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Abstract

Online to batch conversion involves constructing a new batch
learner by utilizing a series of models generated by an existing
online learning algorithm, for achieving generalization guar-
antees under i.i.d assumption. However, when applied to real-
world streaming applications such as streaming recommender
systems, the data stream may be sampled from time-varying
distributions instead of persistently being i.i.d. This poses a
challenge in terms of out-of-distribution (OOD) generalization.
Existing approaches employ fixed conversion mechanisms that
are unable to adapt to novel testing distributions, hindering the
testing accuracy of the batch learner. To address these issues,
we propose AdaO2B, an adaptive online to batch conversion
approach under the bandit setting. AdaO2B is designed to be
aware of the distribution shifts in the testing data and achieves
OOD generalization guarantees. Specifically, AdaO2B can
dynamically combine the sequence of models learned by a
contextual bandit algorithm and determine appropriate combi-
nation weights using a context-aware weighting function. This
innovative approach allows for the conversion of a sequence of
models into a batch learner that facilitates OOD generalization.
Theoretical analysis provides justification for why and how the
learned adaptive batch learner can achieve OOD generalization
error guarantees. Experimental results have demonstrated that
AdaO2B significantly outperforms state-of-the-art baselines
on both synthetic and real-world recommendation datasets.

Introduction
Online learning aims at conducting sequential decision-
making by capturing the dynamic nature of data stream,
which generates an updated model at each round and uses
it for the next decision-making round (Cesa-Bianchi and
Lugosi 2006; Shalev-Shwartz 2011; Zhang and Liao 2019).
To achieve regret guarantees of the decision process, online
learning algorithms need to update the model incrementally
upon receiving the new instances. Due to its high compu-
tational cost and decision instability, updating the model
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fully online is rather unrealistic for many real-world applica-
tions (e.g., streaming recommender systems). An effective
approach is online to batch conversion (Littlestone 1989;
Cesa-Bianchi, Conconi, and Gentile 2004), which constructs
a batch learner based on the model sequence generated by an
existing online learning algorithm. The batch learner is fixed
during the testing process, which aims to benefit from the
sequence of existing models for good generalization abilities.

Classic online to batch (O2B) conversion approaches typ-
ically assume that the instances in data streaming are in-
dependently and identically distributed (i.i.d.) according to
a fixed but unknown distribution. Under the i.i.d. assump-
tion, O2B conversion becomes a process of selecting a rep-
resentative model or averaging multiple models (Dekel and
Singer 2005; Dekel 2008; Cutkosky 2019). But in real-world
applications, distribution shifts between training and test-
ing data are ubiquitous, posing new challenges of achieving
out-of-distribution (OOD) generalization guarantees through
O2B conversions. For example, in streaming recommender
systems, users often change their preference dynamically
(Hamidzadeh and Moradi 2021; Zhang et al. 2021a; Dai et al.
2023), e.g., a user may prefer different categories of videos
due to changes in weather or mood, and the features of a
video may change on different timestamp.

Existing O2B conversion technologies are not suitable for
the OOD scenarios due to their fixed conversion mechanisms,
which can not adjust strategies of combining or selecting
models for adaptation to novel (or similar) testing distribu-
tions. Figure 1 shows an empirical study on the real-world
video recommendation data, where the user preferences in
testing data may differ due to the different data-collection
time that could incur OOD problem in the testing phase. We
can observe that, compared with the fully online learning
algorithm, the recommendation performances of classic O2B
conversions significantly decreased during the testing phase.
The results clearly indicate that the out-of-distribution data
could be damaging for O2B conversion in terms of hurting
the testing accuracy of a batch learner.

Analysis shows that, in online learning, the received in-
stances in the data stream may be sampled from multiple dis-
tributions that violate the i.i.d. assumption. Thus, the models
generated by an online learning algorithm have already been
trained on data from these distributions, raising the possibility
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Figure 1: Generalization performances (average rewards on
testing data) of classic online to batch conversion technolo-
gies and online learning algorithm on KuaiRec data, where
“Best Batch Learner” selects the model that achieves the
highest cumulative reward among all episodes for batch test-
ing, “Simple Averaging Conversion” uses the average over
the model sequence for testing (Cesa-Bianchi, Conconi, and
Gentile 2004), “Last Learner” chooses the model obtained
in the last episode for testing (Shalev-Shwartz 2007), “Fully
Online Learning” keeps updating the learner on the testing
data in an online manner, and the online learning backbone
is sequential batch UCB (Han et al. 2020).

