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Abstract
Modern online advertising systems often involve a substantial num-

ber of advertisers in each auction, which results in scalability issues.

To address this challenge, two-stage auctions have been designed

and implemented in practice. These auctions enable efficient allo-

cation of ad slots among numerous candidate advertisers in a short

response time. This approach employs a fast yet coarse model in

the first stage to select a small subset of advertisers, followed by a

slow, more refined model to determine the final winners. However,

existing two-stage auction mechanisms primarily focus on optimiz-

ing welfare, overlooking other critical objectives of the platform,

such as revenue.

In this paper, we propose ad-wise selection metrics, named Max-

Wel and Max-Rev, which optimize the platform’s welfare and rev-

enue, respectively. These metrics are based on each ad’s contri-

bution to the corresponding objective function. We also provide

theoretical guarantees for the proposed metrics. Our method is

applicable to both welfare and revenue optimizations and can be

easily implemented using neural networks. Through extensive ex-

periments conducted on both synthetic and industrial data, we

demonstrate the advantages of our proposed selection metrics com-

pared to existing baselines.

CCS Concepts
• Theory of computation → Algorithmic game theory and
mechanismdesign;Computational advertising theory; •Com-
puting methodologies→ Neural networks.
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1 Introduction
Online advertising plays a vital role in modern Internet companies

and serves as their primary source of revenue [9]. In modern adver-

tising systems, when a user makes a request, the platform allocates

multiple ad slots to candidate advertisers through ad auctions [9, 25].

Given that these auctions occur in real-time, the final allocation of

ad slots must be determined within tens of milliseconds [12]. To

ensure efficient and effective allocation, auction outcomes depend

not only on advertisers’ bids but also on indicators of ad relevance

to the current user, such as click-through rate (CTR) and conversion

rate (CVR), collectively referred to as ad quality. In practice, plat-

forms often use a refined yet computationally intensive machine

learning model to predict the quality of each ad [16, 28]. However,

as the number of candidate advertisers increases, these heavy mod-

els can only be applied to a subset of the entire ad set due to time

constraints.

To address this scalability issue, platforms turn to employ a

two-stage auction architecture. In the first stage, a lightweight but

coarse machine learning (ML) swiftly selects a small subset of ads to

advance to the next stage. In the second stage, a refined ML model

is used on the remaining advertisers to determine the final auction

outcome. In recent years, the two-stage auction design problem has

garnered significant attention from researchers and can be broadly

categorized into two lines.

One line of research focuses on an underlying optimization prob-

lem: given rough estimates of advertiser quality, such as its distribu-

tion, how to select a subset of advertisers to maximize the objective,

also known as the bidder selection problem [2, 11, 20, 23]. However,
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the strong and often unrealistic assumption of known distribu-

tion information makes it challenging to apply these algorithms

to real-world scenarios. The other line of research approaches this

problem from a machine learning perspective [26]: assuming that

only partial features can be used in the first stage, how to rapidly

and efficiently select high-quality advertisers to proceed to the sec-

ond stage using a ML model. Our main focus in this paper lies in

the latter.

Existing work in this line mainly falls short in the following

aspects: 1) Due to inherent difficulties, most research addresses

a related, albeit different, problem rather than directly tackling

the original optimization problem. 2) Much of the existing work

lacks theoretical foundations and guarantees. 3) Only welfare is

considered as the optimization objective, while other important

goals of the platform, such as revenue, are overlooked.

To overcome the aforementioned limitations, we propose novel

selection metrics for the advertiser selection problem. Initially, we

formulate the two-stage auction as an optimization problem, in-

corporating both welfare and revenue as objectives, respectively.

Through theoretical analysis of auctions, we derive ad-wise selec-

tion metrics. We rank the ads according to their expected contribu-

tions to the objectives, then the top𝑚 ads are selected to proceed

to the next stage. Since our metrics are grounded in auction theory,

we are able to provide approximation bounds for each metric un-

der varying assumptions. In addition, we design a learning-based

implementation of our method that can be trained using existing

auction data.

We conduct extensive experiments to validate the effectiveness

of our proposed method. Specifically, we compare the performance

of our methods against existing two-stage baselines in terms of both

welfare and revenue, using synthetic and industrial data. Our find-

ings reveal that our method consistently outperforms the baselines.

Furthermore, we evaluate the performance of different methods

across various selection sizes and observe that the improvement

margin is larger when fewer advertisers are selected in the first

stage. This suggests that our metrics are particularly effective at

prioritizing high-quality advertisers.

1.1 Related Work
Learning-based auction design [8, 13, 24] has garnered consider-

able attention recently, especially in the context of online adver-

tising [17, 19]. However, to the best of our knowledge, research

specifically focusing on two-stage auctions remains limited. One

of the most relevant studies is by Wang et al. [26], who propose a

selection metric for welfare maximization by optimizing expected

recall. In contrast, our approach considers both welfare and revenue

maximization, using each ad’s contribution to the objective as the

selection metric. We also provide theoretical guarantees for our

method.

Another related topic is the subset selection problem under un-

certainty, which has been investigated across various scenarios,

including search engine [4], voting theory [21], team selection [15],

and procurement auctions [22]. In the realm of online advertising,

this problem is often known as the bidder selection problem (BSP).

Previous work by Chen et al. [5] can be seen as addressing the

BSP for maximizing welfare within a VCG setting. Mehta et al. [20]

extend this by considering both welfare and revenue maximiza-

tion. Bei et al. [2] studies the BSP for maximizing revenue across

multiple auction formats with a single item. Goel et al. [11] delve

into the strategic behavior of bidders and explore the design of

truthful two-stage auctions. These studies assume knowledge of

the distribution of participants’ values. In contrast, our focus in

this paper is to leverage data-driven advantages to facilitate bidder

selection from a machine-learning perspective.

2 Preliminaries
We consider the two-stage auction problem for an online advertising

platform (e.g., a search engine). When a user of such a platform

performs a specific action (for example, entering a query in a search

engine), the platform displays several ads along with the organic

content. The space that contains the ads is referred to as slots,

which are typically sold through auctions. Once an ad auction is

triggered, the platform requests advertisers to submit their bids and

then decides the winners based on their bids.

Throughout this paper, we assume that there are 𝑛 potential

advertisers competing for 𝐾 slots, with each advertiser having only

one ad. In scenarios where an advertiser has multiple ads, each ad

can be treated as an individual advertiser. We occasionally use “ad”

and “advertiser” interchangeably. Denote by 𝑁 = {1, · · · , 𝑛} the set
of all possible advertisers. Each advertiser 𝑖 ∈ 𝑁 has a private value

𝑣𝑖 ∈ R+, representing their payoff for an ad click. Based on their

private value, each advertiser submits a bid 𝑏𝑖 ∈ R+. We denote

the bid vector of all advertisers as 𝒃 = (𝑏1, . . . , 𝑏𝑛). In addition to

the bids, the auction results also depend on the quality of the ads,

denoted by 𝑞𝑖 . The quality reflects the current user’s interest in the

ad, and, similar to most existing studies, we use the click-through

rate (CTR) as our quality index. Thus 𝑞𝑖 represents the probability

of the user clicking on the ad. We use 𝒒 = (𝑞1, 𝑞2, . . . , 𝑞𝑛) to denote
the CTR profile of all advertisers for the current user.

An ad auction mechanism consists of two components: an alloca-

tion rule𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and a payment rule 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑛).
The allocation rule 𝑥𝑖 (𝒃, 𝒒) is a function that outputs an integer

indicating the slot assigned to advertiser 𝑖 . Specifically, 𝑥𝑖 (𝒃, 𝒒) = 𝑗

represents that advertiser 𝑖 wins the 𝑗-th slot, while 𝑗 = 0 indicates

that the advertiser loses this auction. The payment rule 𝑝𝑖 (𝒃, 𝒒)
outputs a real number representing the fee that advertiser 𝑖 must

pay if their ad is clicked by the user. When referring to 𝐾 slots,

it implies that a total of 𝐾 winners will be selected in the auc-

tion. In this paper, we consider 𝐾 as a given constant and focus on

one of the most widely used auction mechanisms: the generalized

second-price auction (GSP).

In the GSP auction, all ads are first ranked by a score 𝑠𝑖 = 𝑏𝑖𝑞𝑖 ,

and then the 𝑗-th slot is allocated to the advertiser with the 𝑗-th

highest score. If the 𝑗-th ad is clicked by the user, the advertiser pays

the minimum amount necessary to retain their slot 𝑗 . Formally:

𝑥𝑖 (𝒃, 𝒒) =
{
𝑗 if 𝑠𝑖 = 𝑠 ( 𝑗 )
0 otherwise

, 𝑝𝑖 (𝒃, 𝒒) =
{
𝑠 ( 𝑗+1)
𝑞𝑖

if 𝑥𝑖 (𝒃, 𝒒) = 𝑗

0 otherwise

,

where the subscript ( 𝑗) refers to the advertiser with the 𝑗-th highest
score.
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2.1 CTR Prediction and Two-stage Auctions
In real-world applications, the CTR of an ad is typically predicted

by machine learning models. Therefore, the performance of an ad

auction depends not only on the mechanism itself but also on the

accuracy of the ad CTR estimator. Over the past decade, numerous

learning models have been proposed to estimate the CTR of ads

relative to the user, each utilizing different inputs.

A naive and straightforward two-stage auction usually employs

two CTR models: a lightweight but coarse modelM𝑐
and a heavier,

more refined model M𝑟
. In the first stage, the coarse model M𝑐

is used to select potential winners to advance to the next stage.

In the second stage, the refined model M𝑟
determines the final

winners. Compared to the refined model, the coarse model uses

fewer features, making it computationally more efficient but less

accurate. Formally, let 𝑎𝑖 and 𝑢 be the features of ad 𝑖 and the user

used by the refined model. We sometimes call them the full features.

The coarse model only uses partial features (i.e., a subset of full

features), denoted by 𝑎𝑖 and �̃�. Therefore, the CTRs predicted by

the two models are

𝑞𝑖 = M𝑟 (𝑎𝑖 , 𝑢), 𝑞𝑖 = M𝑐 (𝑎𝑖 , �̃�) . (1)

We assume both models are trained using the same set of data D.

