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Nowadays, optimized cost-per-click (OCPC) has been widely adopted in online advertising. In OCPC, the
advertiser sets an expected cost-per-conversion and pays per click, while the platform automatically adjusts
the bid on each click to meet advertiser’s constraint. Existing bidding methods are based on feedback control,
adjusting bids to keep the current cost-per-conversion close to the expected cost-per-conversion to avoid
compensation. However, they overlook the conversion lag phenomenon: There always exists a time interval
between the ad’s click time and conversion time. This interval makes existing methods overestimate the
cost-per-conversion and results in over conservative bidding policies which finally hurts the revenue. To
address the issue, this article proposes a novel bidding method, Bidding with Delayed Conversions (Bid-DC)
which predicts the conversion probability of the clicked ads and used it to adjust the cost-per-conversion
values. To ensure the bidding model can satisfy the advertiser’s constraint, constrained Markov decision
process (CMDP) is adapted to automatically learn the optimal parameters from the log data. Both online and
offline experiments demonstrate that Bid-DC outperforms the state-of-the-art baselines in terms of improving
revenue. Empirical analysis also showed Bid-DC can accurately estimate the cost-per-conversion and make
more stable bids.
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1 Introduction
Nowadays, optimized cost-per-click (OCPC) has become one of the major pricing methods
in online advertising. Studies have shown that OCPC can achieve a precise matching between
the bid and the traffic quality of page view requests, and therefore improve advertising efficiency
[30, 32, 88]. Different from the traditional pricing methods such as cost-per-click (CPC) [38, 47]
and cost-per-mille (CPM) [69, 71], OCPC requires the advertisers first to set an expected cost-
per-conversion and a constraint (e.g., ensuring that the cost-per-conversion1 stays within a specific
range, e.g., ≤ 120%× the expected cost-per-conversion), and then pay per click. The platform is
responsible to automatically bid on each click based on the user’s clicks and conversions to meet
the advertiser’s constraint. Figure 1 shows the workflow of OCPC.2 The OCPC process can be
divided into three periods, the preparing period, the advertising period and the end of advertising.
In the preparation period, the platform will prepare models and parameters for advertising period.
During the advertising period, the platform will display ads and adjust bids accordingly. Finally, at
the end of advertising, the platform checks whether to compensate to the advertiser based on the
final cost-per-conversion and the expected cost-per-conversion. The advertising period has two
processes: the online bidding process and the feedback updating process. Those processes can be
described as follows (the following numbers correspond to the numbers in Figure 1).

(1) During the preparing period, the advertiser negotiates with the platform to set the expected
cost-per-conversion (i.e., how much the advertiser expects to pay for a conversion.), the
advertising period (i.e., the start and end time of the ad campaign) and the conversion goal (i.e.,
which user’s action will be considered as a conversion, e.g., user registration or purchase).

(2) The platform will use the log data to train the CTR/CVR model [55, 56] and the bidding model
[3] offline. The CTR/CVR model acts as a transformer, converting the bidding model’s bids
for conversions into bids for impressions by multiplying by predicted Pctr and Pcvr and the
bidding model will adjust its bids for conversions based on the current cost-per-conversion
and the expected cost-per-conversion to maximize the platform’s revenue while meet the
advertiser’s constraint.

(3) When a user enters the app, the online bidding process starts.
(4) The platform will use the bidding model (decide the bid on the conversions) as well as

the CTR/CVR model (transform the bid on conversions to the bid on impressions) to form
the bids.

(5) All ads will be ranked based on their bids, then present them to the user (i.e., Ads with higher
bids will display in better positions).

(6) If the user clicks an ad, the platform will charge the corresponding advertiser by its bid.
(7) If the user converts, the platform will record the conversions.

1The total costs of the advertiser divided by the number of conventions.
2The strategy has been commonly adopted in real Ads platforms. For example: https://developer.Huawei.com/consumer/en/
doc/promotion/ocpc-0000001310577317
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Fig. 1. The workflow of OCPC.

