings. Therefore, small models cannot correct errors
in queries that require strong contextual semantic under-
standing, while LLMs can.

As user queries may cover various aspects, there are cer-
tain queries that even the LLM might struggle to handle.
These could be queries related to real-time news or spe-
cific domains. For example, As depicted in Figure 1 (c),
within the gaming field, a user incorrectly inputs “Gen-
shin Impact Lantern Rite” as “Yuan Province Lantern
Rite”. The small model corrects it to “Source Province
Lantern Rite”, while the LLM corrects it to “Lantern Fes-
tival”. Both the small model and LLM, lacking knowl-
edge in this specific domain, provide incorrect correc-
tions. We observe that the corrected queries by the mod-
els might completely deviate from the user’s original in-
put. Using these deviated results as the final queries can
severely affect the user search experience. Therefore, nei-
ther small models nor LLMs can correct errors in queries
related to specific domains or real-time news.

From these observations, we can learn that neither small
models nor LLMs are universally effective in query correc-
tion tasks. Moreover, in terms of correction costs, the ex-
penditure for small models is typically less than that for
LLMs (Ramirez, Birch, and Titov 2024). Therefore, the cru-
cial issues when relying on small models and LLMs for
query correction tasks are: when to employ either model and
which one to choose for query correction, the small model or
the LLM? This is essentially a model selection problem for
large-small model collaboration tasks, aimed at improving
model performance and efficiency to enhance the trustwor-
thiness (Liu et al. 2023) and controllability (Shen et al. 2024)
of LLM-powered systems.

To address the aforementioned issues, in this paper, we
propose a novel model selector framework for query cor-
rection, named Trigger®, to adaptively integrate the small
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model and LLM for query correction. Trigger® mainly con-
sists of three parts: Correction Trigger (CT), LLM Trigger
(LT) and Fallback Trigger (FT).

For when to employ models for correction: The CT se-
lects incorrect queries for subsequent correction. The FT
conducts a review after the correction by both models, re-
turning the original query for those that are difficult for both
models to correct. For which model to choose: The LT se-
lects queries that are difficult for the small model to correct
but can be corrected by the LLM to the LLM for correction.
In cases both models can correct, the small model’s correc-
tions are taken as final queries. Through the three modules,
we not only leverage the correction capabilities of both mod-
els but also consider their limits, leading to enhanced correc-
tion performance and efficiency.

To validate the effectiveness and efficiency and of the pro-
posed Trigger® framework, we conduct experiments on two
query correction datasets, using three small models and two
LLMs. The results consistently demonstrate that Trigger®
achieves optimal performance and high efficiency. We sum-
marize our contributions as follows:

* We propose Trigger®, a novel large-small model collabo-
ration framework that adaptively completes query correc-
tion by considering feedback from both the small model
and LLM, which is model-agnostic.

* We explore the combination of the small models and
LLMs in the field of query correction, providing solu-
tions for applying LLMs in query correction and how
small models and LLMs can better collaborate.

* We conduct extensive experiments on both commercial
and public datasets, showing that Trigger® achieves su-
perior performance while maintaining high efficiency.

2 Related Work
2.1 Query Correction in Search Engines

With the rise of neural networks, the current query correc-
tion models are mainly divided into two types: Seq2Edit
and Seq2Seq. Seq2Edit models (Zhang et al. 2022; Awasthi
et al. 2019; Liang et al. 2020) treat correction as a sequence
tagging problem, completing the correction through editing
operations such as insertion and deletion. Seq2Seq mod-
els (Shao et al. 2024; Zhang et al. 2021; Zhao and Wang
2020) view the correction task as a translation task, translat-
ing the incorrect query into the correct one. They can achieve
decent correction performance to a certain extent, but due to
insufficient knowledge or weaker semantic understanding,
they struggle to handle some queries.

Recently, some work has explored the application of
Large Language Models (LLMs) in the correction field. By
designing prompts and conducting a comprehensive eval-
uation of ChatGPT’s performance on the correction task
through in-context learning, (Fang et al. 2023; Li et al.
2023; Davis et al. 2024; Coyne and Sakaguchi 2023) find
that LLMs tend to over-correct, and there is still a significant
gap between LLM and small models trained on specific cor-
rection datasets. (Fan et al. 2023) confirms that fine-tuning
can enhance LLM’s ability in text correction.