Let D(★,⋄) ⊆ D be the set of data containing the feature (★,⋄).
As mentioned in previous research [26], a well-trained CTR model

should satisfy:

𝑞𝑖 =
|𝐷+ (𝑎𝑖 , 𝑢) |
|𝐷 (𝑎𝑖 , 𝑢) |

, 𝑞𝑖 =
∑︁

𝑎𝑖 |�̃�𝑖 ,𝑢 |�̃�
𝑞𝑖 × 𝑃𝑟 [𝑎𝑖 , 𝑢 |𝑎𝑖 , �̃�] = E

𝑎𝑖 |�̃�𝑖 ,𝑢 |�̃�
[𝑞𝑖 ],

whereD+
is the set of positive data, i.e., the clicked data. Obviously,

the naive two-stage mechanism fails to account for the relationship

between the two CTR estimators, making it an ineffective solution.

Next, we delve into the two-stage auction design problems based

on this relationship.

In line with prior works [11, 26], we adopt the GSP mechanism

for the second stage. Consequently, our primary focus lies in the

design of the first stage, where we are constrained to use only

partial features to select a subset of advertisers. We consider two

commonly used objectives in the literature: welfare and revenue.

The welfare of an auction is defined as the total value
1
realized

through the auction. Formally, the welfare can be written as follows:

Wel =
∑︁
𝑖∈𝑁

𝑏𝑖𝑞𝑖 I {𝑥𝑖 (𝒃, 𝒒) > 0} ,

where I{·} is the indicator function. The revenue of an auction is

the total payment received by the platform. Under a GSP auction,

the revenue can be written as:

Rev =
∑︁
𝑖∈𝑁

𝑝𝑖𝑞𝑖 I {𝑥𝑖 (𝒃, 𝒒) > 0} .

The objective of the first stage is to select a subset 𝑀 ⊆ 𝑁 of ads

with size |𝑀 | = 𝑚 ≥ 𝐾 to enter the second stage, such that the

objective is maximized, given partial feature (�̃�, �̃�) and bid profile 𝒃 .
Let𝑇𝑜𝑝𝐾

𝑀
(𝒃, 𝒒) denote the set of 𝐾 ads with the highest 𝑠𝑖 in subset

1
A more rigorous definition of the social welfare should use the advertisers’ values 𝑣

instead of their bids 𝑏. However, according to Wilkens et al. [27], value-maximizing

advertisers use the strategy 𝑏𝑖 = 𝑣𝑖 in the GSP auction. Thus, we do not distinguish

between the value 𝑣𝑖 and the bid 𝑏𝑖 and just use 𝑏𝑖 hereafter.

𝑀 . Thus, the optimization problem in the first stage can be phrased

as:

max

𝑀⊆𝑁
E

𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑀

𝑏𝑖𝑞𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑀 (𝒃, 𝒒)

}]
or

max

𝑀⊆𝑁
E

𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑀

𝑝𝑖𝑞𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑀 (𝒃, 𝒒)

}]
,

depending on whether the platform’s final goal is to maximize

welfare or revenue. In the above optimization problems, 𝑞𝑖 is com-

puted by M𝑟
as described in Equation (1), and �̃� = (𝑎1, 𝑎2, . . . , 𝑎𝑛),

𝒂 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) are the profiles of the partial and full features

of all the ads, respectively.

Incentive Issues. When designing a two-stage auction, it’s crucial

to consider the advertisers’ incentives to misreport their values.

Incentive compatibility (IC) is one of the most important economic

properties in auction design. An auction mechanism is considered

IC if it is in the advertisers’ best interest to report their true valua-

tions. Fortunately, as noted by [27], for value-maximizing advertis-

ers, truthfully reporting is the optimal strategy if the mechanism

satisfies the following conditions:

(1) Monotonicity: an advertiser would win the same ad slot or

a higher one if they report a higher bid.

(2) Critical price: the payment for a winning advertiser is the

minimum bid required to maintain the same ad slot.

We assume all advertisers are value maximizers, as this model aligns

with the objectives of most advertisers in the advertising scenario.

The GSP auction already satisfies these two conditions, and the

first stage does not involve payment. Therefore, to ensure the IC

property of a two-stage mechanism, we only need to ensure the

monotonicity of allocation in the first stage.

3 First-stage Ad Selection Metric for Welfare
Maximization

Intuitively, the primary goal in the first stage is to select as many

“good” ads as possible from the entire ad set 𝑁 . An ad is consid-

ered “good” if its inclusion significantly contributes to the welfare

of the auction. The following theorem outlines each advertiser’s

contribution to the platform’s welfare. For simplicity, we define:

Wel(𝑀 |𝒃, �̃�, �̃�) = E
𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑀

𝑏𝑖𝑞𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑀 (𝒃, 𝒒)

}]
.

Theorem 1. Given any bid profile 𝒃 and partial feature �̃�, �̃�, the
expected contribution of advertiser 𝑖 to the welfare objective function
is expressed as:

𝑓𝑖 (𝒃, �̃�, �̃�) = E
𝑞𝑖 |�̃�𝑖

[
𝑏𝑖𝑞𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑁 (𝒃, 𝒒)

��� 𝒃, �̃�}] . (2)

Proof. If we can select a subset 𝑀 with a size equal to 𝑛 (i.e.,

set 𝑀 = 𝑁 ), then all ads can enter into the second stage. This

essentially reduces the problem to single-stage auctions, thereby

achieving optimal welfare. Then we have:

max

𝑀⊆𝑁
Wel(𝑀 |𝒃, �̃�, �̃�) ≤ E𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑁

𝑏𝑖𝑞𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑁 (𝒃, 𝒒)

}]
.
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The right-hand side of the above equation can also be written as:

E
𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑁

𝑏𝑖𝑞𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑁 (𝒃, 𝒒)

}]
=
∑︁
𝑖∈𝑁

E
𝒒 |�̃�

[
𝑏𝑖𝑞𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑁 (𝒃, 𝒒)

}]
=
∑︁
𝑖∈𝑁

E
𝑞𝑖 |�̃�𝑖

[
𝑏𝑖𝑞𝑖E𝒒−𝒊 |�̃�−𝒊

[
I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑁 (𝒃, 𝒒)

}] ]
=
∑︁
𝑖∈𝑁

E
𝑞𝑖 |�̃�𝑖

[
𝑏𝑖𝑞𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑁 (𝒃, 𝒒)

���𝒃, �̃�}] .
Define function 𝑓𝑖 (𝒃, �̃�, �̃�) as follows:

𝑓𝑖 (𝒃, �̃�, �̃�) = E
𝑞𝑖 |�̃�𝑖

[
𝑏𝑖𝑞𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑁 (𝒃, 𝒒)

��� 𝒃, �̃�}] .
Then the right-hand side of the above equation is a summation of

𝑓𝑖 (𝒃, �̃�, �̃�) over all ads. Therefore, the ranking index 𝑓𝑖 (𝒃, �̃�, �̃�) can
be viewed as the expected contribution of ad 𝑖 to the objective. In

fact, if ad 𝑖 is a winner, its contribution is 𝑏𝑖𝑞𝑖 by definition. Thus,

𝑓𝑖 (𝑏, 𝑎, �̃�) is indeed the expected contribution of ad 𝑖 to the objective
and can serve as an ad-wise selection metric for the bidder selection

problem in the first stage. □

To maximize welfare, we can rank ads based on their expected

contributions and select top 𝑚 ads to proceed to the next stage.

Thus,𝑀 is in fact a set-valued function with input 𝒃, �̃�, �̃�. We show

that the expected welfare contribution of set𝑀 serves as a lower

bound for the actual welfare of set𝑀 , that is:

Wel(𝑀 |𝒃, �̃�, �̃�) ≥
∑︁
𝑖∈𝑀

𝑓𝑖 (𝒃, �̃�, �̃�) .

Lemma 1. For any selected set𝑀 ⊆ 𝑁 , the expected welfare con-
tribution of set𝑀 is a lower bound of the actual welfare of choosing
set𝑀 .

Proof. It suffices to show that:

Wel(𝑀 |𝒃, �̃�, �̃�) =
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑏𝑖𝑞𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑀 (𝒃, 𝒒)

}]
≥
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑏𝑖𝑞𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑁 (𝒃, 𝒒)

}]
=
∑︁
𝑖∈𝑀

𝑓𝑖 (𝒃, �̃�, �̃�) .

The inequality comes from that for any ad 𝑖 in the selected set

𝑀 , (1) if 𝑖 is originally in 𝑇𝑜𝑝𝐾
𝑁
(𝒃, 𝒒), then it must also in the set

𝑇𝑜𝑝𝐾
𝑀
(𝒃, 𝒒); (2) if 𝑖 is not in 𝑇𝑜𝑝𝐾

𝑁
(𝒃, 𝒒), then I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾

𝑁
(𝒃, 𝒒)

}
must equal to 0, but it may still be in the 𝑇𝑜𝑝𝐾

𝑀
(𝒃, 𝒒). Therefore,

the expected welfare contribution of set𝑀 is a lower bound of the

actual welfare of choosing set𝑀 . □

In real-world advertising systems, the ranking index 𝑓𝑖 (𝒃, �̃�, �̃�)
can be approximated by a neural network. However, the input

of the network includes the bids and features of all participating

advertisers, resulting in a very high and potentially variable input

dimension. This complexity makes it challenging to design and train

the network effectively. In practice, a typical online ad platform can

have more than 100,000 advertisers. The set of active advertisers

may be different for different users, and the benefit of including the

feature of inactive advertisers may not be able to compensate for

the difficulties posed by them in the training of the network.

To address this, we consider the following simplified version of

𝑓𝑖 (𝒃, �̃�, �̃�) that depends only on the features of ad 𝑖 itself. We define

the simplified ranking index as:

¯𝑓𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�) = E
𝒃−𝒊,�̃�−𝒊

[𝑓𝑖 (𝒃, �̃�, �̃�)] .

This approach reduces the complexity by focusing solely on the

individual ad’s features, making it more feasible to design and train

the neural network.

3.1 Ranking Score Monotonicity
Recall that the refined CTR 𝑞𝑖 is a random variable with mean 𝑞𝑖 .

As a result, the score 𝑠𝑖 = 𝑏𝑖𝑞𝑖 is also a random variable. Suppose

that all the random scores are independently conditioned on the

bid profile 𝒃 and the partial features �̃� and �̃�. We show that the

expected contribution
¯𝑓𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�) of ad 𝑖 is larger than that of ad 𝑗 ,

if the score 𝑠𝑖 of ad 𝑖 stochastically dominates the score 𝑠 𝑗 of ad 𝑗 ,

where the relation of stochastic dominance is defined as follows:

Definition 1 (Stochastic Dominance). Random variable 𝑋
stochastically dominates random variable 𝑌 , if 𝐹𝑋 (𝑡) ≤ 𝐹𝑌 (𝑡),∀𝑡 ,
where 𝐹𝑋 (𝑡) and 𝐹𝑌 (𝑡) are the cumulative distribution functions of
𝑋 and 𝑌 , respectively.

