
Enhancing Data-Free Class-Incremental Learning
via Image-Centric Dual Distillation

Feifei Fu, Zhiwu Lu*
Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China

Abstract—In Data-free Class-Incremental Learning (DFCIL),
catastrophic forgetting is a significant challenge due to the lack
of access to previous task image data. Recent approaches using
model inversion have made progress in addressing this issue, yet
the suboptimal application of knowledge distillation hampers new
task learning, limiting overall model performance. To overcome
this, we propose a novel method incorporating image-centric
dual distillation, designed to retain more old knowledge while
facilitating new knowledge acquisition, thus enhancing DFCIL
performance. Specifically, we first introduce a weak-constraint
relation distillation strategy to preserve old knowledge while
promoting the assimilation of new knowledge by learning the
relationships among intra-class samples. Then, to further enhance
the preservation of old knowledge and refine the integration
of new knowledge, we introduce a low-level feature distillation
strategy to retain foundational general knowledge by leveraging
semantic information from shallow network layers. Extensive
experiments show the effectiveness of our method.

Index Terms—Data-free class-incremental learning, Catas-
trophic forgetting, Knowledge distillation

I. INTRODUCTION

Class-incremental learning (CIL) [1]–[5] has exhibited sub-
stantial advancements in mitigating the catastrophic forget-
ting [6], [7]. The success mainly relies on the storage of
training data from previous tasks. However, this has a large
demand for storage, and raises data privacy concerns in many
practical applications. In view of the above issues, the data-
free CIL (DFCIL) [8]–[14] has garnered signiffcant interest
among researchers since there is no need to store the data of
previous tasks. Because of this, this setting is more challenging
to mitigate the forgetting compared to CIL.

Recent methods for DFCIL using model inversion tech-
nique [15] have made great progress in mitigating forgetting.
However, they still suffer from shortcomings, particularly
the suboptimal application of knowledge distillation (KD)
strategies [16]–[18], which impairs the learning of new tasks,
thereby limiting overall model performance. For example, the
recent work [19] introduces an importance-weighted strategy
to preserve important old knowledge. Although this method
yields commendable results, it constraints the model perfor-
mance due to the impairment of learning new tasks caused
by strongly regularizing and failing to account for differences
between the new and synthesized old data. In a more re-
cent work [20], the authors employ a hard KD strategy on
synthesized old data to preserve old knowledge, and employ
the relational KD [21] on current new data to mitigate the
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damage caused by the hard KD. Despite aiding new task
learning, this method’s drawbacks outweigh its beneffts, as
hard KD’s strict output alignment hinders new task acquisition,
limiting overall model performance improvement. Therefore,
we need to explore an effective method that can retain more
old knowledge while minimizing the damage to the learning
of new tasks under the DFCIL setting.

To this end, based on model inversion, we propose a
novel method incorporating image-centric dual distillation,
i.e., the weak-constraint Relation distillation and the low-level
Feature Distillation, called RFD. This method is designed to
retain more old knowledge while facilitating new knowledge
acquisition thereby enhancing the model performance under
the DFCIL setting. Specifically, as shown in Fig. 1, our
method introduces the weak-constraint relation distillation
(RD) strategy to be applied to the synthesized old data and
new data respectively to preserve old knowledge and help
new task learning. Further, we implement the low-level feature
distillation (FD) strategy to be applied to the new data to en-
hance the model performance. The complementary application
of the weak-constraint RD and low-level FD strategies ensures
a comprehensive and robust representation of old and new
knowledge within the feature space. Extensive experiments
fully demonstrate the effectiveness of our RFD.

The main contributions of our work are: (1) We propose
a novel method incorporating image-centric dual distillation
strategies to retain more old knowledge while facilitating new
knowledge acquisition thereby enhancing the model perfor-
mance under the DFCIL setting. (2) We introduce a weak-
constraint relation distillation strategy to retain more useful old
knowledge while promoting the assimilation of new knowl-
edge by learning the correlated relationships among intra-class
image samples. Furthermore, to enhance the preservation of
old knowledge and refine the integration of new knowledge,
we introduce a low-level feature distillation strategy to dig
deep and retain fundamental general knowledge by leverag-
ing semantic information from shallow network layers. (3)
Extensive experiments on multiple benchmarks demonstrate
that our method significantly outperforms the state-of-the-arts
under the DFCIL setting.