of constructing a batch learner for OOD generalization. Mo-
tivated by the potential capacity of online learning models, in
this paper, we propose an adaptive O2B conversion approach
for OOD generalization under the bandit feedback setting of
online learning. Specifically, we first demonstrate the OOD
generalization error bounds of O2B conversion, theoretically
establishing the relationship between the weighted regret and
the OOD generalization error of a batch learner. Then, taking
the theoretical results as guidance, we propose AdaO2B that
can be aware of distribution shifts through an adaptive weight-
ing network and adaptively combines the model sequence for
decision-making. AdaO2B uses the observed rewards as the
supervised signals and can be efficiently trained using differ-
ent data selection approaches based on the bandit feedback.
Moreover, our AdaO2B is model-agnostic and can be applied
to any contextual bandit algorithm.

We summarize the major contributions: (1) Rigorous theo-
retical analysis that establishes the relationship between the
regret in online learning and the OOD generalization error of
a batch learner in O2B conversion; (2) A model-agnostic O2B
conversion framework called AdaO2B for achieving OOD
generalization guarantees under bandit feedback setting; (3)
Comprehensive empirical studies showed the effectiveness
of AdaO2B in terms of improving the OOD generalization
ability of different bandit algorithms and its superiority over
state-of-the-art O2B conversion baselines.

Related Work
Online model averaging/selection is an important topic in
online learning, which aims at adjusting the model class for
prediction in an online manner (Zhang, Liao, and Liao 2019;
Zhang and Liao 2020). Online model averaging has been
studied in online kernel learning, which typically reduces

the model averaging problem to a prediction problem with
expert advice (Jin, Hoi, and Yang 2010; Orabona, Fornoni,
and Caputo 2010). Zhang et al. (Zhang and Liao 2018) pre-
sented an efficient online model selection approach using
incremental sketched kernel alignment, which formulates
an unbiased selection criterion of kernel models. Model se-
lection under bandit settings has received increased atten-
tion over the past several years, which can adapt the reward
model class of optimal policy (Foster, Krishnamurthy, and
Luo 2019; Ghosh, Sankararaman, and Kannan 2021). Since
existing online model averaging/selection approaches finally
obtain fixed strategies for weighting or selecting the learners,
they are not suitable for adapting the OOD testing data.

Transfer learning has received considerable attention in
machine learning literature, which aims to improve the gen-
eralization performance on target domain by transferring
the knowledge contained in previous related source domains
(Pan and Yang 2009; Weiss, Khoshgoftaar, and Wang 2016;
Zhuang et al. 2020). There are several types of technolo-
gies that are commonly used in transfer learning, including
weighted ERM (Huang et al. 2006; Reddi, Poczos, and Smola
2015), feature mapping (Ando, Zhang, and Bartlett 2005),
regularization (Duan et al. 2009; Kuzborskij and Orabona
2017). More recently, a series of works lies in the idea of
transferring the model trained on streaming data for adapting
the target domain (Zhao, Cai, and Zhou 2020; Tao and Lu
2020). Unlike the O2B conversion, these works need to spec-
ify the data source or the distribution assumption and re-train
the model on data from the target source.

Problem Formulation
Let [m] = {1, 2, . . . ,m}, S ⊆ Rd be the context space
whose dimension is d. Since bandit feedback is ubiquitous
in real-world applications, in this paper we focus on the
batched version of contextual bandit (BCB) setting, which is
an extension of the classic contextual bandit setting (Perchet
et al. 2015; Han et al. 2020; Esfandiari et al. 2021). In BCB
setting, the sequential decision-making process is partitioned
into N episodes, where each episode includes B decision-
making steps (B is also called the batch size). Specifically,
at step b in the n-th episode, a bandit algorithm receives
a candidate context set Sn,b ⊆ S, where Sn,b contains M
contexts Sn,b = {sI}I∈[M ] and each context corresponds
to a candidate action. Then, the bandit algorithm chooses
a context sIn,b

∈ Sn,b following the policy (i.e.,, decision
model) fn : Sn,b → [M ] parameterized by θn, where In,b ∈
[M ] can be seen as the index of the executed action at step
b in the n-th episode. After choosing the context, algorithm
will observe a reward Rn,b. Note that, during the decision
process in each episode, the bandit policy is fixed. That is,
the policy fn is only updated at the end of the n-th episode
based on a data buffer Dn = {(Sn,b, In,b, Rn,b)}b∈[B].