An alternative and equivalent definition is that 𝑋 stochastically
dominates 𝑌 , if E𝑋 [𝑢 (𝑋 )] ≥ E𝑌 [𝑢 (𝑌 )] for any increasing function
𝑢 : R ↦→ R.

Denote by𝐺𝑖 (𝑡) and𝐺 𝑗 (𝑡) the cumulative distribution functions

of the random scores 𝑠𝑖 and 𝑠 𝑗 , and by 𝑔𝑖 (𝑡) and 𝑔𝑖 (𝑡) their cor-
responding density function. Here, we assume that all scores are

continuous random variables to avoid the complication of point

masses and tie-breaking rules. Formally, we have the following

result.

Theorem 2. Given any bid profile 𝒃 and partial feature �̃� and �̃�,
if the resulting random scores are independent and 𝑠𝑖 stochastically
dominates 𝑠 𝑗 , then ¯𝑓𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�) ≥ ¯𝑓𝑗 (𝑏 𝑗 , 𝑎 𝑗 , �̃�).

3.2 Welfare Approximation
We derive approximation results for the selection metric. Based

on these results, we are able to calculate the size of �̄� needed to

guarantee a certain fraction of the optimal welfare.

The above analyses are based on any given bid 𝒃 and partial

features �̃� and �̃�. The total expected welfare of the platform can be

obtained by taking expectations over these variables. To analyze the

performance of the ranking index
¯𝑓𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�), we further assume

that the bid 𝑏𝑖 and partial feature 𝑎𝑖 are independent across the

ads. Consequently, the ranking index
¯𝑓𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�) is also a random

variable for any user feature �̃� and is independent across all ads.

3.2.1 Uniform Distribution. We begin with the simplest case where

the ranking indices
¯𝑓𝑖 of all ads are i.i.d. random variables following

a uniform distribution over the interval [𝑎, 𝑏].

Lemma 2. Suppose the ranking indices ¯𝑓𝑖 are i.i.d random variables
that follow uniform distribution𝑈 [𝑎, 𝑏] with 0 ≤ 𝑎 < 𝑏. Then always
including the ads with top𝑚 ranking indices achieves an 𝛼 fraction
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of the optimal welfare if:

𝑚 >
𝑏

2(𝑏 − 𝑎)

[
2𝑛 + 2 −

√
1 − 𝛼 (2𝑛 + 1)

]
.

3.2.2 General Distribution. In addition to uniform distributions, we

also provide results for general distributions with mean 𝜇 and vari-

ance 𝜎2
. We still assume that the ranking indices are i.i.d. random

variables. Our welfare approximation result for general distribu-

tions is as follows:

Lemma 3. Suppose the ranking indices ¯𝑓𝑖 are random variables
that follow a distribution with mean 𝜇 and variance 𝜎2. Then always
including the ads with top𝑚 ranking indices achieves an 𝛼 fraction
of the optimal welfare if:

𝑚 ≥

𝛼𝑛 − 𝜎

2𝜇𝑛 +
√

2

4
(2𝑛 + 1)

√︃
𝜎
𝜇 if 𝜎 ≤ 2𝜇 ( 1

𝑛 + 𝛼)

−1 +
√

2

4
(2𝑛 + 1)

√︃
𝜎
𝜇 if 𝜎 > 2𝜇 ( 1

𝑛 + 𝛼)
. (3)

4 First-stage Ad Selection Metric for Revenue
Maximization

In scenarios focused on maximizing revenue, the objective of the

first stage is to select advertisers who contribute most significantly

to revenue. The revenue contribution of an ad is defined as the

expected payment made by the advertiser.

Firstly, we present an equivalent form of the objective function

for revenue maximization.

Lemma 4. The objective function for revenue maximization can be
equivalently expressed as:

max

𝑀⊆𝑁
E

𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑀

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)
}
−
∑︁
𝑖∈𝑀

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]
.

(4)

Next, we derive each ad’s contribution to the revenue objective.

For simplicity, we define:

Rev(𝑀 |𝒃, �̃�, �̃�) = E
𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑀

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)
}

−
∑︁
𝑖∈𝑀

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]
.

Theorem 3. Given any bid profile 𝒃 and partial feature �̃�, �̃�, the
expected contribution of advertiser 𝑖 to the revenue objective function
is:

𝑟𝑖 (𝒃, �̃�, �̃�) = E
𝑞𝑖 |�̃�𝑖

[
𝑠𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)
���𝒃, �̃�}]

− E
𝑞𝑖 |�̃�𝑖

[
𝑠𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
��𝒃, �̃�}] . (5)

Proof. If we can select a subset 𝑀 with a size equal to 𝑛 (i.e.,

set 𝑀 = 𝑁 ), then all ads can enter into the second stage. This

essentially reduces the problem to single-stage auctions, thereby

achieving optimal revenue. Then we have:

max

𝑀⊆𝑁
Rev(𝑀 |𝒃, �̃�, �̃�) ≤ E

𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑁

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)
}

−
∑︁
𝑖∈𝑁

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
}]
. (6)

The right-hand side of the above inequality can be written as:

E
𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑁

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)
}
−
∑︁
𝑖∈𝑁

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
}]

=
∑︁
𝑖∈𝑁

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)
}]

−
∑︁
𝑖∈𝑁

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
}]

=
∑︁
𝑖∈𝑁

E
𝑞𝑖 |�̃�𝑖

[
𝑠𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)
���𝒃, �̃�}]

−
∑︁
𝑖∈𝑁

E
𝑞𝑖 |�̃�𝑖

[
𝑠𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
��𝒃, �̃�}] .

We define function 𝑟𝑖 (𝒃, �̃�, �̃�) as follows:

𝑟𝑖 (𝒃, �̃�, �̃�) = E
𝑞𝑖 |�̃�𝑖

[
𝑠𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)
���𝒃, �̃�}]

− E
𝑞𝑖 |�̃�𝑖

[
𝑠𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
��𝒃, �̃�}]

=𝑓
(𝐾+1)
𝑖

(𝒃, �̃�, �̃�) − 𝑓 (1)
𝑖

(𝒃, �̃�, �̃�).

Then the right-hand side of the inequality (6) is a summation of

𝑟𝑖 (𝒃, �̃�, �̃�) over all ads. Thenwe can regard 𝑟𝑖 (𝒃, �̃�, �̃�) as the expected
revenue contribution of ad 𝑖 . □

Note that, combined with Equation (2), Equation (5) can also be

written as:

𝑟𝑖 (𝒃, �̃�, �̃�) = 𝑓 (𝐾+1)
𝑖

(𝒃, �̃�, �̃�) − 𝑓 (1)
𝑖

(𝒃, �̃�, �̃�),

where the superscript (𝐾 + 1) denotes the number of ad slots.

4.1 Refined Selection Metric for Revenue
Maximization

There are certain scenarios where 𝑟𝑖 may not adequately account

for revenue contributions, prompting us to introduce a surrogate

revenue score 𝑅𝑖 to address these special cases.

Consider a bidder who is significantly superior to others (e.g.,

with both high bids and CTR). In such cases, the probability of

this bidder being in 𝑇𝑜𝑝𝐾+1

𝑁
is nearly equal to the probability of

being in𝑇𝑜𝑝1

𝑁
(both close to 1). However, the revenue contribution

calculated by 𝑟𝑖 for this bidder is very low, which is clearly un-

reasonable. In a general second-price auction, without the highest

bidder, all other bidders’ payments decrease. This occurs due to the

subtraction in the revenue contribution 𝑟𝑖 . To address this issue, we

define a surrogate ranking index as follows:

𝑅𝑖 (𝒃, �̃�, �̃�) = 𝑓 (𝐾+1)
𝑖

(𝒃, �̃�, �̃�),

which is equivalent to bidder 𝑖’s welfare contribution when there

are 𝐾 + 1 slots. We then determine the candidate set𝑀 by selecting

the ads with the highest refined revenue ranking indices 𝑅𝑖 . The
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actual revenue of choosing set𝑀 is:

Rev(𝑀 |𝒃, �̃�, �̃�) =
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)
}]

−
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]
.

Next, we show that Rev(𝑀 |𝒃, �̃�, �̃�) ≥ ∑
𝑖∈𝑀 𝑟𝑖 (𝒃, �̃�, �̃�).

Lemma 5. For any selected subset 𝑀 ⊆ 𝑁 , the expected revenue
contribution of 𝑀 serves as a lower bound for the actual revenue
generated by choosing𝑀 .

We also define the simplified ranking index and the simplified

refined index that depend solely on the features of ad 𝑖 , as follows:

𝑟𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�) = ¯𝑓
(𝐾+1)
𝑖

(𝑏𝑖 , 𝑎𝑖 , �̃�) − ¯𝑓
(1)
𝑖

(𝑏𝑖 , 𝑎𝑖 , �̃�),

𝑅𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�) = E
𝒃−𝒊,�̃�−𝒊

[𝑅𝑖 (𝒃, �̃�, �̃�)] = ¯𝑓
(𝐾+1)
𝑖

(𝑏𝑖 , 𝑎𝑖 , �̃�) .

For convenience, we abuse notation and use �̄� to denote the set

of ads selected using metric 𝑅𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�).

4.2 Revenue Approximation
We derive approximation results for the revenue ranking index.

Based on these results, we can determine the size of �̄� needed to

ensure a certain fraction of the optimal revenue.

4.2.1 Uniform Distribution. We begin with the scenario where

¯𝑓
(𝐾+1)
𝑖

and
¯𝑓
(1)
𝑖

are i.i.d random variables following uniform distri-

butions over intervals [𝑎 (𝐾+1) , 𝑏 (𝐾+1) ] and [𝑎 (1) , 𝑏 (1) ] respectively,
for all ads.

Lemma 6. Suppose ¯𝑓
(𝐾+1)
𝑖

and ¯𝑓
(1)
𝑖

are i.i.d random variables
following uniform distributions𝑈 [𝑎 (𝐾+1) , 𝑏 (𝐾+1) ] and𝑈 [𝑎 (1) , 𝑏 (1) ].
Then always including the ads with top𝑚 ranking indices achieves
an 𝛼 fraction of the optimal revenue if

𝑚 ≥ 𝑏 (𝐾+1) − 𝑏 (1)

2(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) )

[
2𝑛 + 2 −

√
1 − 𝛼 (2𝑛 + 1)

]
.

4.2.2 General Distribution. In addition to uniform distributions,

we also provide results for general distributions, assuming that

¯𝑓
(𝐾+1)
𝑖

and
¯𝑓
(1)
𝑖

are i.i.d. random variables.