II. METHODOLOGY

A. Problem Definition

In the CIL setting, a set of N tasks, denoted as T =
{T1, T2, ..., TN}, are presented for sequential learning. For
each task t (Tt, t ∈ [1, N ]), it comprises the task-specificIC
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Fig. 1. Overview of our RFD. The model θt ◦ ft is being trained for the current task t using the localized CE loss LLCE , the weak-constraint RD loss
LWRD and the low-level FD loss LLFD . h denotes the extracted features, ci denotes the i-th class.

Mt sample pairs {(xt
i, y

t
i)}

Mt

i=1 belonging to classes ζt (ζt
represents the classes set of t, ζt ∩ ζt+1 = ∅), where xt

i is
the image sample and yti is the corresponding ground-truth
label. The goal of CIL is to sequentially train a model that
can eventually classify all task data without task identifiers.

In the CIL classification tasks, the architecture of deep
neural networks typically comprises two components: a feature
extractor, denoted as ft, and a linear classifier, denoted as
θt. First, the feature extractor ft is to transform the input
data x into a deeply embedded feature space, denoted as
h = ft(x) ∈ Rd. Then, the linear classifier θt is to perform
the classification of the embedded feature h and outputs the
logits z = θt(h) ∈ R|ζ[1,t]|, where ζ[1,t] denotes the set of
all classes from the task 1 to the task t. When a new task
t + 1 emerges, the existing classifier θt is augmented by
integrating an additional classification head corresponding to
the number of new classes (i.e., |ζt+1|), thereby evolving into
θt+1. Distinctively, the DFCIL differs from the CIL in that the
data of previous tasks cannot be accessed during training.

B. Our RFD Method

The framework of our RFD is illustrated in Fig. 1. We
present the RFD through the following two distinct phases:
representation learning and classifier refinement.

1) Representation Learning: The primary objective of the
representation learning phase is to integrate and assimilate
representations of both old and new knowledge within the
feature space. Toward this objective, three distinct components
are applied to facilitate a more comprehensive and robust
representation of old and new knowledge, as delineated below.
Localized Cross-entropy Function As done in previous
works [19], [20], we adopt the model inversion technique
to train an image synthesizer upon the completion of each
learning task, which is employed to synthesize the old data
replacing the real old data of previous tasks during training

new tasks. To prevent the issue of domain shift caused by the
utilization of synthetic data (the detailed information can refer
to [19], [20]), we exclusively utilize the cross-entropy (CE)
function on the new data of current task for classification at
this phase. We denote this as the localized CE function. Given
the data of current task (xnew, ynew), the softmax function
sf(·), the localized CE loss LLCE is formulated as:

LLCE = CrossEntropy(sf(θt(ft(xnew))), ynew), (1)

Weak-constraint Relation Distillation Strategy With the
arrival of new tasks, the retention of old knowledge becomes
critical. To retain old knowledge while minimizing damage to
new task learning, we introduce the weak-constraint relation
distillation strategy which focuses on the correlation relation-
ships among predicted probabilities of multiple image samples
within a class. Concretely, we assume that po and pn are the
probability distributions predicted by the old and new model
on K classes respectively. The Pearson correlation coefficient
is employed as an relaxing metric to quantify the degree of
similarity between these two probability distributions, which
is mathematically formulated as follows:

ρ(po, pn) =

∑K
i=1(p

o
i − p̄o)(pni − p̄n)√∑K

i=1(p
o
i − p̄o)2

√∑K
i=1(p

n
i − p̄n)2

, (2)

where poi (or pni ) denotes the i-th (1 ≤ i ≤ K) element of po

(or pn), p̄o and p̄n denote the respective means of po and pn.
For the current task t, let zt (or zt−1) denote the output

logits of the current model (or old model, the task t− 1) and
Y t (or Y t−1) denote the predicted probabilities of the current
model (or old model). Given the input data x, the logits zt are
obtained by: zt = θt(ht) = θt(ft(x)). Let zt[, : t− 1] denote
the logits part corresponding to old tasks. As the calculation
at this juncture is confined to the values associated with the
old tasks, the predicted probabilities for these tasks, denoted as
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Ỹ t ∈ RB×|ζ[1,t−1]| (B represents the batchsize), are calculated
based on zt[, : t− 1], utilizing the formula:

Ỹ t = softmax(zt[, : t− 1]/τ), (3)

where τ serves as a crucial temperature parameter to regulate
the softness of zt[, : t− 1]. Similarity, the logits of old model
zt−1 are obtained by: zt−1 = θt−1(ht−1) = θt−1(ft−1(x)).
The predicted probabilities of old model Y t−1 ∈ RB×|ζ[1,t−1]|
are computed as:

Y t−1 = softmax(zt−1/τ). (4)

Thus, the weak-constraint RD loss LWRD can be calculated
using the following formula:

LWRD =
1∣∣ζ[1,t−1]

∣∣
|ζ[1,t−1]|∑

i=1

(1− ρ(Y t−1
:,i , Ỹ t

:,i)),
(5)

where Y:,i refers to the probability scores of all samples in a
given batch corresponding to the class ci, and ci ∈ ζ[1,t−1].

Note that the weak-constraint RD is applied to the synthe-
sized old data and current new data separately, rather than
in a collective manner. This deliberate design is adopted to
avoid the issue where the learning weights are biased towards
new data due to the imbalanced class distribution and limited
volume of synthesized old data, thereby impeding the retention
of previously learned old knowledge.
Low-level Feature Distillation Strategy Although the weak-
constraint RD facilitates the retention of previously learned
old knowledge, it’s relaxed alignment between probability
distributions could result in the loss of some fundamental
general knowledge. To overcome this limitation, we further
introduce the low-level feature distillation strategy to further
enhance the model performance.

Concretely, we first input the current new data xnew into
the feature extractor ft of the current model, to obtain the
current embedded features hn ∈ RB×C×W×H (here C refers
to the channel), which is mathematically represented as:
hn = ft(xnew). Meanwhile, we input xnew into the (frozen)
feature extractor ft−1 of the old model, the first-stage features
h1
o are extracted by h1

o ← ft−1(xnew). Then the extracted
features h1

o are fed into the feature extractor ft of the current
model to obtain the old embedded features ho ∈ RB×C×W×H ,
which is represented as: ho = f ′

t(h
1
o), where f ′

t denotes the
convolutional layers of the latter three stages of ft. Finally, we
compute the mean values across the spatial dimension (W×H)
and get the two channel-wise embedded features ĥn ∈ RB×C

and ĥo ∈ RB×C , respectively. Thus, the low-level FD loss
LLFD is formulated as:

LLFD =
∥∥∥ĥo − ĥn

∥∥∥2
2
. (6)

2) Classifier Refinement: To separate the decision bound-
aries between the old and new classes and make a better
classification, we freeze the feature extractor component of
the current model, opting solely to finetune the classifier.
Concretely, we utilize the global CE function to classify both

the synthesized old data and the current new data. Additionally,
the weak-constraint RD strategy is employed to ensure the
stability of decision boundaries in previous tasks by preserving
the relative positions of samples within each class. Given the
current new data (xnew, ynew) and the synthesized old data
(xold, yold), the global CE loss LGCE is defined as follows:

LGCE = CrossEntropy(sf(θt(ft(xnew∪xold))), ynew∪yold).
(7)

Finally, the total loss Ltotal can be formulated as:

Ltotal = λceLCE + λkdLWRD + λkdLLFD, (8)

where λce and λkd are the weight parameters. The LCE refers
to either LLCE or LGCE , corresponding to the two respective
phases. And in the second phase, the LLFD is not utilized.

III. EXPERIMENTS

A. Experimental Setup

Datasets The performance of the model is evaluated us-
ing five standard benchmark datasets: S-CIFAR-10 [24], S-
CIFAR-100 [24], S-Tiny-ImageNet [25], S-ImageNet100 [26],
and S-ImageNet200-R [27]. These datasets are equally split
into 5, 10, and 20 tasks, with the exception of S-CIFAR-10,
which is split into 5 tasks. In accordance with the training
protocol delineated in [19], [20], for the first three datasets,
three random orders of classes (produced by setting seeds
as 0,1,2) are utilized for sequential training across three
independent runs. For the latter two datasets, a random order
of classes is utilized for sequential training once.