2.2 Model Selection of Language Models

Model selection has long been a fundamental problem in
machine learning (Ding, Tarokh, and Yang 2018; Zhang,
Liao, and Liao 2019; Zhang and Liao 2020). Considering
the high cost of LLMs, recent work has explored how to bal-
ance performance and efficiency. Their methods are mainly
divided into two categories. The first category selects small
and large models through a routing approach, mainly by pre-
dicting the accuracy of the small model’s responses (Lu et al.
2023; Ding et al. 2024) to determine the invocation of the
large model. The second category adopts a cascading ap-
proach to decide whether to invoke the larger model after the
execution of the smaller one. (Madaan et al. 2023) uses few-
shot learning within the small model to verify its answers.
(Yue et al. 2023) judges based on the consistency of multiple
answer samples obtained by the small model. In code-driven
QA tasks, (Zhang et al. 2023) introduces an automatic code
executor to decide based on the generated code execution.
Most recently, (Ramirez, Birch, and Titov 2024) makes de-
cisions based on the uncertainty of the small model’s output.
Unlike the above methods, we consider the specificity
of query correction, which does not necessarily require an
answer. Firstly, if the query is already correct, there’s no
need for correction. Secondly, both small and large mod-
els may not always provide accurate corrections. Hence, we
designed the CT and FT to address these considerations.

3 Trigger?: The Proposed Framework
3.1 Task Formalization
In the query correction task, we are given a set of data D =

{(z4, yl)}'f:"l, where | D| indicates the total number of data,
each of these data samples contains: x; represents the ¢-th
original query, y; represents the correct query corresponding
to x;. The goal of the query correction task is to learn the
function from the original query to the target query. Here
query z; and y; may not be the same length.

3.2 General Framework

The large-small model collaboration framework of Trigger®
is shown in Figure 2. The input is the original query, and
after interacting with the adaptive model selector, the small
model and LLM, the output is the final corrected query.

The adaptive model selector consists of 1) Correction
Trigger (CT) fcr that decides whether the original query
needs to be corrected, 2) LLM Trigger (LT) fir that an-
alyzes if the LLM is needed for query correction, and 3)
Fallback Trigger (FT) frr that checks whether the origi-
nal query needs to be returned. As shown in Algorithm 1, a
query z is corrected following the process below:

The query will first go through the CT (line 3), which will
determine whether it needs to be corrected based on its cor-
rectness. If the CT determines that the query needs to be cor-
rected, it passes the query to the small model. This model is
designed to handle common and simple errors and is more
efficient compared to the LLM. We denote it as fimall- fsmall
takes original query x as input and outputs its corrected
qQUery Ysmall:

ey

Ysmall = fsmall (I, asmall)a
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Algorithm 1: Process flow of Trigger®.

1 Input: Original query  and Trigger®’s models.
2 Output: Final corrected query ygnal-
3 per + for(x) > Correction Trigger
4 if pcr = 1 then
5 Ysmall < fsmall(l')
prT < fur (2, Ysman)
if prr = 1 then
L yLiMm < fLm (2, Ysman)
Ye = YLLM
else

L Ye = Ysmall

prr < frr(T,Ye)
if ppr = 1 then
Yfinal = T
else
L Yfinal = Yc

> LLM Trigger

e e N

11

12
13
14

> Fallback Trigger

15
16

17 else
18 L Yfinal = T

where 0,11 is the learnable parameters in small model. Af-
ter being corrected by the small model, the query corrected
by the small model and the original query will go through
the LT (line 6) to determine whether the LLM is needed for
correction.

If the LT determines that the query cannot be corrected
by the small model, but can be corrected by the LLM, the
query is passed to the LLM. This model is more powerful
and can handle more complex errors, but it is more resource-
intensive. We denote it as frrm. fuowm takes (2, Ysman) as
input and outputs the its corrected query yr,rm:

2

yriMm = fLom (2, Ysmalt; OLim),

where 01,1, is parameters in f1ru.