Figure 2 illustrates the online to batch (O2B) conversion
problem for out-of-distribution (OOD) generalization in the
above BCB setting. In the online learning phase, the policy
is incrementally updated on data steam generated from multi-
ple distributions. O2B conversion aims to formulate a batch
learner based on the collected data for OOD testing in the
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Figure 2: Online to batch conversion in BCB setting on out-
of-distribution testing data.

batch testing phase, where the testing distributions may be
similar but different. Next, we introduce the formal definition
of O2B conversion for OOD generalization in BCB setting.
Definition 1 (O2B Conversion for OOD Generalization).
Consider the BCB setting that includes N episodes. Let
FN = {f1, f2, . . . , fN} be a sequence of policies (i.e, de-
cision models) generated by performing a bandit algorithm
A, and D = {Dn}n∈[N ] be the sequence of data buffers that
store the interaction history. Assume that the context-reward
pairs are generated according to a distribution P (may be a
mixture distributions1). O2B conversion aims to find a O2B
function fo2b: fo2b : FN ×D → g ∈ G, where g is a batch
learner in a policy space G which has generalization guaran-
tees on a testing distribution Q that may be different from the
distribution P.

From Definition 1, we can observe that the key ingredients
of O2B conversion for OOD generalization contain: the distri-
bution assumptions of rewards as well as P and Q, the policy
space G (i.e.,, class of the batch learner g), the evaluation
metric of OOD generalization.

OOD Generalization Analysis
In this section, we first specify the key ingredients in Defini-
tion 1 and then carry out an OOD generalization justification
on why and how to conduct O2B conversion in environments
with distribution shifts.

We specify the key ingredients in Definition 1 as follows.
Reward r. Following the setups in linear contextual bandit

literature (Dimakopoulou et al. 2019; Yang et al. 2021; Li
et al. 2010), for any context si ∈ S ⊆ Rd, we assume that
the expectation of the observed reward Ri is determined by
unknown true reward parameters θ∗ ∈ Rd: E[Ri | si] =
⟨θ∗, si⟩. The linear reward will be extended to the convex
function case in Corollary 1.

Distributions P and Q. Given the linear reward assump-
tion, the distribution shift of the context-reward pairs can be
described as the shift of context distribution. Thus, we define
that P and Q are the distributions on the context space S . Be-
sides, P and Q are unknown to the algorithm and may be both
are mixtures of multiple distributions defined in Corollary 1.

1In Corollary 1, we will give the formulation of the mixture
distribution representing the sampling process according to multiple
distributions.

Policy space G. We assume that G is the set containing
all possible linear combinations of policies in the sequence
of policies FN = {f1, f2, . . . , fN} generated by a bandit
algorithm. Formally, the adaptive batch learner g ∈ G can
be formulated as follows:

g(s) =
∑

n∈[N ]

βn fn(s)/β1:N , ∀s ∈ S, (1)

where {βn}n∈[N ] denotes the combination weights that are
outputs of a context-aware weighting function h : S →
RN for adapting the distribution shifts between P and Q,
and β1:N denotes the sum of weights over the number of
episodes N , i.e.,, β1:N :=

∑
n∈[N ] βn. More specifically, for

the linear true reward, bandit policy fn typically chooses
action (i.e.,, the context) according to the estimated reward
rn(s) = ⟨θn, s⟩, where θn denotes the estimated reward
parameters in fn from the n-the episode. Then, the adaptive
batch learner g in (1) can be represented by the combination
of the estimated reward parameters2

θada =
∑

n∈[N ]

βnθn/β1:N . (2)

For the sake of simplicity, we denote the adaptive batch
learner g by θada.

Evaluation metric of OOD generalization. Given an
unknown distribution (may be a mixture distribution) of the
contexts s ∈ S , define the expected reward of a policy with
estimated reward parameters θ w.r.t. Q to be ERQ(θ) =
Es∼Q[⟨θ, s⟩]. Then, we define the generalization error (also
called expected risk) of θ w.r.t. Q as follows:

GEQ(θ) = CER − ERQ(θ), (3)

where CER denotes the upper bound of the absolute values of
expected reward w.r.t. any distribution. Then, GEQ(θada can
be used for evaluating the OOD generalization performance
of the adaptive batch learner θada on testing distribution Q.