Implementation Details We implement our RFD based on
the framework of R-DFCIL [20]. For the CIFAR datasets, we
adopt a modified 32-layer ResNet [28] (without pretraining)
as the backbone. For other ImageNet datasets, we adopt the
ResNet18 [28] (without pretraining) as the backbone. We train
the model with Stochastic Gradient Descent (SGD) optimizer
with an initial learning rate η = 0.1. The temperature param-
eter τ is set to 4 in all experiments. The weight parameters
λce and λkd are determined through a grid search for each
dataset. The batchsizes for the CIFAR and ImageNet datasets
are set to 128 and 64, respectively. For more experimental
details, please refer to [20]. Following [19], [20], the two
metrics including the last incremental accuracy AccN (Acc)
and average incremental accuracy ĀccN (Ācc) are adopted to
evaluate the model performance. It is worth noting that for
both metrics, higher values are indicative of superior model
performance. The code is available at link .

B. Main Results

We compare our RFD with the following state-of-the-
art methods: LwF [22], DeepInversion [15], ABD [19],
FeTrIL [23] and R-DFCIL [20]. The comparative results are
shown in Table I. We can see that: (1) Our RFD consistently
achieves the highest accuracies across all three datasets, out-
performing the state-of-the-arts in various sequential tasks.
These results demonstrate the effectiveness of our proposed
RFD in both short and long sequential tasks under the DFCIL
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TABLE I
COMPARISON TO THE STATE-OF-THE-ARTS ON THE S-CIFAR-10, S-CIFAR-100 AND S-TINY-IMAGENET DATASETS. ALL DFCIL METHODS ARE

TRAINED FROM SCRATCH. THE ACCURACY RESULTS ARE REPORTED ACROSS THREE INDEPENDENT RUNS.

Method S-CIFAR-10 S-CIFAR-100 S-Tiny-ImageNet

Tasks N = 5 N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
Upper Bound 78.99 (±0.16) 70.67 (±0.16) 70.67 (±0.16) 70.67 (±0.16) 55.39 (±0.33) 55.39 (±0.33) 55.39 (±0.33)

Acc (↑)

LwF [22] 19.89 (±0.07) 17.00 (±0.10) 9.20 (±0.00) 4.70 (±0.10) 14.45 (±0.48) 8.18 (±0.32) 4.51 (±0.12)
DeepInversion [15] 20.34 (±0.22) 18.80 (±0.30) 10.90 (±0.60) 5.70 (±0.30) 14.73 (±0.62) 8.75 (±0.45) 5.15 (±0.25)
ABD [19] 55.38 (±4.29) 47.36 (±0.48) 36.19 (±0.93) 22.29 (±0.65) 30.56 (±0.22) 22.87 (±0.67) 15.20 (±1.01)
FeTrIL [23] 56.23 (±3.24) 47.66 (±0.31) 41.28 (±0.64) 32.52 (±0.29) 35.46 (±0.46) 30.31 (±0.03) 25.57 (±0.17)
R-DFCIL [20] 57.56 (±4.12) 50.47 (±0.43) 42.37 (±0.72) 30.75 (±0.12) 35.89 (±0.75) 29.58 (±0.51) 24.43 (±0.82)
RFD (Ours) 59.11 (±3.18) 53.01 (±0.23) 45.16 (±0.72) 33.41 (±0.23) 37.69 (±0.50) 32.64 (±0.27) 25.63 (±0.64)

Ācc (↑)
ABD [19] 70.38 (±1.86) 63.23 (±1.49) 56.61 (±1.93) 45.10 (±2.01) 45.30 (±0.50) 41.05 (±0.54) 34.74 (±0.91)
FeTrIL [23] 70.66 (±1.05) 61.55 (±0.21) 55.09 (±1.35) 45.70 (±1.49) 46.95 (±0.27) 43.17 (±0.29) 39.03 (±0.72)
R-DFCIL [20] 73.81 (±1.56) 64.85 (±1.78) 59.41 (±1.76) 48.47 (±1.90) 48.96 (±0.40) 44.36 (±0.18) 39.34 (±0.18)
RFD (Ours) 74.91 (±1.23) 66.24 (±1.38) 60.87 (±1.44) 50.45 (±0.86) 49.30 (±0.74) 45.67 (±0.19) 39.36 (±0.44)

TABLE II
COMPARISON TO THE STATE-OF-THE-ART R-DFCIL [20] ON THE

S-IMAGENET100 AND S-IMAGENET200-R DATASETS.