Finally, the FT (line 12) will determine whether to return
the original query as the final query output based on the cor-
rected query and the original query. That is, the final cor-
rected query may use the corrections from the small model,
the LLM, or it may remain the original query:

3)

Yfinal = L OF Ysmall O YLLM

3.3 The First Trigger: Correction Trigger

To improve efficiency, we first judge the correctness of the
original query. If the query itself is correct, there is no need
to use the small model and the LLM for correction.

We use the Correction Trigger (CT) to achieve the above
goal. Given the initial query z, CT is a scoring function that
indicates the probability of the query being incorrect:

pcr = P(Incorrect|z) = for(x; 0cr), 4
where P(Incorrect|x) is the probability that the query x is
incorrect. If pcr is above a certain threshold, we can con-
clude that the query is incorrect and correction is needed.

We use the representation of the [CLS] token in
BERT (Devlin et al. 2019) to get the score pc.
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Figure 2: The architecture of the proposed framework Trigger®. (a) The general framework of Trigger®. (b) The Illustration of
Correction Trigger (CT). (c) The Illustration of LLM Trigger (LT). (d) The Illustration of Fallback Trigger (FT).

3.4 The Second Trigger: LLLM Trigger

After the small model’s correction, we use a LLM Trigger
(LT) to decide whether to invoke the Large Language Model
(LLM). Considering that the LLM may not be able to solve
the problem either, we hope to use LT to identify the queries
that the small model cannot correct but the LLM can. Given
the pair of the original query and the query preliminarily
rewritten by the small model (&, ysman), LT is a scoring
function that indicates the probability of calling LLM:

prr = P(Invoke LLM|Z, Ysmall)

= fur (%, Ysmal; Our),

&)

where ysman 1S the output of the small model. We use the
[SEP] token to separate = and yspma11, and take the represen-
tation of the [CLS] token to get the score prr.

3.5 The Third Trigger: Fallback Trigger

Considering that both small and large models may not be
able to correct some queries such as real-time news queries
or domain-specific queries, which, if modified, may seri-
ously damage the user search experience, as shown in Fig-
ure 1 (b), it is better to use the original query. This op-
eration is inspired by the research about LLM’s refusal to
answer (Chen et al. 2024) and LLM security (Zheng et al.
2024; Sun et al. 2023).

After the small model or LLM correction, we can review
the rewrite and choose whether to return the original query
based on the corrected query and the original query. Given
the original query and corrected query, prr is used to indi-
cate the probability of returning the original query:

prr = P(Return x|, y.)
= frr(®,ye; Orr),

where y. is either ysman Or YL, Which can be known ac-
cording to Algorithm 1. We use the [SEP] token to separate

(6
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z and y., and take the representation of the [CLS] token to
get the score ppr.

3.6 Model Training in Trigger?

In Triggerg, for the three modules, we use the widely used
binary cross-entropy loss (Devlin et al. 2019) as the objec-
tive function:

1
Lxt = x| DZ: yxrlog(pxT)
XT

+ (1 = yx1)log(1 — pxr), (7)

where XT € {CT, LT, FT}, yxr is the label and px is the
prediction score.

For Do, we take the wrong query in the training dataset
as the positive sample and the correct query as the negative
sample.

Before introducing the dataset construction for Dy and
Drr, we first introduce a few character-edit-based indicators
that will be used later: True positive (TP) indicates whether
the model has correct edits, False positive (FP) indicates
whether the model’s edits have changed the correct char-
acters into the wrong ones, and False negative (FN) indi-
cates whether the model’s edits have missed any necessary
changes for the correct query. For the small model’s editing
indicators, we represent them as TPg, FPg, FNg. For the
LLM, we represent them as TPy, FP, FNp..

For Dr;1, we use the queries that small model can’t cor-
rect, but LLM can as the positive samples. Specifically, a
query is determined to be a positive sample for LT as long
as it meets any of the following three points: 1) The small
model does not have correct edits, but the LLM does. 2) The
small model has incorrect edits, but the LLM does not. 3)
The small model has missed necessary edits, but the LLM
does not, i.e., the LLM has completely corrected this query.