Lemma 7. Suppose ¯𝑓
(𝐾+1)
𝑖

and ¯𝑓
(1)
𝑖

are random variables follow-
ing distributions with means 𝜇 (𝐾+1) , 𝜇 (1) and variances 𝜎2

(𝐾+1) , 𝜎
2

(1) .
Then always including the ads with top𝑚 ranking indices 𝑟𝑖 achieves
an 𝛼 fraction of the optimal revenue if

• when 𝜎 (𝐾+1) ≤ 2𝛼𝜇 (𝐾+1) , 𝜇 (1) ≤ 1

𝑛 (1−𝛼 ) 𝜇 (𝐾+1) ,

𝑚 ≥𝛼𝑛 −
𝜎 (𝐾+1)
2𝜇 (𝐾+1)

𝑛 +
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)
;

• when 𝜎 (𝐾+1) > 2𝛼𝜇 (𝐾+1) , 𝜇 (1) ≤ 1

𝑛 (1−𝛼 ) 𝜇 (𝐾+1) ,

𝑚 ≥
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)
;

• when 𝜎 (𝐾+1) ≤ 2𝛼𝜇 (𝐾+1) , 𝜇 (1) >
1

𝑛 (1−𝛼 ) 𝜇 (𝐾+1) ,

𝑚 ≥𝛼𝑛 − 1 −
𝜎 (𝐾+1)
2𝜇 (𝐾+1)

𝑛 +
𝜇 (1)
𝜇 (𝐾+1)

(1 − 𝛼)𝑛

+
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)
;

• when 𝜎 (𝐾+1) > 2𝛼𝜇 (𝐾+1) , 𝜇 (1) >
1

𝑛 (1−𝛼 ) 𝜇 (𝐾+1) ,

𝑚 ≥ − 1 +
𝜇 (1)
𝜇 (𝐾+1)

(1 − 𝛼)𝑛 +
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)
.

5 Learning-based Selection Metrics
In previous sections, we proposed ad selection metrics based on

their contribution to the objectives. In practice, we use a neural

network to approximate the actual contribution of each advertiser,

denoted by
¯𝑓 𝜃 (𝑏𝑖 , 𝑎𝑖 , �̃�𝑖 ). We use supervised learning to update

the model’s parameters 𝜃 . For each auction sample, the input to

the learning model includes the advertiser’s bid 𝑏𝑖 , the partial ad

features 𝑎𝑖 , and partial user �̃�. The label is defined as 𝑦𝑖 = 𝑏𝑖 × 𝑞𝑖 ×
I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾

𝑁
(𝒃, 𝒒)

}
or𝑦𝑖 = 𝑏𝑖×𝑞𝑖×I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁
(𝒃, 𝒒)

}
, depending

on whether the objective is welfare or revenue. Note that during

the training process, we can obtain the accurate CTR 𝑞𝑖 of each ad

from the refined CTR modelM𝑟
. Thus, for any auction sample, we

can also determine whether an advertiser is in the top 𝐾 .

Given a set of auction samplesD𝑓 , we minimize the mean square

error (MSE) between the prediction of
¯𝑓 𝜃 and the label 𝑦𝑖 . The loss

function is expressed as:

L =
1

|D𝑓 |
∑︁
𝑗∈D𝑓

∑︁
𝑖∈𝑁

(
¯𝑓 𝜃 (𝑏 𝑗

𝑖
, 𝑎
𝑗
𝑖
, �̃�
𝑗
𝑖
) − 𝑦 𝑗

𝑖

)
2

,

where the superscript 𝑗 denotes the 𝑗-th auction sample in D𝑓 .

6 Experiments
In this section, we conduct extensive experiments using both syn-

thetic and industrial data to evaluate the effectiveness of our pro-

posed selection metrics, Max-Wel and Max-Rev.

Synthetic Data. We generate synthetic auction data based on the

iPinYou [18] dataset, which is the only publicly available dataset

on display advertising released by a major demand-side platform.

This dataset comprises logs of bidding, impressions, clicks, and

final conversions from 3 campaign seasons, including 78 million bid

records and 24 million impression records. As the data from the first

season lacks Advertiser ID and user profile information, and the

bidding log lacks paying price data, we select one day’s impression

log data from the second season to conduct our experiments. The

data includes 5 distinct Advertiser IDs (5 bidders), 1.6 million users,

and 1.8 million bid records.

The full feature set of a user 𝑢 includes iPinYou ID, Region ID,

City ID, and User Profile ID, while the full ad feature 𝑎𝑖 includes

Advertiser ID and Creative ID. We assume that the partial user

feature �̃� comprises iPinYou ID and Region ID, whereas the partial

ad feature 𝑎𝑖 includes only Advertiser ID. As the bidding prices
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Table 1: Experiment results of different methods on synthetic data. 𝑛 = 5,𝑚 = 4.

Method Wel@1 Wel@2 Wel@3 Method Rev@1 Rev@2 Rev@3

REG-CTR 0.9661 0.9534 0.9372 REG-CTR 0.9301 0.9056 0.8715

REG 0.9972 0.9907 0.9752 REG 0.9827 0.9543 0.9157

PAS 0.9997 0.9995 0.9909 PAS 0.9389 0.9568 0.9226

Max-Wel (ours) 0.99980.99980.9998 0.99950.99950.9995 0.99840.99840.9984 Max-Rev (ours) 0.99800.99800.9980 0.99700.99700.9970 0.98510.98510.9851

Table 2: Experiment results of different methods on industrial data. 𝑛 = 400,𝑚 = 10.

Method Wel@1 Wel@3 Wel@5 Method Rev@1 Rev@3 Rev@5

REG-CTR 0.9434 0.8684 0.8298 REG-CTR 0.8400 0.8076 0.7627

REG 0.9661 0.8740 0.8343 REG 0.8236 0.7938 0.7703

PAS 0.9161 0.8810 0.8346 PAS 0.8747 0.8186 0.7817

Max-Wel (ours) 0.97200.97200.9720 0.90180.90180.9018 0.87380.87380.8738 Max-Rev (ours) 0.92170.92170.9217 0.84310.84310.8431 0.80280.80280.8028

were scaled before release, we treat the paying price as their bids

and fit a log-normal distribution to simulate the advertisers’ bidding

strategy. Based on these data, we generate 100,000 auction instances,

each comprising a randomly selected user and 5 advertisers. Each

advertiser’s bid is independently drawn from the fitted log-normal

distribution. To ensure alignment between the highest bidding

advertiser and the original impression winner in the data, we swap

the highest bid within a sampled bid vector with the bid of the

winner.

To determine the allocation outcome of these instances, we sim-

ulate the GSP auction in the second stage. Before that, we train a

refined CTR estimator M𝑟
to generate 𝑞𝑖 using the full features of

the ad 𝑎𝑖 and user 𝑢. Then, we use 𝑏𝑖 × 𝑞𝑖 as the ranking score in
the second stage GSP auction. Detailed descriptions of the training

data for the CTR model are provided in Appendix B.1.

Industrial Data. The industrial data is sourced from the ad auc-

tion log of a major auction platform. We extract a sample of 80,000

ad requests from the logged data in April 2024. In each ad request

from a user, about 400 ads compete for exposure. The features for

each ad include: 1) attributes specific to the ad itself, such as bid

price 𝑏𝑖 , task type, corporation type, etc.; 2) cross features of the

ad and user, such as the click-through rate (CTR) and conversion

rate (CVR). We consider CTR as 𝑞𝑖 and use it to generate the label

𝑏𝑖 × 𝑞𝑖 for each ad. As cross features may encompass information

from the full features, we opt to only consider attribute features

when selecting ad features.

Evaluation. We evaluate the performance of different two-stage

methods from the perspectives of welfare and revenue respectively.

• Welfare rate: Wel@𝐾 =
∑𝐾
𝑖=1

𝑠
(𝑖 )
𝑀

/∑𝐾𝑗=1
𝑠
( 𝑗 )
𝑁

.

• Revenue rate: Rev@𝐾 =
∑𝐾
𝑖=1

𝑠
(𝑖+1)
𝑀

/∑𝐾𝑗=1
𝑠
( 𝑗+1)
𝑁

.

Recall that 𝑠
(𝑖 )
𝑀

represents the 𝑖-th highest score in the selected ad set

𝑀 , while 𝑠
( 𝑗 )
𝑁

denotes the 𝑗-th highest score in the entire set𝑁 . Note

that revenue is computed under the GSP auction, so the revenue of

a specific set 𝑇 can be expressed as 𝑅𝐸𝑉 (𝑇 ) = ∑𝐾
𝑘=1

𝑠
(𝑘+1)
𝑇

.

Baseline Methods. To show the effectiveness of our proposed

Max-Wel and Max-Rev, we introduce the following two-stage meth-

ods as baselines.

• REG-CTR, which trains a regression model using 𝑎𝑖 , �̃� as

inputs, with 𝑞𝑖 as the label. The rank score is calculated as

the bid multiplied by the output of the regression model.

• REG, which trains a regressionmodel using𝑏𝑖 , 𝑎𝑖 , �̃� as inputs,

with 𝑏𝑖 × 𝑞𝑖 as the label. The rank score is the output of the

model.

• PAS [26], which uses 𝑏𝑖 , 𝑎𝑖 , �̃� as inputs and outputs the prob-

ability of each ad being in TopK.

All these baselines are also restricted to use the same partial features

⟨𝑎𝑖 , �̃�⟩. The neural network architecture remains consistent across

all methods, with nearly identical input. The only distinction is that

the REG-CTR network does not include the bid input.

Performance Comparison. The results of different methods on

synthetic data and industrial data are presented in Tables 1 and

2. All results are averaged across 10 runs with distinct seeds. We

have omitted the standard deviation as it consistently remains

below 1% across various evaluation metrics for all methods in our

experiments.

As shown in Tables 1 and 2, our method outperforms all baseline

methods in both data settings and in terms of both welfare and

revenue. For instance, in the experiments with industrial data, our

Max-Wel improves the welfare rate by 0.59%, 2.08%, 3.92% compared

to the best performance among other baseline methods for 𝐾 =

1, 3, 5, respectively. The superiority of our methods over baseline

methods can be attributed to two main reasons: 1) Unlike PAS,

which predicts the probability of each ad being among the top𝐾 , our

method considers not only whether each ad is in the top 𝐾 , but also

howmuch each ad contributes to the objective; 2) Compared to REG-

CTR and REG, our methods focus on advertisers who contribute

more to the objective, thus more accurately identifying high-quality

advertisers.