Following the above setup of O2B conversion problem, we
first demonstrate the OOD generalization error bound of the
adaptive batch learner θada in (2).
Theorem 1 (OOD Generalization Error Bound of Adaptive
Batch Learner). Consider the BCB setting with N episodes
and the batch size B. Let θn, n ∈ [N ] be the reward parame-
ters estimated by policy fn, θ∗ be the true reward parameters,
sIn,b

∈ Sn,b be the context chosen by fn at step b, and CER

be the upper bound defined in (3). Define the weighted regret
as

WReg(N,B) =
∑

n∈[N ],b∈[B]

βn

〈
θ∗ − θn, sIn,b

〉
, (4)

and assume that the weighted regret is bounded by CWReg,
i.e.,, WReg(N,B) ≤ CWReg. Then,

GEQ(θada)−GEP(θ
∗)

≤ EP

[
CWReg

Bβ1:N

]
+ CER

√
2DJS(Q∥P),

(5)

2In the batch testing phase, since the batch learner is fixed, we
omit the exploration term in the original policy (e.g., the uniform
distribution term in EXP3 policy).
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where DJS(Q∥P) denotes the Jensen-Shannon (JS) diver-
gence between the distributions Q and P.

Remark 1 (Tighten the Bound). On one hand, the above the-
orem tells us that the weighted regret upper bounds the OOD
generalization error of the adaptive bath learner θada. That
is, to achieve good OOD generalization performances, the
batch learner’s objective should be to minimize the weighted
regret in (4) by adjusting the combination weights {βn}n∈[N ].
On the other hand, a smaller JS divergence between the train-
ing distribution P and the testing distribution Q leads to a
tighter bound in (5).

Remark 2 (Simply to i.i.d.). In (5), setting βn = 1 for
all n ∈ [N ] and Q = P yields the i.i.d. risk bound of a
simple averaging learner θavg =

∑
n∈[N ] θn/N in bandit

setting. Analogous to the case of full-information O2B con-
version (Shalev-Shwartz 2007), the result in (5) becomes
GEP(θavg) ≤ GEP(θ

∗) + EP [CReg/T ] , where CReg is the
upper bound of worse-case regret and T = N ×B.

As illustrated in Figure 2, the distributions of P and Q may
be mixture distributions, yielding the following result.

Corollary 1 (OOD Generalization Error for Mixture Distri-
butions). Assume that the conditions in Theorem 1 hold, and
P,Q are two mixture distributions with distribution densities
p(s) =

∑
i∈[W ] πi · pi(s) and q(s) =

∑
i∈[W ] τi · qi(s),

respectively, where {pi}i∈[W ] and {qi}i∈[W ] are densities
of Gaussian distributions in P and Q, π = {πi}i∈[W ] and
τ = {τi}i∈[W ] denotes multi-dimensional Bernoulli distribu-
tions. Then,

GEQ(θada)−GEP(θ
∗) ≤ EP

[
CWReg

Bβ1:N

]
+

CER

√
2 logK +K

∑
i∈[W ]

πiτi ·DBKL(pi∥qi),
(6)

where DBKL(pi∥qi) := 1
2 [DKL(pi∥qi) + DKL(qi∥pi)] de-

notes the bidirectional Kullback-Leibler (KL) divergence be-
tween pi and qi (Liang et al. 2021), and DKL(p∥q denotes
the KL divergence between the distributions p and q.

Remark 3 (Weighted Bidirectional KL Divergence). The
weight term πiτi can be seen as the probability of drawing
distributions pi and qi for online learning and OOD testing,
respectively. Then, the weighted bidirectional KL divergence
in (6) indicates that, if distributions in P and Q with similar
probability of occurrence have similar distribution densities,
tighter OOD generalization error bound can be achieved.

We further give a more general version of Theorem 1,
where the expectation of true rewards is convex.

Corollary 2 (OOD Generalization Error for Convex Re-
wards). The adaptive batch learner θada enjoys the same
upper bound of OOD generalization error as in (5).

The above results provide theoretical guidance to imple-
ment the adaptive O2B learner, and we will derive guiding
principles as well as the algorithm in the next section.

Combination
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M Candidate 
Contexts 
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Estimated Rewards
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(M K)

Reward 
Matrix
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Multiplication

Softmax

Observed Ture Reward

(K 1)

Final Estimated Rewards

at index (M 1)

Training

Figure 3: The training process of the proposed AdaO2B based
on the data collected at step b in the n-th episodes, where
{ik}k∈[K] denotes the index set K.