Train Avglen #Query Error Rate
Commercial 9.43 1,444,213 97.8%
QQ 9.81 111,703 79.1%
Valid Avglen #Query Error Rate
Commercial 9.41 14,737 97.8%
QQ 9.78 12,412 75.1%
Test Avglen #Query Error Rate
Commercial 943 14,737 97.8%
QQ 9.79 13,791 74.7%

Table 1: Statistics of the used query correction datasets. Avg
len is the average length of the original query, #Query de-
notes the number of the queries and Error Rate denotes the
percentage of the incorrect queries.

This can be represented as

(TPS <0 and TPy > O)
or (FPs >0 and FPp <0)
or (FNg >0 and FNp <0).

Negative samples are then sampled in the same quantity as
positive samples, excluding all positive samples from the
training dataset.

For Drr, we use the queries that both small model and
LLM cannot correct as the positive samples. Specifically,
a query is determined to be a positive sample for FT if the
editing of the rewritten query does not have a correct edit.
We consider that both the small model and LLM do not have
a correct edit, specifically represented as

TPg <0 and TPp <O.

Negative samples are then sampled in the training set, ex-
cluding all positive samples, with the same number of posi-
tive samples. The training details are in Section 4.1.

4 Experiments
4.1 Experimental Settings

Dataset We conduct query correction experiments on the
following two datasets:
Commercial is based on the user search logs from a popu-
lar short video platform in 2024. The construction process
of Commercial dataset is as follows: 50% of the data is
obtained by rejecting samples from online correction logs
with a rewriting confidence greater than 0.99. The remain-
ing 50% of the data is generated from high-quality online
queries through methods such as homophone substitution,
near-sound character replacement, adjacent character trans-
position, and random character addition or deletion.
QQ is a publicly available search-related dataset, due to the
lack of publicly available query correction datasets, we mod-
ify it as a query correction dataset. Following (Ye et al.
2023), we first use a language model to filter the queries,
selecting those with a high probability of being correct. We
then perform similar operations like Commercial dataset on
these queries to construct a query correction dataset.

The statistics and the construction process of the datasets
are shown in Table 1.
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Metrics Following (Xu et al. 2022), we use the
widely used metrics character-level and word-level pre-
cision (P)/recall (R)/F-measure (Fys) from ChERRANT
scorer (Zhang et al. 2022) to evaluate the correction perfor-
mance.

Baselines In order to verify the validity of Trigger®, we
consider the following correction model as the small model:
GECToR, BART, mT5, which are short for GECToR-
Chinese (Zhang et al. 2022), BART-Large (Shao et al. 2024)
and mT5-Base (Xue et al. 2021). We consider the following
LLM: Qwenl.5-7B-Chat (Bai et al. 2023) and Baichuan2-
7B-Chat (Yang et al. 2023). We improve LLM’s correction
performance by fine-tuning it and applying it for direct cor-
rection (Single) and using small model rewrites as part of
LLM prompts for corrections (Cascading).

We further combine the small model and LLM and
compare Trigger® to the following framework: Random-
Routing, Routing (Lu et al. 2023; §akota, Peyrard, and West
2024), HybridLLM (Ding et al. 2024), Random-Cascading
and Margin Sampling (Ramirez, Birch, and Titov 2024).
Specifically, we compare the correction performance of
GECToR, BART, mT5, LLM itself and with TriggerB. Then,
using these small models and LLMs, we further compare
Trigger?’ with the above frameworks.