Additionally, we compare the performance of different methods

with varying𝑚 under the industrial data, as shown in Figure 1. The

experimental results demonstrate the superiority of our proposed
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Figure 1: Experiment results of different methods on industrial data with different𝑚.

Table 3: Violation rate of perturbation test, with unit ×10
−4.

REG-CTR REG PAS Max-Wel Max-Rev

Violation Rate 0 11.04 ± 4.04 8.12 ± 3.18 3.31 ± 2.36 4.78 ± 1.87

method over other baselines in terms of both welfare and revenue

metrics across various values of𝑚. Notably, the margin of improve-

ment tends to be greater with smaller𝑚. This indicates that our

methods excel in prioritizing high-quality advertisers, further vali-

dating their effectiveness in selecting top-performing advertisers.

IC Testing. The incentive compatibility (IC) property requires

that the allocation for each ad 𝑖 increases monotonically with its

bid 𝑏𝑖 . To test the extent to which different methods satisfy the

IC condition, we employ the commonly used IC test in ad auc-

tions [6, 7], which involves perturbing each advertiser’s bid and

evaluating the violation rate. Specifically, for each ad, all features

remain unchanged except 𝑏𝑖 , which is replaced by 𝑏𝑖 × 𝛼 , where
𝛼 ∈ S𝑝 = {0.2𝑥 | 𝑥 = 1, . . . , 10} is a perturbation factor. All features

of other ads remain unchanged. A test does not violate the IC test if

∃𝛼0 ∈ S𝑝 such that ad 𝑖 can enter the second stage with 𝑏𝑖 × 𝛼 for

all 𝛼 ≥ 𝛼0, or if ad 𝑖 cannot enter the second stage for any 𝛼 ∈ S𝑝 .
We sample 1000 auctions from the test set and conduct the IC

test on each ad in each auction for all methods. The results are

shown in Table 3. The results indicate that our methods exhibit

low violation rates, suggesting that even without using specialized

structures to ensure the monotonicity of the learning model, our

proposed metrics guarantee approximate monotonicity. Notably,

the REG-CTR method ranks ads by multiplying the bid with the

learned model’s output, inherently preserving monotonicity.

7 Conclusion
We study the design of two-stage auctions from the angle of op-

timizing welfare and revenue respectively. We explicitly derive

each ad’s contribution to each objective function, and use this as

a selection metric for bidder selection in the first stage. We pro-

vide theoretical guarantees for our metrics under both uniform and

general distributions and demonstrate that these metrics can be

effectively learned using neural networks. Experimental results on

both synthetic and industrial data show that our methods signifi-

cantly outperform existing approaches, highlighting the advantages

of selecting top-performing advertisers.
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Appendix
A Omitted Proofs
A.1 Proof of Theorem 2

Proof. Fix 𝑠𝑙 for all 𝑙 ∈ 𝑁 with 𝑙 ≠ 𝑖, 𝑗 . For ease of presentation,

denote by 𝑐𝑘 the 𝑘-th largest score in the set {𝑠𝑙 | 𝑙 ∈ 𝑁, 𝑙 ≠ 𝑖, 𝑗}.
Clearly, we have 𝑐𝐾−1 ≥ 𝑐𝐾 . Now consider the following three

cases.

Case 1. 𝑠𝑖 ≥ 𝑐𝐾−1. In this case, no matter what the actual value

of 𝑠 𝑗 is, ad 𝑖 is always among the top 𝐾 ads, i.e., 𝑖 ∈ 𝑇𝑜𝑝𝐾
𝑁
(𝒃, 𝒒).

Therefore, the contribution of ad 𝑖 to the welfare is simply 𝑠𝑖 , and

the expected contribution of ad 𝑖 in this case is:∫ ∞

𝑐𝐾−1

𝑠𝑖𝑔𝑖 (𝑠𝑖 ) d𝑠𝑖 .

Case 2. 𝑐𝐾 ≤ 𝑠𝑖 < 𝑐𝐾−1. In this case, there are already 𝐾 − 1 ads

with scores higher than 𝑠𝑖 . So ad 𝑖 can contribute to the welfare only

if 𝑠 𝑗 ≤ 𝑠𝑖 . Since 𝑠 𝑗 and 𝑠𝑖 are independent given 𝒃 , �̃�, and �̃�, 𝑠 𝑗 ≤ 𝑠𝑖
happens with probability𝐺 𝑗 (𝑠𝑖 ). Therefore, the total contribution
of ad 𝑖 in this case is:∫ 𝑐𝐾−1

𝑐𝐾

𝑠𝑖𝑔𝑖 (𝑠𝑖 )𝐺 𝑗 (𝑠𝑖 ) d𝑠𝑖 .

Case 3. 𝑠𝑖 < 𝑐𝐾 . In this case, we already have 𝐾 ads with scores

exceeding 𝑠𝑖 . Thus, ad 𝑖 cannot make a non-zero contribution even

if 𝑠 𝑗 < 𝑠𝑖 . So the total contribution is simply 0.

Combining the contributions in the three cases together, the

total contribution of ad 𝑖 is:∫ ∞

𝑐𝐾−1

𝑠𝑖𝑔𝑖 (𝑠𝑖 ) d𝑠𝑖 +
∫ 𝑐𝐾−1

𝑐𝐾

𝑠𝑖𝑔𝑖 (𝑠𝑖 )𝐺 𝑗 (𝑠𝑖 ) d𝑠𝑖 .

Define:

�̃� 𝑗 (𝑠𝑖 ) =


0 if 0 ≤ 𝑠𝑖 ≤ 𝑐𝐾
𝑠𝑖𝐺 𝑗 (𝑠𝑖 ) if 𝑐𝐾 < 𝑠𝑖 ≤ 𝑐𝐾−1

𝑠𝑖 if 𝑠𝑖 > 𝑐𝐾−1

,

and

�̃�𝑖 (𝑠 𝑗 ) =


0 if 0 ≤ 𝑠 𝑗 ≤ 𝑐𝐾
𝑠 𝑗𝐺𝑖 (𝑠 𝑗 ) if 𝑐𝐾 < 𝑠 𝑗 ≤ 𝑐𝐾−1

𝑠 𝑗 if 𝑠 𝑗 > 𝑐𝐾−1

.

Then the total contribution of ad 𝑖 can be re-written as:∫ ∞

0

�̃� 𝑗 (𝑠𝑖 )𝑔𝑖 (𝑠𝑖 ) d𝑠𝑖 .

Similarly, the contribution of ad 𝑗 can be obtained by switching the

role of 𝑖 and 𝑗 : ∫ ∞

0

�̃�𝑖 (𝑠 𝑗 )𝑔 𝑗 (𝑠 𝑗 ) d𝑠 𝑗 .

Since 𝑠𝑖 stochastically dominates 𝑠 𝑗 , by definition, we have𝐺𝑖 (𝑡) ≤
𝐺 𝑗 (𝑡),∀𝑡 , which implies �̃� 𝑗 (𝑡) ≥ �̃�𝑖 (𝑡),∀𝑡 . Consequently,

E
𝑠𝑖

[
�̃� 𝑗 (𝑠𝑖 )

]
=

∫ ∞

0

�̃� 𝑗 (𝑡)𝑔𝑖 (𝑡) d𝑡

≥
∫ ∞

0

�̃�𝑖 (𝑡)𝑔𝑖 (𝑡) d𝑡

= E
𝑠𝑖

[
�̃�𝑖 (𝑠𝑖 )

]
≥ E
𝑠 𝑗

[
�̃�𝑖 (𝑠 𝑗 )

]
,

where the last inequality is due to the alternative definition of

stochastic dominance.

Through the above analysis, we know that the contribution of

ad 𝑖 is always larger than that of ad 𝑗 for any fixed scores of other

ads. Taking expectation over the scores of other ads immediately

leads to the conclusion that the expected contribution of ad 𝑖 to the

welfare is larger than that of ad 𝑗 , or equivalently, ¯𝑓𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�) ≥
¯𝑓𝑗 (𝑏 𝑗 , 𝑎 𝑗 , �̃�). □

A.2 Proof of Lemma 2
Proof. Let

¯𝑓(𝑖 ) be the 𝑖-th order statistic (i.e., the 𝑖-th smallest

value) of { ¯𝑓𝑖 }𝑛𝑖=1
.

It is known that if a random variable 𝑋𝑖 follows𝑈 [0, 1], then the

𝑗-th order statistic of 𝑛 independent samples {𝑋𝑖 }𝑛𝑖=1
follows a Beta

distribution Beta( 𝑗, 𝑛− 𝑗 +1) with mean
𝑗

𝑛+1
. Each

¯𝑓𝑗 = (𝑏−𝑎)𝑋 𝑗 +𝑎
can be viewed as an affine transformation of 𝑋 𝑗 . So the expectation

of
¯𝑓( 𝑗 ) is:

E
[

¯𝑓( 𝑗 )
]
= (𝑏 − 𝑎) 𝑗

𝑛 + 1

+ 𝑎.

If we include the top𝑚 ads in �̄� , we have:

E


𝑛∑︁
𝑗=𝑛−𝑚+1

¯𝑓( 𝑗 )

 =
𝑛∑︁

𝑗=𝑛−𝑚+1

E
[

¯𝑓( 𝑗 )
]

=(𝑏 − 𝑎)𝑚(2𝑛 −𝑚 + 1)
2(𝑛 + 1) +𝑚𝑎. (7)

If we are allowed to include all ads in the first stage, we can still

obtain the optimal social welfare by setting𝑀 = 𝑁 :

E

𝑛∑︁
𝑗=1

¯𝑓( 𝑗 )

 =E

𝑛∑︁
𝑗=1

¯𝑓𝑗


=

𝑛∑︁
𝑗=1

E
[

¯𝑓𝑗
]

=
𝑛(𝑏 + 𝑎)

2

. (8)

Therefore, to guarantee an 𝛼 fraction of the optimal welfare, we

need to ensure that:

E


𝑛∑︁
𝑗=𝑛−𝑚+1

¯𝑓( 𝑗 )

 ≥ 𝛼 E

𝑛∑︁
𝑗=1

¯𝑓( 𝑗 )

 ,
which is equivalent to:

−(𝑏 − 𝑎)𝑚2 + 𝜂𝑚 − 𝜁 ≥ 0, (9)

where 𝜂 = (𝑏 − 𝑎) (2𝑛 + 1) + 𝑎(2𝑛 + 2) and 𝜁 = 𝛼𝑛(𝑛 + 1) (𝑏 + 𝑎).
Solving the quadratic inequality (9), we obtain:

𝑚 ≥
𝜂 −

√︁
𝜂2 − 4(𝑏 − 𝑎)𝜁
2(𝑏 − 𝑎) .