AdaO2B: The Proposed Algorithm
From Remark 1&3, we can derive the following guiding prin-
ciples for designing the adaptive O2B algorithm: (a) The
data for training the adaptive batch learner should be as close
as possible to the testing distribution; (b) The combination
weights βn, n ∈ [N ] should be computed based on the re-
ceived candidate contexts at each step, which can be aware
of the changes in test distribution; (c) The objective of train-
ing the weighting function should contain the component of
minimizing the weighted regret in (4) or its surrogate.

Next, we provide a practical implementation of the adap-
tive batch learner θada in (2) named AdaO2B.

Data Selection
We use subsets of the whole sequences of policies and data
buffers in Definition 1 for O2B conversion. Specifically, to
reduce the difference between the training distribution of
O2B conversion and the testing distribution, we propose the
following three approaches for maintaining the data buffers
(denoted byDK := {Dn}n∈K ⊆ D) and the candidate policy
set (denoted by FK := {fn}n∈K ⊆ FN ), where K ⊆ [N ]
denotes the index set of the selected data buffers which is
also the index set of the policies trained on these selected
buffers, and K := |K| denotes the cardinality of K (i.e.,, the
cardinality of DK and FK):

1) Sliding window approach. Motivated by the fact that
streaming data from neighboring periods typically has similar
distributions in the streaming applications (Bendada, Salha,
and Bontempelli 2020; Zhang et al. 2021b), we use the data
buffers and policies from the most recent K episodes for
training the adaptive O2B learner, i.e.,, K = {N − K +
1, N−K+2, . . . , N}. More specifically, the training process
is based on DK = {Dn}Nn=N−K+1 that are the data buffers
in the recent K episodes, and the candidate policy set FK =
{fn}Nn=N−K+1.

2) Reservoir sampling approach. The index set K can be
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sampled uniformly from [N ]. Without knowing the number of
episodes N , we can use a reservoir sampling approach (Knuth
1998) to determining which data buffers and the correspond-
ing candidate policies are stored for O2B conversion, such
that every data buffer in DK (as well as every policy in FK)
has the same probability of being selected.

3) Data-dependent approach. Since the decrease or low
growth of the rewards received in two episodes indicates
severe distribution shifts, we can maintain the candidate
policies with average rewards of low growth rates and the
corresponding data buffers. Specifically, we present a data-
dependent approach for selecting the elements in DK and
FK: the index set K is constructed by selecting the indices
with the bottom-K values of (Rn+1 − Rn)/Rn, ∀n ∈ [N ],
where Rn denotes the average reward in the n-th episode.

Model Formulation and Model Training
Formally, by only retaining the exploitation term in the policy
for batch testing, the k-th policy in FK = {fn}n∈K can be
written as fik = argmaxj∈[M ]⟨θik , sj⟩, sj ∈ Sik,b, which
makes decision according to the estimated reward using the
estimated reward parameters θik given the contexts. Then,
given the index setK = {ik}k∈[K], the adaptive batch learner
in (2) can be expressed as θada =

∑
k∈[K] βikθik/βK, ik ∈

K, where βK =
∑

k∈[K] βik . The combination weights
{βik}k∈[K] are obtained using the context-aware weighting
function h : S → RK . We implement the weighting func-
tion h using one MLP (Multi-Layer Perceptron), denoted by
MLPh. As shown in Figure 3, at each step, the weighting
function h (i.e.,, MLPh) takes the candidate contexts as input,
and obtains a K-dimensional vector {βik}k∈[K].

To incorporate the weighted regret in (4) into the training
objective, we transform the weighted regret into a loss func-
tion. Given the index setK, for the candidate context set Sik,b
collected at step b in the ik-th episodes, the weighted regret
truncated with K becomes

∑
k∈[K] βik ⟨θ∗ − θik , sj⟩ , sj ∈

Sik,b, yielding that〈 ∑
k∈[K]

βik

βK
θ∗, sj

〉
− ⟨θada, sj⟩ , sj ∈ Sik,b, (7)

where the first term can be seen as an estimate of the true
reward, and the second term is the final estimated reward es-
timated by θada: rfinal(s) = ⟨θada, s⟩ . Then, as a surrogate
objective of minimizing (7), we perform the training process
of θada by minimizing the difference between the observed
true reward Rn,b in data buffers and the final estimated re-
ward. More specifically, in the adaptive batch learner θada,
model parameters that need to be trained include the param-
eters in the weighting function MLPh. All these trainable
parameters in MLPh are denoted as Θh, and trained based
on DK. Then, the task of training the weighting function h
amounts to minimizing the following mean squared error
(MSE) loss:

LΘh
=

1∣∣DK
∣∣ ∑
(In,b,Rn,b)∈DK

[
Rn,b − rfinal(sIn,b

)
]2

+

λ∥Θh∥22, (8)

Algorithm 1: AdaO2B
INPUT: Batch size B, number of episodes N , bandit

algorithm A, number of candidate policies K
OUTPUT: Adaptive batch learner θada

1: Initialize policy θ1 using the uniform distribution
2: Initialize parameter set of policies Fθ ← ∅
3: // Online Learning Phase
4: for n = 1 to N do
5: for b = 1 to B do
6: Receive candidate context set Sn,b and choose

the context sIn,b
∈ Sn,b following policy θn

7: Observe the reward Rn,b

8: end for
9: Store interactions into a data buffer

Dn ← {(Sn,b, In,b, Rn,b)}b∈[B]

10: Store the policy Fθ ← Fθ ∪ {θn} if n ∈ K
11: Update the policy θn as θn+1 ← ∆(θn) on Dn

using bandit algorithm A
12: end for
13: // Online to Batch Conversion Phase
14: Collect K data buffers DK ← {Dn}n∈K
15: Compute estimated rewards rn(s) using policies

in Fθ for all n ∈ K and s ∈ ∪n∈K,b∈[B]{Sn,b}
16: Compute the combination weights {βn}n∈K using

MLPh for each candidate context set in DK
17: Compute final estimated rewards {rfinal(si)}i∈[M ]

for each candidate context set in DK
18: Optimizing the loss in (8) on DK using Adam and

output the model parameters Θh of MLPh

19: return Fθ = {θn}n∈K, Θh

where ∥Θh∥22 is a regularizer for avoiding over-fitting, and
λ ≥ 0 is the regularization parameter. Besides, as shown in
Figure 3, each final estimated reward can be efficiently com-
puted through the multiplication of the reward matrix that
concatenates the estimated rewards, and the vector of com-
bination weights. Then, the obtained final estimated rewards
are normalized through a Sofmax function. Finally, Adam
(Kingma and Ba 2014) is used to conduct the optimization.

We summarize the above steps in Algorithm 1, called
AdaO2B. To facilitate the understanding of the whole process,
we involve the online learning phase in AdaO2B. We can
specify the data selection process in AdaO2B using three ap-
proaches, denoted by AdaO2B-S (sliding window approach),
AdaO2B-R (reservoir sampling approach), and AdaO2B-D
(data-dependent approach), respectively.

Experiments
We conducted experiments to test the performance of
AdaO2B on synthetic data and real-world data.

Experimental Settings
Baselines AdaO2B was compared with several classic on-
line to batch conversion algorithms as well as their variants:

Best Batch Learner (BBL) chooses the model with the
highest cumulative reward (Dekel and Singer 2005); Last
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Model Type Dataset Synthetic KuaiRec
Algorithm SBUCB EXP3-B BLTS-B SBUCB EXP3-B BLTS-B

Oracle FOL 0.7644 0.6665 0.7651 0.6032 0.5819 0.6063

Baselines

BBL 0.7354 0.6388 0.7453 0.5363 0.5691 0.5633
LL 0.7388 0.6441 0.7494 0.5440 0.5583 0.5642

SAC-S 0.7356 0.6404 0.7397 0.5445 0.5604 0.5661
SAC-R 0.6929 0.6216 0.7019 0.5417 0.5691 0.5699
SAC-D 0.7070 0.6230 0.7130 0.5426 0.5701 0.5647
VC-S 0.7365 0.6396 0.7402 0.5441 0.5595 0.5659
VC-R 0.6969 0.6086 0.7040 0.5457 0.5723 0.5667
VC-D 0.7091 0.6194 0.7165 0.5421 0.5712 0.5655
CW-S 0.7332 0.6418 0.7404 0.5445 0.5603 0.5658
CW-R 0.7004 0.6228 0.7054 0.5424 0.5688 0.5675
CW-D 0.7098 0.6252 0.7166 0.5427 0.5701 0.5647

Ours

AdaO2B-S 0.7848∗ 0.6971∗ 0.7811∗ 0.5556∗ 0.5861∗ 0.5806∗
(+6.23%) (+8.23%) (+4.23%) (+1.81%) (+2.41%) (+1.88%)