Implementation Details Our code implementation is
based on Huggingface Transformers (Wolf et al. 2020) in
Pytorch. The fine tuning cost of LLM is much higher than
that of small models. Therefore, following (Fan et al. 2023),
for the fine tuning of LLM, we only used 1,000 pieces of
data from the training dataset, while for the training of small
models, we used all available training datasets. For the fine
tuning of LLMs, we use LoRA (Hu et al. 2021) for efficient
fine tuning. We utilize the Adam (Kingma and Ba 2014) op-
timizer, setting the initial learning rate to Se-5, the batch size
to 16, and applying a cosine learning rate schedule for 3
epochs. For the auxiliary models used in Trigger® and all
frameworks, we select ten thousand queries from the train-
ing dataset to fine-tune BERT (Devlin et al. 2019). All exper-
iments are performed on NVIDIA V100 32GB GPUs. The
source code, datasets, more experimental results and details
can be found in the following link:

Code — https://github.com/ke-01/Trigger3.

4.2 Main Results

We investigate the correction performance of our proposed
Trigger®. As shown in Table 2, which presents the correc-
tion performance on two datasets, we can draw the following
conclusions:

e Overall Performance. Trigger® surpasses all base small
models, LLMs and frameworks in Fy 5 while ensuring no
decrease in recall rate. This demonstrates the effectiveness
of our proposed Trigger® in integrating the small model and
LLM, taking into account the feedback from both when de-
ciding whether to call the LLM and returning the original
query strategy for queries that neither model corrects well.
e Cascading vs. Routing. We find that the cascade frame-
work performs better overall in correction than the routing



Commercial QQ
Category Model Character-level Word-level Character-level Word-level
P R Fos P R Fos P R Fos P R Fos
GECToR (Small Model) 59.59 7630 6232 58.68 68.71 6044 39.96 46.10 41.05 4459 43.69 4441
Individual Single (LLM) 4547 4287 4492 4557 4096 4456 4157 4050 4135 4393 3778  42.55
Cascading (LLM) 7243  67.13 7130 7234 6435 70.59 51.84 47.00 50.79 54.66 44.72 52.34
777777777 Random Routing =~~~ ~ 53.16 5929 5428 = 32.54 53456 5293 4032 4297 4082 4400 4053 4326
Meta Routing 59.08 7025 61.02 5870 6471 59.81 4338 46.77 44.02 4620 4324 4558
Combination HybridLLM 59.63 71.82 61.72 59.10 6576 60.32 43.57 46.51 4413 46.60 43.13  45.86
Random Cascading 64.61 71.60 6590 6435 6633 6473 4507 4630 4531 4896 43.89 47.85
Margin Sampling 66.56 7141 6748 6629 6654 6634 4725 46.57 47.11 5124 4470 49.79
Trigger® (Ours) 74.661 7433 74.607 7479t 71.33" 74.07" 60.097 48.69" 57.40" 63.457 46.96" 59.297
BART (Small Model) 73.52 7199 7321 7391 7154 7342 59.83 60.51 5997 6226 62.11 62.23
Individual Single (LLM) 4547 4287 4492 4557 4096 4456 4157 4050 4135 4393 3778 4255
Cascading (LLM) 72773 62,55 7043 73.05 61.79 7048 5573 5241 55.03 5857 5132 56.96
T Random Routing =~~~ 59.64 5724  59.14 ~ 60.14 56.16 5930 50.55 ~ 50.13 5047 5356 4964 5273 °
Meta Routing 68.68 65.77 68.08 69.06 6497 68.20 60.78 60.52 60.73 63.87 60.72  63.21
Combination HybridLLM 71.12  68.64 70.61 71.66 68.08 7091 61.82 6044 61.54 64.92 60.65 64.02
Random Cascading 7323 6743 7199 7373 66.83 7224 5752 56.03 5721 60.11 5621 59.29
Margin Sampling 72.67 66.52 71.35 7295 6588 7141 58.73 5846 58.67 61.51 59.16 61.03
Trigger® (Ours) 76577 7207 75.631 76.86t 71.57 75.74" 66317 61.437 65.277 68.597 62.17 67.20
mT5 (Small Model) 6742 59.04 6556 6844 58.02 66.06 5471 52.01 5415 56.61 51.02 5540
Individual Single (LLM) 4547 4287 4492 4557 4096 4456 4157 4050 4135 4393 3778  42.55
Cascade (LLM) 66.18 5490 6357 6690 5379 63.79 5048 49.02 50.18 52.86 46.56 51.46
T Random Routing =~~~ 56.05 51.00 5496 56.66 ~49.60 55.00 47778 ~ 4586 4738 5032 4406 4893 °
Meta Routing 64.08 57.62 62.67 6498 5651 63.09 5784 52.14 56.60 60.87 50.71  58.53
Combination HybridLLM 66.71 5844 6487 6752 5721 6517 59.14 5222 57.61 62.00 5090 5941
Random Cascading 66.96 57.17 6474 6794 56.10 65.19 5229 50.01 51.82 5427 48.08 5291
Margin Sampling 67.51 59.06 65.63 6854 58.04 66.14 5526 5195 5457 57.05 50.74 55.66
Trigger® (Ours) 69.64" 59.13 67.257 7044t 58.10 67.577 61361 52727 59417 64.43" 5129 61.29F