Now it suffices to show that the above inequality can be implied by

inequality (2), i.e.,

𝜂 −
√︃
𝜂2 − 4(𝑏 − 𝑎)𝜁 ≤ 𝑏

[
2𝑛 + 2 −

√
1 − 𝛼 (2𝑛 + 1)

]
.
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To prove the above inequality, note that:

𝜂 < (𝑏 − 𝑎) (2𝑛 + 2) + 𝑎(2𝑛 + 2) = 𝑏 (2𝑛 + 2)
𝜂 > (𝑏 − 𝑎) (2𝑛 + 1) + 𝑎(2𝑛 + 1) = 𝑏 (2𝑛 + 1),

and

4(𝑏 − 𝑎)𝜁 = 4𝛼 (𝑏 − 𝑎) (𝑏 + 𝑎)𝑛(𝑛 + 1) < 𝛼𝑏2 (2𝑛 + 1)2 .

Therefore,

𝜂 −
√︃
𝜂2 − 4(𝑏 − 𝑎)𝜁 ≤𝑏 (2𝑛 + 2) −

√︁
𝑏2 (2𝑛 + 1)2 − 𝛼𝑏2 (2𝑛 + 1)2

=𝑏 (2𝑛 + 2) − 𝑏 (2𝑛 + 1)
√

1 − 𝛼

=𝑏

[
2𝑛 + 2 −

√
1 − 𝛼 (2𝑛 + 1)

]
.

□

A.3 Proof of Lemma 3
The proof of Lemma 3 makes use of the following result:

Lemma 8 ([1, 3]). Let {𝑋𝑖 }𝑛𝑖=1
be 𝑛 i.i.d. random variables each

with mean 𝜇 and variance 𝜎2. The 𝑗-th order statistic 𝑋 ( 𝑗 ) satisfies:

E
[
𝑋 ( 𝑗 )

]
≤ 𝜇 + 𝜎

√︂
𝑗 − 1

𝑛 − 𝑗 + 1

.

Proof of Lemma 3. We consider the welfare loss for only includ-

ing the top𝑚 ads. According to Lemma 8, the loss can be bounded

as:

E

𝑛−𝑚∑︁
𝑗=1

¯𝑓( 𝑗 )

 =
𝑛−𝑚∑︁
𝑗=1

E
[

¯𝑓( 𝑗 )
]

≤(𝑛 −𝑚)𝜇 + 𝜎
𝑛−𝑚∑︁
𝑗=1

√︂
𝑗 − 1

𝑛 − 𝑗 + 1

.

Using the Taylor expansion of

√
𝑥 at 𝑥 = 1, one can easily verify

that

√
𝑥 ≤ 𝑥+1

2
for all 𝑥 ≥ 0. Plugging into the above equation

gives:

E

𝑛−𝑚∑︁
𝑗=1

¯𝑓( 𝑗 )

 ≤(𝑛 −𝑚)𝜇 + 𝜎𝑛
2

𝑛−𝑚∑︁
𝑗=1

1

𝑛 − 𝑗 + 1

≤(𝑛 −𝑚)𝜇 + 𝜎𝑛
2

𝑛−𝑚∑︁
𝑗=1

1

𝑚 + 1

=(𝑛 −𝑚)𝜇 + 𝜎𝑛(𝑛 −𝑚)
2(𝑚 + 1) .

Similarly, if we are allowed to include all ads in the first stage, we

can achieve the optimal welfare, which is:

E

𝑛∑︁
𝑗=1

¯𝑓( 𝑗 )

 =E

𝑛∑︁
𝑗=1

¯𝑓𝑗


=

𝑛∑︁
𝑗=1

E
[

¯𝑓𝑗
]

=𝑛𝜇.

To achieve an𝛼 fraction of the optimal welfare, we need to ensure

that the loss is no more than 1 − 𝛼 fraction of the optimal welfare,

i.e.,

(𝑛 −𝑚)𝜇 + 𝜎𝑛(𝑛 −𝑚)
2(𝑚 + 1) ≤ (1 − 𝛼)𝑛𝜇,

or equivalently,

−2𝜇𝑚2 + 𝜂𝑚 + 𝜁 ≤ 0,

where 𝜂 = 2𝛼𝑛𝜇 − 2𝜇 − 𝜎𝑛 and 𝜁 = 𝜎𝑛2 + 2𝛼𝑛𝜇. The solution to the

quadratic inequality is:

𝑚 ≥
𝜂 +

√︁
𝜂2 + 8𝜇𝜁

4𝜇
.

To prove the lemma, we need to show that inequality (3) implies

the above inequality, i.e.,

𝜂 +
√︁
𝜂2 + 8𝜇𝜁

4𝜇
<


𝛼𝑛 − 𝜎

2𝜇𝑛 +
√

2

4
(2𝑛 + 1)

√︃
𝜎
𝜇 if 𝜎 ≤ 2𝜇 ( 1

𝑛 + 𝛼)

−1 +
√

2

4
(2𝑛 + 1)

√︃
𝜎
𝜇 if 𝜎 > 2𝜇 ( 1

𝑛 + 𝛼)

Notice that

𝜂2 + 8𝜇𝜁 =(2𝛼𝑛𝜇 − 2𝜇 − 𝜎𝑛)2 + 8𝜇 (𝜎𝑛2 + 2𝛼𝑛𝜇)
=[(2𝛼𝜇 − 𝜎)𝑛 + 2𝜇]2 + 8𝜇𝜎𝑛2 + 8𝜇𝜎𝑛

<[(2𝛼𝜇 − 𝜎)𝑛 + 2𝜇]2 + 8𝜇𝜎

(
𝑛 + 1

2

)
2

<

[
| (2𝛼𝜇 − 𝜎)𝑛 + 2𝜇 | +

√︁
8𝜇𝜎

(
𝑛 + 1

2

)]
2

.

We now account for the cases where the term inside the absolute

value is either positive or negative.

• If (2𝛼𝜇 − 𝜎)𝑛 + 2𝜇 ≥ 0, we have:

𝜂 +
√︁
𝜂2 + 8𝜇𝜁

4𝜇
<

𝜂 + (2𝛼𝜇 − 𝜎)𝑛 + 2𝜇 + √
8𝜇𝜎

(
𝑛 + 1

2

)
4𝜇

=𝛼𝑛 − 𝜎

2𝜇
𝑛 +

√
2

4

(2𝑛 + 1)
√︂
𝜎

𝜇
.

• If (2𝛼𝜇 − 𝜎)𝑛 + 2𝜇 < 0, or equivalently, 𝜎 > 2𝜇 ( 1

𝑛 + 𝛼), we
derive the following results:

𝜂 +
√︁
𝜂2 + 8𝜇𝜁

4𝜇
<
𝜂 − [(2𝛼𝜇 − 𝜎)𝑛 + 2𝜇] + √

8𝜇𝜎 (𝑛 + 1

2
)

4𝜇

< −1 +
√

2

4

(2𝑛 + 1)
√︂
𝜎

𝜇
.

Therefore, in this case, we need to ensure

𝑚 ≥ −1 +
√

2

4

(2𝑛 + 1)
√︂
𝜎

𝜇
.

Combining these two cases, we obtain the following results:

𝑚 ≥

𝛼𝑛 − 𝜎

2𝜇𝑛 +
√

2

4
(2𝑛 + 1)

√︃
𝜎
𝜇 if 𝜎 ≤ 2𝜇 ( 1

𝑛 + 𝛼)

−1 +
√

2

4
(2𝑛 + 1)

√︃
𝜎
𝜇 if if 𝜎 > 2𝜇 ( 1

𝑛 + 𝛼)
.

□
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A.4 Proof of Lemma 4
Proof. Recall that the revenue optimization problem in the first

stage can be phrased as:

max

𝑀⊆𝑁
E

𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑀

𝑝𝑖𝑞𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑀 (𝒃, 𝒒)

}]
.

Combined with the definition of payment function 𝑝𝑖 , the optimiza-

tion problem can be rewritten as:

max

𝑀⊆𝑁
E

𝒂 |�̃�,𝑢 |�̃�


∑︁
𝑖∈𝑀

𝐾∑︁
𝑗=1

𝑠
( 𝑗+1)
𝑀

I
{
𝑠𝑖 = 𝑠

( 𝑗 )
𝑀

} ,
where 𝑠

( 𝑗 )
𝑀

denotes the 𝑗-th highest score in the ad set𝑀 . Note that

given 𝒂 and 𝑢, we have:∑︁
𝑖∈𝑀

𝐾∑︁
𝑗=1

𝑠
( 𝑗+1)
𝑀

I
{
𝑠𝑖 = 𝑠

( 𝑗 )
𝑀

}
=

𝐾∑︁
𝑗=1

𝑠
( 𝑗+1)
𝑀

=

𝐾+1∑︁
𝑗=1

𝑠
( 𝑗 )
𝑀

− 𝑠 (1)
𝑀

=
∑︁
𝑖∈𝑀

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀

}
−
∑︁
𝑖∈𝑀

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝1

𝑀

}
.

Then we obtain an alternative objective:

max

𝑀⊆𝑁
E

𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑀

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)
}
−
∑︁
𝑖∈𝑀

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]
.

□

A.5 Proof of Lemma 5
Proof. It suffices to show:

Rev(𝑀 |𝒃, �̃�, �̃�) =
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)
}]

−
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]

≥
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)
}]

−
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
}]

=
∑︁
𝑖∈𝑀

𝑟𝑖 (𝒃, �̃�, �̃�) .

Note that the actual revenue is the sum of scores from 𝑠
(2)
𝑀

to

𝑠
(𝐾+1)
𝑀

. Thus we have:∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)
}]

−
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]

=
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)
}
− 𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]

=
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)&𝑖 ∉ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]
.

For any ad 𝑖 in the selected set𝑀 ,

(1) if 𝑖 is originally in 𝑇𝑜𝑝𝐾+1

𝑁
(𝒃, 𝒒) −𝑇𝑜𝑝1

𝑁
(𝒃, 𝒒), then it must

also in the set 𝑇𝑜𝑝𝐾+1

𝑀
(𝒃, 𝒒) −𝑇𝑜𝑝1

𝑀
(𝒃, 𝒒);

(2) if 𝑖 is not in𝑇𝑜𝑝𝐾+1

𝑁
(𝒃, 𝒒) −𝑇𝑜𝑝1

𝑁
(𝒃, 𝒒), it may still be in the

set 𝑇𝑜𝑝𝐾+1

𝑀
(𝒃, 𝒒) −𝑇𝑜𝑝1

𝑁
(𝒃, 𝒒).