Method S-ImageNet100 S-ImageNet200-R

Tasks N = 5 N = 10 N = 20 N = 5 N = 10 N = 20
Upper Bound 77.46 77.46 77.46 44.47 44.47 44.47

Acc (↑) R-DFCIL 53.10 42.28 30.28 18.75 12.50 7.23
RFD (Ours) 56.54 44.04 31.52 22.05 16.07 10.25

Ācc (↑) R-DFCIL 68.15 59.10 47.33 26.96 20.50 14.80
RFD (Ours) 70.14 60.54 48.64 29.37 24.65 17.91

setting. (2) Our RFD exhibits a significant superiority over
the second best R-DFCIL. This is evidenced by the fact that
the RFD surpasses R-DFCIL by an average value 2.64/1.61
(Acc/Ācc) on the S-CIFAR-100, and by an average value
2.02/0.56 on the S-Tiny-ImageNet. These accuracy differ-
ences clearly demonstrate that our RFD effectively retains
old knowledge while enhancing the capacity for acquiring
new knowledge, thus significantly improving overall model
performance under the DFCIL setting.

Further, we present the comparative results of our RFD and
the second-best R-DFCIL across two larger and challenging
datasets, as shown in Table II. We can see that our RFD
achieves a superior performance over the R-DFCIL, evidenced
by an average enhancement of 2.15/1.58 (Acc/Ācc) on the
S-ImageNet100, and a 3.30/3.22 average increment on the S-
ImageNet200-R. These empirical results, spanning five distinct
datasets, fully validate the effectiveness of our proposed RFD,
demonstrating its robust applicability across a diverse range
of datasets, from small to large scales.

C. Ablation Study

To demonstrate the impact of each proposed component (the
weak-constraint RD & the low-level FD) on the performance
of our RFD, we conduct the ablation study on S-CIFAR-
100 (N = 10) and S-Tiny-ImageNet (N = 10). We take
the original framework only with the CE loss function as the
baseline (denoted as Base). On the basis of Base, we first
add the weak-constraint RD loss function to the framework,
which is denoted as Base+WRD. Then, we add the low-
level FD loss function to the framework, which is denoted
as Base+WRD+LFD, i.e., consisting of our full RFD.

The ablative results are shown in Table III. It can be
observed that: (1) When only using the CE loss, the model

TABLE III
ABLATIVE RESULTS OF OUR RFD ON S-CIFAR-100 (N = 10) AND

S-TINY-IMAGENET (N = 10). ‘WRD’ REFERS TO WEAK-CONSTRAINT
RD STRATEGY, ‘LFD’ REFERS TO LOW-LEVEL FD STRATEGY.

Method S-CIFAR-100 S-Tiny-ImageNet
Acc (↑) Ācc (↑) Acc (↑) Ācc (↑)

Base 9.22 (±0.10) 28.03 (±0.34) 7.93 (±0.09) 23.70 (±0.40)
Base+WRD 44.66 (±0.79) 60.47 (±1.60) 31.98 (±0.48) 45.51 (±0.15)
Base+WRD+LFD 45.16 (±0.72) 60.87 (±1.44) 32.64 (±0.27) 45.67 (±0.19)

exhibits lower accuracy on both datasets. (2) The application
of the weak-constraint RD results in a substantial increase
in accuracy for both datasets. This indicates that the weak-
constraint RD enables the model to retain a large amount of
useful old knowledge while acquiring more new knowledge,
and the old and new knowledge are well integrated. (3) The
application of the low-level FD (Base+WRD+LFD) further im-
proves the accuracy, and yields the best results. This indicates
that the low-level FD enforces the model to retain more funda-
mental general knowledge. Such knowledge is instrumental in
preserving old knowledge and assimilating new knowledge,
thereby culminating in optimal model performance. Overall,
these results fully demonstrate each proposed component (i.e.,
the weak-constraint RD or the low-level FD) contributes to the
model performance. Particularly, the weak-constraint RD plays
an extremely important role in our method.

IV. CONCLUSION

This paper presents a simple yet effective method called
RFD for DFCIL to retain more old knowledge while facili-
tating new knowledge acquisition, thus enhancing the model
performance. Concretely, our approach first introduces a weak-
constraint relation distillation strategy to retain more useful old
knowledge and promote the assimilation of new knowledge by
learning intra-class sample relationships. Further, to enhance
the preservation of old knowledge and to refine the integration
of new knowledge, we introduce a low-level feature distillation
strategy to dig deep and retain the fundamental general knowl-
edge. Extensive experiments on five benchmarks demonstrate
that our method significantly outperforms the state-of-the-arts
under the DFCIL setting.
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