Table 2: Performance comparisons between Trigger® and the baselines when the LLM is Qwen1.5-7B-Chat. Single: directly
using LLM for correction. Cascading: using smaller model rewrites as part of LLM prompts. The LLMs use 1,000 data for fine
tuning, while the small model use full training data for training. The boldface indicates the best performance, and the underline
indicates the second performance. ‘}” indicates that the improvements are significant (t-tests, p-value < 0.05).

framework. This is mainly because, in the correction task,
without the preliminary rewriting from the small model, di-
rect correction by the LLM may result in over-correction,
leading to poorer correction performance. This suggests that
in the query correction task, the preliminary rewriting by the
small model can serve as an implicit feature to help improve
the LLM’s correction performance.

o Comparison of Different Small Models. For different
small models, we note that combining with the LLM im-
proves the performance of Seq2Edit more significantly. This
is mainly because the types of errors that Seq2Edit and
Seq2Seq can correct are more complementary. This also re-
flects to some extent that the errors Seq2Seq and LLM can
solve may be more alike. However, as the errors that the
LLM and Seq2Seq small model can correct are different, this
can also enhance the base model’s correction performance.

4.3 Ablation Study

Trigger® consists of three main components: CT (Correction
Trigger), LT (LLM Trigger), and FT (Fallback Trigger). To
explore the impact of different components on the correction
performance, we conduct ablation experiments by adding
these three components one by one. Although CT is the first
module that the query goes through during inference, it does
not carry out correction and therefore, cannot demonstrate
the effect on correction performance. Hence, we add it last.

13265

50
’\3 EX] Meta Routing B Margin Sampling
&40 EZS HybridLLM @A Trigger’
g
o 30 ‘

20
= \
—
—
210 \
<

0

Commercial QQ

Figure 3: Average LLM Coverage of Trigger3 and the three
frameworks when the LLM is Qwen1.5-7B-Chat. The lower
the bar, the better.

The base models are the small model and the LLM in a cas-
cade manner. The ablation results on Commercial and QQ
datasets are shown in Table 3, and we provide detailed dis-
cussions for each module below:

+LT: This represents adding the LLM trigger to the base
model and integrating LLM. It decides whether to call LLM
for specific queries and only calls LLM when necessary. We
can observe that adding LT consistently improves perfor-
mance, reflecting the effectiveness of LT in integrating small



Model Commercial QQ
Char—F0‘5 WOTd—F()_5 Char—F0.5 WOI'd-FQﬁ
GECToR 62.32 60.44 41.05 4441
LLM 71.30 70.59 42.29 45.48
“+LT 7333 7283 5591 5791
+FT 74.17 73.66 56.63 58.49
+CT 74.60 74.07 57.40 59.29
BART 73.21 73.42 59.97 62.23
LLM 70.43 70.48 52.79 55.38
C+HLT 7490 7503 6452 6640
+FT 75.21 75.33 64.67 66.58
+CT 75.63 75.74 65.27 67.20
mT5 65.56 66.06 54.15 55.40
LLM 63.57 63.79 50.18 51.46
CHLT 6669 0 6707 5722 59.03
+FT 67.11 67.44 58.28 60.10
+CT 67.25 67.57 59.41 61.29

Table 3: Ablation studies of Trigger® on Commercial and
QQ datasets when the LLM is Qwen1.5-7B-Chat. The bold-
face indicates the best performance.

models and LLMs.