Then we have:∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)&𝑖 ∉ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]

≥
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)&𝑖 ∉ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
}]

=
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)
}]

−
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
}]

=
∑︁
𝑖∈𝑀

𝑟𝑖 (𝒃, �̃�, �̃�) .

Then we complete our proof. □

A.6 Proof of Lemma 6
Proof. Let

¯𝑓
(𝐾+1)
(𝑖 ) be the 𝑖-th order statistic, that is, the 𝑖-th

smallest value of { ¯𝑓
(𝐾+1)
𝑖

}𝑛
𝑖=1

, and
¯𝑓
(1)
(𝑖 ) be the 𝑖-th order statistic

of { ¯𝑓
(1)
𝑖

}𝑛
𝑖=1

.

It is known that if a random variable 𝑋𝑖 follows 𝑈 [0, 1], then
the 𝑗-th order statistic of 𝑛 independent samples {𝑋𝑖 }𝑛𝑖=1

follows a

Beta distribution Beta( 𝑗, 𝑛 − 𝑗 + 1) with mean
𝑗

𝑛+1
. Each

¯𝑓
(𝐾+1)
𝑗

=

(𝑏 (𝐾+1) − 𝑎 (𝐾+1) )𝑋 𝑗 + 𝑎 (𝐾+1)
can be viewed as an affine transfor-

mation of 𝑋 𝑗 . So the expectation of
¯𝑓
(𝐾+1)
( 𝑗 ) is:

E
[

¯𝑓
(𝐾+1)
( 𝑗 )

]
= (𝑏 (𝐾+1) − 𝑎 (𝐾+1) ) 𝑗

𝑛 + 1

+ 𝑎 (𝐾+1) .

Similarly, the expectation of
¯𝑓
(1)
( 𝑗 ) is:

E
[

¯𝑓
(1)
( 𝑗 )

]
= (𝑏 (1) − 𝑎 (1) ) 𝑗

𝑛 + 1

+ 𝑎 (1) .

If we include top𝑚 ads in �̄� , we have:

E


𝑛∑︁
𝑗=𝑛−𝑚+1

𝑟 ( 𝑗 )

 =E


𝑛∑︁
𝑗=𝑛−𝑚+1

¯𝑓
(𝐾+1)
( 𝑗 ) − ¯𝑓

(1)
( 𝑗 )


=

𝑛∑︁
𝑗=𝑛−𝑚+1

E
[

¯𝑓
(𝐾+1)
( 𝑗 )

]
−

𝑛∑︁
𝑗=𝑛−𝑚+1

E
[

¯𝑓
(1)
( 𝑗 )

]
=(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) )𝑚(2𝑛 −𝑚 + 1)

2(𝑛 + 1)
+𝑚(𝑎 (𝐾+1) − 𝑎 (1) ). (10)
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If we are allowed to include all ads in the first stage, we can obtain

the optimal revenue by setting𝑀 = 𝑁 :

E

𝑛∑︁
𝑗=1

𝑟 ( 𝑗 )


=E


𝑛∑︁
𝑗=1

¯𝑓
(𝐾+1)
( 𝑗 ) − ¯𝑓

(1)
( 𝑗 )


=

𝑛∑︁
𝑗=1

E
[

¯𝑓
(𝐾+1)
( 𝑗 )

]
−

𝑛∑︁
𝑗=1

E
[

¯𝑓
(1)
( 𝑗 )

]
=
𝑛(𝑏 (𝐾+1) + 𝑎 (𝐾+1) − 𝑏 (1) − 𝑎 (1) )

2

.

Therefore, to guarantee an 𝛼 fraction of the optimal welfare, we

need to ensure that:

E


𝑛∑︁
𝑗=𝑛−𝑚+1

𝑟 ( 𝑗 )

 ≥ 𝛼 E

𝑛∑︁
𝑗=1

𝑟 ( 𝑗 )

 ,
which is equivalent to:

−(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) )𝑚2 + 𝜂𝑚 − 𝜁 ≥ 0, (11)

where 𝜂 = (𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) ) (2𝑛 + 1) + (𝑎 (𝐾+1) −
𝑎 (1) ) (2𝑛 + 2) and 𝜁 = 𝛼𝑛(𝑛 + 1) (𝑏 (𝐾+1) + 𝑎 (𝐾+1) − 𝑏 (1) − 𝑎 (1) ).
Solving the quadratic inequality (11), we obtain:

𝑚 ≥ 𝜂 −
√︁
𝜂2 − 4(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) )𝜁
2(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) )

.

Note that:

𝜂 <(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) ) (2𝑛 + 2) + (𝑎 (𝐾+1) − 𝑎 (1) ) (2𝑛 + 2)

=(𝑏 (𝐾+1) − 𝑏 (1) ) (2𝑛 + 2)

𝜂 >(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) ) (2𝑛 + 1) + (𝑎 (𝐾+1) − 𝑎 (1) ) (2𝑛 + 1)

=(𝑏 (𝐾+1) − 𝑏 (1) ) (2𝑛 + 1),
and

4(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) )𝜁

=4𝛼

[
𝑏 (𝐾+1) − 𝑎 (𝐾+1) − (𝑎 (𝐾+1) − 𝑎 (1) )

]
·
[
𝑏 (𝐾+1) − 𝑎 (𝐾+1)

+(𝑎 (𝐾+1) − 𝑎 (1) )
]
· 𝑛(𝑛 + 1)

<𝛼

[
𝑏 (𝐾+1) − 𝑏 (1)

]
2

· (2𝑛 + 1)2 .

Therefore,

𝜂 −
√︃
𝜂2 − 4(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) )𝜁

≤(𝑏 (𝐾+1) − 𝑏 (1) ) (2𝑛 + 2) − (𝑏 (𝐾+1) − 𝑏 (1) ) (2𝑛 + 1)
√

1 − 𝛼

=(𝑏 (𝐾+1) − 𝑏 (1) )
[
2𝑛 + 2 −

√
1 − 𝛼 (2𝑛 + 1)

]
.

Then we obtain:

𝑚 ≥ 𝑏 (𝐾+1) − 𝑏 (1)

2(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) )

[
2𝑛 + 2 −

√
1 − 𝛼 (2𝑛 + 1)

]
,

which proves the lemma. □

A.7 Proof of Lemma 7
Proof. The revenue upper bound can be achieved by allowing

to include all ads in the first stage, that is:

E

𝑛∑︁
𝑗=1

𝑟 ( 𝑗 )

 =
𝑛∑︁
𝑗=1

E
[

¯𝑓
(𝐾+1)
( 𝑗 )

]
−

𝑛∑︁
𝑗=1

E
[

¯𝑓
(1)
( 𝑗 )

]
=

𝑛∑︁
𝑗=1

E
[

¯𝑓
(𝐾+1)
𝑗

]
−

𝑛∑︁
𝑗=1

E
[

¯𝑓
(1)
𝑗

]
=𝑛(𝜇 (𝐾+1) − 𝜇 (1) ).

To achieve an 𝛼 fraction of the optimal revenue, we need to ensure

that the actual revenue of selecting set𝑀 is greater than 𝛼 fraction

of the optimal revenue, that is:

Rev(𝑀 |𝒃, �̃�, �̃�) ≥ 𝛼 ©«
𝑛∑︁
𝑗=1

E
[

¯𝑓
(𝐾+1)
𝑗

]
−

𝑛∑︁
𝑗=1

E
[

¯𝑓
(1)
𝑗

]ª®¬ ,
or equivalently, we ensure the revenue loss is less than 1−𝛼 fraction

of the optimal revenue.

According to Lemma 5, we have:

Rev(𝑀 |𝒃, �̃�, �̃�) ≥
∑︁
𝑖∈𝑀

𝑟𝑖 (𝒃, �̃�, �̃�)

=
∑︁
𝑖∈𝑀

𝑓
(𝐾+1)
𝑖

−
∑︁
𝑖∈𝑀

𝑓
(1)
𝑖

≥
∑︁
𝑖∈𝑀

𝑓
(𝐾+1)
𝑖

−
∑︁
𝑖∈𝑁

𝑓
(1)
𝑖

.

Then the revenue loss is bounded by:∑︁
𝑖∈𝑁−𝑀

𝑟𝑖 (𝒃, �̃�, �̃�) =
∑︁

𝑖∈𝑁−𝑀
𝑓
(𝐾+1)
𝑖

−
∑︁

𝑖∈𝑁−𝑀
𝑓
(1)
𝑖

≤
∑︁

𝑖∈𝑁−𝑀
𝑓
(𝐾+1)
𝑖

=E

𝑛−𝑚∑︁
𝑗=1

𝑓
(𝐾+1)
( 𝑗 )

 .
Therefore, it suffices to show that:

E

𝑛−𝑚∑︁
𝑗=1

𝑓
(𝐾+1)
( 𝑗 )

 ≤ (1 − 𝛼) ©«
𝑛∑︁
𝑗=1

E
[

¯𝑓
(𝐾+1)
𝑗

]
−

𝑛∑︁
𝑗=1

E
[

¯𝑓
(1)
𝑗

]ª®¬ .
According to Lemma 8, we have:

E

𝑛−𝑚∑︁
𝑗=1

𝑓
(𝐾+1)
( 𝑗 )

 =
𝑛−𝑚∑︁
𝑗=1

E
[
𝑓
(𝐾+1)
( 𝑗 )

]
≤(𝑛 −𝑚)𝜇 (𝐾+1) + 𝜎 (𝐾+1)

𝑛−𝑚∑︁
𝑗=1

√︂
𝑗 − 1

𝑛 − 𝑗 + 1

.
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Using the Taylor expansion of

√
𝑥 at 𝑥 = 1, we have

√
𝑥 ≤ 𝑥+1

2
for

all 𝑥 ≥ 0. Plugging into the above equation gives:

E

𝑛−𝑚∑︁
𝑗=1

𝑓
(𝐾+1)
( 𝑗 )

 ≤(𝑛 −𝑚)𝜇 (𝐾+1) +
𝑛𝜎 (𝐾+1)

2

𝑛−𝑚∑︁
𝑗=1

1

𝑛 − 𝑗 + 1

≤(𝑛 −𝑚)𝜇 (𝐾+1) +
𝑛𝜎 (𝐾+1)

2

𝑛−𝑚∑︁
𝑗=1

1

𝑚 + 1

=(𝑛 −𝑚)𝜇 (𝐾+1) +
𝑛𝜎 (𝐾+1) (𝑛 −𝑚)

2(𝑚 + 1)
Then we need to ensure:

(𝑛 −𝑚)𝜇 (𝐾+1) +
𝑛𝜎 (𝐾+1) (𝑛 −𝑚)

2(𝑚 + 1) ≤ (1 − 𝛼)𝑛(𝜇 (𝐾+1) − 𝜇 (1) ),

or equivalently,

−2𝜇 (𝐾+1)𝑚
2 + 𝜂𝑚 + 𝜒 ≤ 0.

where 𝜂 = 2𝛼𝑛𝜇 (𝐾+1) − 2𝜇 (𝐾+1) − 𝜎 (𝐾+1)𝑛 + 2𝑛(1 − 𝛼)𝜇 (1) and
𝜒 = 𝜎 (𝐾+1)𝑛

2 + 2𝛼𝜇 (𝐾+1)𝑛 + 2𝑛(1 − 𝛼)𝜇 (1) . The solution to the

quadratic equation is:

𝑚 ≥
𝜂 +

√︃
𝜂2 + 8𝜇 (𝐾+1) 𝜒

4𝜇 (𝐾+1)
.