AdaO2B-R 0.7692∗ 0.7154∗ 0.7672∗ 0.5563∗ 0.5861∗ 0.5832∗
(+4.11%) (+11.07%) (+2.38%) (+1.94%) (+ 2.41%) (+2.33%)

AdaO2B-D 0.7777∗ 0.7380∗ 0.7783∗ 0.5532∗ 0.5833∗ 0.5796∗
(+5.27%) (+14.58%) (+3.86%) (+1.37%) (+ 1.92%) (+1.7%)

Table 1: Comparisons of average reward (w.r.t. all episodes) for AdaO2B and baselines on synthetic and real-world KuaiRec
dataset. Bold values are the best of the proposed algorithm, while the best values in baselines are underlined. ‘∗’: improvements
over baselines are statistical significant (t-test, p-value< 0.05) compared to the best baseline.
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(a) Bandit backbone: SBUCB
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(b) Bandit backbone: EXP3-B
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(c) Bandit backbone: BLTS-B

Figure 4: Average rewards of baselines and the proposed AdaO2B equipped with the best data selection approach on testing data
of KuaiRec dataset, where N denotes the number of episodes in the batch testing phase.

Learner (LL) uses the model from the last episode (Shalev-
Shwartz 2007); Simple Averaging Conversion (SAC) av-
erages models over episodes (Cesa-Bianchi, Conconi, and
Gentile 2004; Shalev-Shwartz 2011); Voting Conversion
(VC) uses majority voting among candidate policies (Fre-
und and Schapire 1999; Dekel and Singer 2005); Constant
Weight (CW) averages models using constant weights based
on normalized average rewards. These algorithms use differ-
ent data selection appoaches: Sliding Window (S), Reservoir
Sampling (R), and Data-dependent (D). For example, SAC
with Sliding Window is “SAC-S”.

AdaO2B and these baselines are model-agnostic and can
be applied to various bandit algorithms: Sequential Batch
UCB (SBUCB) (Han et al. 2020) is a batched extension of
LinUCB (Li et al. 2010); Batched EXP3 (EXP3-B) is a
batched version of the adversarial bandit EXP3 (Bistritz et al.
2019); BLTS-B uses the Thompson sampling for selecting

parameters of estimated rewards (Dimakopoulou et al. 2019).
To compare the performance between O2B conversion and

fully online learning, we introduce the following version as
oracle for each bandit backbone: Fully Online Learning
(FOL) keeps updating the bandit policy on the testing data
in an online manner.

Evaluation For both synthetic and real-world datasets, we
split them into two subsets for the online learning phase (as
well as the O2B conversion phase) and the batch testing phase,
respectively, denoted by OL-Data and BT-Data. Following
the standard practice in (Zhang et al. 2021b, 2024), we use
the average reward to evaluate the accuracy of algorithms as
1

nB

∑n
k=1

∑B
b=1 Rk,b for the first n episodes, where Rk,b is

the observed reward at step b in the k-th episode.

Implementation details We trained AdaO2B based on the
last 10 (i.e.,, K = 10) data buffers and history policies. We
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tuned the hyper-parameters as follows: the learning rate was
tuned within the range of {1e−2, 1e−3, 1e−4, 1e−5}, the
weight decay was tuned among {1e−3, 1e−4, 1e−5, 1e−6},
and the batch size was tuned in {256, 512, 1024, 2048}.

Experiments on Synthetic Data
We first conducted experiments on synthetic dataset which
simulates the OOD scenario in online recommendation.

Data To simulate the OOD scenario, we generated syn-
thetic data with N = 40 episodes, a batch size of B = 5, 000,
M = 10 candidates, and a context dimension of d = 10. For
OL-Data, candidate context set Sn,b ⊆ Rd were drawn from
a Gaussian distribution N (µs1d, σ

2
s Id), with means µs rang-

ing from 1 to -2.6 in the first 20 episodes and a standard
deviation of σs = 0.05. To simulate the mixture distribution,
we set the mean of the first candidate context to 1.2 in the
last 20 episodes. For BT-Data, the mean of the first candidate
context was set to 1.4 to simulate distribution shifts in testing
data. The observed reward was modeled as a sigmoid func-
tion sigmoid(⟨wr, sn,b⟩), with coefficientswr ∈ Rd sampled
from N (0.1, 0.012).