+F'T: This represents adding the fallback trigger, which
reviews the correction results. It decides whether to re-
turn the original query based on the original and corrected
queries. If neither of the models can correct the query, we
return the original query. Adding FT improves correction
performance on both datasets and all three small models,
demonstrating its effectiveness.

+CT: This represents adding the correction trigger,
which judges the correctness of the input query. For queries
that are correct, there is no need for models to correct.
Adding CT also improves correction performance. We at-
tribute this improvement to its similar function to FT.
Queries that are already correct do not need correction, and
having the small model and LLM correct them may actually
decrease correction performance.

4.4 Efficiency Analysis

In the process of deploying the model, considering the pos-
sibility of parallel pipeline execution, the portion of the
query processed by LLMs often becomes a bottleneck for
efficiency. At the same time, a widely recognized basic as-
sumption from previous research (Ramirez, Birch, and Titov
2024; Lu et al. 2023) in the field of efficient inference is that
smaller models are more inference-efficient than larger mod-
els. Based on this concept, similar to (Ding et al. 2024), we
use the proportion of queries addressed by LLM as an indi-
cator to evaluate efficiency, termed as LLM coverage:

The number of queries corrected by LLM

LLM coverage =
verag The total number of queries

The average LLM coverage (the mean of the LLM cov-
erage across three small models within the framework) of
Trigger® and the other three frameworks on two datasets
can be found in Figure 3. In conjunction with Table 2, we
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Small Framework Commercial QQ
Fos LC Fyo5 LC
Meta Routing  61.02 3822 44.02 39.13
HybridLLM 6172 3377 44.13 39.82
GECTOR  pfargin 6748 4563 47.11 6446
Trigger® 7460 32.09 57.85 31.24
****** Meta Routing ~ 68.08 16.88 60.73 ~ 32711
BART HybridLLM  70.61 12.57 61.54 31.02
Margin 7135 2869 58.67 33.55
Trigger® 75.63 384 6527 18.09
******* Meta Routing  62.67 17.45 56.60 26.34
TS HybridLLM  64.87 2126 57.61 26.33
Margin 65.63 1209 5457 597
Trigger® 67.25 9.19 5941 16.66

Table 4: Efficiency comparisons between Trigger® and other
frameworks. The boldface indicates optimal performance
and optimal efficiency. LC is short for LLM Coverage,
which denotes the proportion of queries solved by LLM.
Fy 5 is Char-Fj 5. Margin is short for Margin Sampling.

can find that Trigger® maintains high efficiency while im-
proving correction performance, mainly due to the follow-
ing two reasons: 1) Trigger® considers excluding the queries
that are correct themselves before making corrections and
uses CT to filter out the correct queries. 2) Before Trigger®
hands over the queries to LLM for correction, it considers
that only the queries that LLM can correct are handed over
to LLM for processing.

The proportion of queries handled by LLM on three dif-
ferent small models for each framework can be found in Ta-
ble 4. Take a concrete example, if the dataset is Commer-
cial, the LLM is Qwen1.5-7B-Chat, and the small model is
GECToR, the LLM coverage is 32.09. For about 67.91% of
queries, only a small model is enough. The proportion of
queries corrected by other LLMs and small models combi-
nations can be similarly obtained from the examples above.
We find that Trigger® not only maintains high correction
performance but also ensures efficiency.

5 Conclusion

In this paper, we propose a large-small model collaboration
framework, Trigger®, to adaptively perform query correc-
tion. Specifically, Trigger® uses three triggers to integrate
the small model and LLM for query correction. First, before
performing query correction, it judges the correctness of the
query and selects the incorrect query to be corrected by the
small model. Second, after the small model correction, it se-
lects the queries that the small model cannot correct but the
LLM can, and hands them over to LLM for correction. Fi-
nally, after the LLM correction, it reviews and selects the
queries that neither the LLM nor the small model can cor-
rect, and returns the original query as output. The superiority
and efficiency of Trigger®’s correction performance are val-
idated through extensive experiments.
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