To prove the lemma, we need to show that these four inequalities

in lemma 7 implies the above inequality, i.e.,

• if 𝜎 (𝐾+1) ≤ 2𝛼𝜇 (𝐾+1) , 𝜇 (1) ≤ 1

𝑛 (1−𝛼 ) 𝜇 (𝐾+1) ,

𝜂 +
√︃
𝜂2 + 8𝜇 (𝐾+1) 𝜒

4𝜇 (𝐾+1)
≤𝛼𝑛 −

𝜎 (𝐾+1)
2𝜇 (𝐾+1)

𝑛 +
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)

• if 𝜎 (𝐾+1) > 2𝛼𝜇 (𝐾+1) , 𝜇 (1) ≤ 1

𝑛 (1−𝛼 ) 𝜇 (𝐾+1) ,

𝜂 +
√︃
𝜂2 + 8𝜇 (𝐾+1) 𝜒

4𝜇 (𝐾+1)
≤
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)

• if 𝜎 (𝐾+1) ≤ 2𝛼𝜇 (𝐾+1) , 𝜇 (1) >
1

𝑛 (1−𝛼 ) 𝜇 (𝐾+1) ,

𝜂 +
√︃
𝜂2 + 8𝜇 (𝐾+1) 𝜒

4𝜇 (𝐾+1)
≤𝛼𝑛 − 1 −

𝜎 (𝐾+1)
2𝜇 (𝐾+1)

𝑛 +
𝜇 (1)
𝜇 (𝐾+1)

(1 − 𝛼)𝑛

+
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)

• if 𝜎 (𝐾+1) > 2𝛼𝜇 (𝐾+1) , 𝜇 (1) >
1

𝑛 (1−𝛼 ) 𝜇 (𝐾+1) ,

𝜂 +
√︃
𝜂2 + 8𝜇 (𝐾+1) 𝜒

4𝜇 (𝐾+1)
≤ − 1 +

𝜇 (1)
𝜇 (𝐾+1)

(1 − 𝛼)𝑛

+
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)

Notice that

𝜂2 + 8𝜇 (𝐾+1) 𝜒

=(2𝛼𝑛𝜇 (𝐾+1) − 2𝜇 (𝐾+1) − 𝜎 (𝐾+1)𝑛 + 2𝑛(1 − 𝛼)𝜇 (1) )2

+ 8𝜇 (𝐾+1) [𝜎 (𝐾+1)𝑛
2 + 2𝛼𝑛𝜇 (𝐾+1) + 2𝑛(1 − 𝛼)𝜇 (1) ]

=[(2𝛼𝜇 (𝐾+1) − 𝜎 (𝐾+1) )𝑛 − (2𝜇 (𝐾+1) − 2𝑛(1 − 𝛼)𝜇 (1) )]2

+ 8𝜇 (𝐾+1)𝜎 (𝐾+1)𝑛
2 + 8𝜇 (𝐾+1)𝜎 (𝐾+1)𝑛

+ (8𝑛𝛼𝜇 (𝐾+1) − 4𝑛𝜎 (𝐾+1) + 8𝜇 (𝐾+1) ) (1 − 𝛼)2𝑛𝜇 (1)
<[|2𝛼𝜇 (𝐾+1) − 𝜎 (𝐾+1) |𝑛 + |2𝜇 (𝐾+1) − 2𝑛(1 − 𝛼)𝜇 (1) |]2

+ 8𝜇 (𝐾+1)𝜎 (𝐾+1) (𝑛 +
1

2

)2 + 16𝑛𝜇 (𝐾+1) (𝑛𝛼 + 1) (1 − 𝛼)𝜇 (1)
<
[
|2𝛼𝜇 (𝐾+1) − 𝜎 (𝐾+1) |𝑛 + |2𝜇 (𝐾+1) − 2𝑛(1 − 𝛼)𝜇 (1) |

+
√︁

8𝜇 (𝐾+1)𝜎 (𝐾+1) (𝑛 +
1

2

) +
√︃

16𝑛𝜇 (𝐾+1) (𝑛𝛼 + 1) (1 − 𝛼)𝜇 (1)
]

2

.

We now discuss the following four scenarios:

• Both terms are positive, that is, 𝜎 (𝐾+1) ≤ 2𝛼𝜇 (𝐾+1) and

𝜇 (1) ≤ 1

𝑛 (1−𝛼 ) 𝜇 (𝐾+1) , we have:

𝜂 +
√︃
𝜂2 + 8𝜇 (𝐾+1) 𝜒

4𝜇 (𝐾+1)
<𝛼𝑛 −

𝜎 (𝐾+1)
2𝜇 (𝐾+1)

𝑛 +
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)

• The first term is negative and the second term is positive, i.e.,

𝜎 (𝐾+1) > 2𝛼𝜇 (𝐾+1) and 𝜇 (1) ≤ 1

𝑛 (1−𝛼 ) 𝜇 (𝐾+1) , the inequal-
ity becomes:

𝜂 +
√︃
𝜂2 + 8𝜇 (𝐾+1) 𝜒

4𝜇 (𝐾+1)
<

√
2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)
.

So in this case, we need to ensure:

𝑚 ≥
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)
.
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• The first term is positive and the second term is negative, i.e.,

𝜎 (𝐾+1) ≤ 2𝛼𝜇 (𝐾+1) and 𝜇 (1) > 1

𝑛 (1−𝛼 ) 𝜇 (𝐾+1) , the inequal-
ity becomes:

𝜂 +
√︃
𝜂2 + 8𝜇 (𝐾+1) 𝜒

4𝜇 (𝐾+1)
<𝛼𝑛 − 1 −

𝜎 (𝐾+1)
2𝜇 (𝐾+1)

𝑛 +
𝜇 (1)
𝜇 (𝐾+1)

(1 − 𝛼)𝑛

+
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)
.

In this case, we need to ensure:

𝑚 ≥𝛼𝑛 − 1 −
𝜎 (𝐾+1)
2𝜇 (𝐾+1)

𝑛 +
𝜇 (1)
𝜇 (𝐾+1)

(1 − 𝛼)𝑛

+
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)
.

• Both items are negative, i.e., 𝜎 (𝐾+1) > 2𝛼𝜇 (𝐾+1) and 𝜇 (1) >
1

𝑛 (1−𝛼 ) 𝜇 (𝐾+1) , the inequality becomes:

𝜂 +
√︃
𝜂2 + 8𝜇 (𝐾+1) 𝜒

4𝜇 (𝐾+1)
< − 1 +

𝜇 (1)
𝜇 (𝐾+1)

(1 − 𝛼)𝑛

+
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)
.

In this case, we need to ensure

𝑚 ≥ − 1 +
𝜇 (1)
𝜇 (𝐾+1)

(1 − 𝛼)𝑛 +
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)
.

Overall, we obtain the following results:

• when 𝜎 (𝐾+1) ≤ 2𝛼𝜇 (𝐾+1) , 𝜇 (1) ≤ 1

𝑛 (1−𝛼 ) 𝜇 (𝐾+1) ,

𝑚 ≥𝛼𝑛 −
𝜎 (𝐾+1)
2𝜇 (𝐾+1)

𝑛 +
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)
;

• when 𝜎 (𝐾+1) > 2𝛼𝜇 (𝐾+1) , 𝜇 (1) ≤ 1

𝑛 (1−𝛼 ) 𝜇 (𝐾+1) ,

𝑚 ≥
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)
;

• when 𝜎 (𝐾+1) ≤ 2𝛼𝜇 (𝐾+1) , 𝜇 (1) >
1

𝑛 (1−𝛼 ) 𝜇 (𝐾+1) ,

𝑚 ≥𝛼𝑛 − 1 −
𝜎 (𝐾+1)
2𝜇 (𝐾+1)

𝑛 +
𝜇 (1)
𝜇 (𝐾+1)

(1 − 𝛼)𝑛

+
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)
;

• when 𝜎 (𝐾+1) > 2𝛼𝜇 (𝐾+1) , 𝜇 (1) >
1

𝑛 (1−𝛼 ) 𝜇 (𝐾+1) ,

𝑚 ≥ − 1 +
𝜇 (1)
𝜇 (𝐾+1)

(1 − 𝛼)𝑛 +
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝑛𝜇 (1)

𝜇 (𝐾+1)
.

This concludes the proof.

□

B Additional Experiment Details
B.1 Training Data For CTR Model
It’s worth noting that directly using the impression log and click

log as training data for M𝑟
isn’t feasible due to the click log’s

limited 1,289 records compared to the impression log’s 1.8 million

records. To address this imbalance between click and impression

data, we partition the impression data into click and non-click data.

We treat every impression and click record as coordinates in a high-

dimensional space. Then, we measure the distance between each

impression point and its nearest click point. Our rationale is that a

closer distance should indicate a higher likelihood of the impression

being clicked. In essence, we partition the impression data based on

the minimum Euclidean distance between each impression point

and its nearest click point. The division ratio is set at 1 : 6.

B.2 Experimental Parameters
Both synthetic and industrial data are split into training and test sets

with an 8:2 ratio. The neural network structure uses a simple multi-

layer perception (MLP) structure with ReLU [10] as the activation

function, and all methods share this network structure. We use

the Adam optimizer [14] to update the parameters of the neural

network. We map discrete features into continuous spaces using

embedding with an embedding size of 64. All the experiments are

run on a Linux machine with NVIDIA GPU cores.
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