Results & discussions Table 1 reports the average reward
w.r.t. all episodes for the proposed AdaO2B and the baselines
on the synthetic dataset. From the result, we can observe that
AdaO2B significantly outperformed all the baselines with
all three different bandit backbones in terms of the average
rewards. Specifically, AdaO2B outperformed the best base-
line (LL) by 6.23% with SBUCB, 14.58% with EXP3-B, and
4.23% with BLTS-B. These results verified the effectiveness
and model agnosticism of AdaO2B for capturing the distribu-
tion shifts and improving the performance of online to con-
version in the out-of-distribution scenario. Furthermore, the
proposed AdaO2B even outperformed FOL on synthetic data.
The reason is that FOL used the exploration and exploitation
trade-off strategy on testing data, where the exploration may
hurt the accuracy of the bandit policy in a synthetic testing
environment.

For the three data selection method used in AdaO2B, we
can conclude that: (1) the data-dependent approach achieved
higher average rewards than the reservoir sampling approach,
indicating the advantage of the data-dependent approach for
slight distribution shifts; (2) Sliding window approach typi-
cally outperformed other data selection approaches since the
distribution of the recent data buffers was more similar to
that of the testing data in this synthetic environment.

Experiments on Real-World Data
We also compared the proposed AdaO2B with the baselines
on a real-world short video recommendation dataset.

Data We used the KuaiRec dataset3, which provides a fully
observed user-item interaction matrix from the popular video-
sharing app Kuaishou. After filtering, the dataset includes
6,980 users, 973 videos, and 400,000 interactions. It also
offers detailed side information for both users and videos,
including daily item features that vary over time, aligning

3https://kuairec.com

with our research goals. We processed categorical features as
one-hot vectors and concatenated them with integer features,
reducing the final feature dimension to 50 using principal
component analysis (PCA) following the practices in (Zhang
et al. 2021b, 2022; Yoshikawa and Imai 2018), i.e.,, d = 50.
For the candidate set, we retained the original item for each
interaction and then randomly sampled 99 extra items from
the entire item set (except the original item).

Evaluation protocol In online recommendation, we cannot
guarantee that the corresponding feedback of each recom-
mended item to the user can be found in the log data. To
overcome this issue and facilitate ground-truth evaluations,
following (Lyu et al. 2022; Zhang et al. 2022), we created
a simulated online environment to test all the algorithms.
More specifically, we first trained a matrix factorization (MF)
model (Koren, Bell, and Volinsky 2009) using both OL-Data
and BT-Data. AUC of the trained MF model were both over
83%, which assures that the online environment can provide
nearly realistic feedbacks of users. At each step, the online en-
vironment received a selected context (i.e.,, a recommended
item) from the algorithm, and returned a user feedback (1 or
0) according to I(ŷ > γ), where I(·) is an indicator function,
ŷ is the predicted score by the trained MF model and γ is a
tuned threshold that the AUC can achieve the highest score.

Results & discussions The results of average rewards of
the baselines and the proposed AdaO2B on the KuaiRec
dataset are reported in Table 1. We can observe that, AdaO2B
outperformed the best baseline (VC-R and SAC-R) by 1.94%
with SBUCB, 2.41% with EXP3-B, and 2.33% with BLTS-B.
Figure 4 shows the curves of average rewards on KuaiRec
dataset, where AdaO2B achieved the highest average reward
for all bandit backbones approximating the performances
of the oracle FOL. The results verified the effectiveness of
the model-agnostic AdaO2B framework in improving exist-
ing bandit models for real-world online to batch conversion
problem.

Note that FOL with EXP3-B has lower average rewards
than FOL with other bandit backbones. This phenomenon is
due to the randomized exploration term used in the EXP3-B
policy that is more suitable for online adversarial environ-
ments. Besides, AdaO2B equipped with the reservoir sam-
pling approach had the best performance than other data
selection approach, indicating that a simple reservoir sam-
pling approach could capture the severe distribution drift in
real-world applications.

Conclusion
This paper aims to address the out-of-distribution general-
ization problem in online to batch conversion. Specifically,
we propose an adaptive online to batch conversion approach
called AdaO2B. The proposed AdaO2B is aware of distri-
bution shifts through adaptively combining the model se-
quence using a weighting network, takes rigorous theoreti-
cal analyses as guidance, and achieves OOD generalization
guarantees under the bandit feedback setting. Experimental
results demonstrated the effectiveness of AdaO2B in out-of-
distribution scenarios.
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