(8) For every 15 minutes, the feedback updating process starts. The platform will use the current
total charges divides the current total received conversion numbers to estimate the current
cost-per-conversion (i.e., how much does it currently cost the advertiser for a conversion?).

(9) Then the current cost-per-conversion and the expected cost-per-conversion (also with other
factors, like time) will be used to update the state of the bidding model.

(10) Finally, at the end of the advertising period, the advertiser will calculate the final cost-per-
conversion based on the total charge the total received conversions.

(11) The platformwill checkwhether it breaks the constraint based on the final cost-per-conversion.
(12) If the platform breaks it, the platform will compensate to the advertiser.

Bidding (process 4 of Figure 1) is one of the most important tasks within the advertising period
for both the advertisers and the platform. As for the advertisers, they want to improve their Return
on investment (ROI) [82, 83]. As for the platform, it aims to maximize its revenue while avoiding
breaking advertiser’s constraints [59, 81]. This article stands for the platform’s perspective, focusing
on maximizing revenue while avoiding breaking advertiser’s constraints. Bidding is not a trivial
task. On one hand, if the platform bids too high, it will result in excessive charges to the advertisers
and even violate the constraint, leading to the platform compensation. On the other hand, if the
platform bids too low, it will decrease the platform’s income on each click, lower the ranking and
exposure possibility [11], and eventually decrease the likelihood of being clicked and converted. An
ideal bidding policy should not only maximize the platform revenue but also ensure the advertisers’
constraint [50, 51, 74].

To avoid compensation, most existing bidding methods are developed based on the idea of
feedback control: bid high if the current cost-per-conversion is lower than the expected cost-
per-conversion, while bid low if the current cost-per-conversion is higher than the expected
cost-per-conversion. For example, the widely adopted proportional-integral-derivative (PID)
controller [6] and the waterlevel (WL)-based controller [19] make use of the difference be-
tween the current cost-per-conversion and the expected cost-per-conversion to adjust the bid.
At each time step, to ensure the advertiser’s constraint, the feedback controller tries to bring
the cost-per-conversion closer to the expected cost-per-conversion, by calculating the deviation
between them. Reinforcement learning (RL) has also been utilized for learning the bidding
models. For example, RSDRL [59] sets a fixed threshold on the ROI. When the current adver-
tiser’s ROI exceeds the threshold, the model will lower the bid (i.e., by forcing the model bids
twice and taking the lower one) to prevent the bid from exceeding the advertiser’s constraint. See
also [68, 83].
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Though effective and have been widely adopted in OCPC platforms, existing methods still
have much room to improve because they overlook an important phenomenon in OCPC: delayed
conversions. In OCPC, after an ad being clicked by a user, the platform immediately charges the
advertiser for the click. Then after clicking, the user has two choices: not convert (e.g., abandon
after the click) or convert. The platforms need to record the conversion signals to estimate the
cost-per-conversion. However, the conversion signals are inevitably delayed: the platform needs to
wait a period of time (often not very short) to get a success conversion signal, or waits until the
end of advertising period expires to know that it is not converted.

Existing methods assume that an ad click is not converted if no success conversion signal was
received (i.e., in process 8 of Figure 1, platform only considers the received conversions), which
inevitably results in overestimated cost-per-conversion values. The phenomenon is easy to explain:
suppose that at time C , the advertiser has been charged based on the user’s clicks and bids. Some of
the payed clicks have been converted while others not. The cost-per-conversion at time C , therefore,
is estimated as the total charges before C divided by the number of conversions received until
C . Please note that those clicks occurred before C while converted after C (delayed conversions)
are considered as not converted, making the estimated cost-per-conversion larger than its real
value. To make the cost-per-conversion satisfy the constraint and avoid compensation, the bidding
algorithms have to decrease the bids, which further hurts the ranking and exposure of the ad, and
eventually decreases the future clicks and conversions.

Figure 4(a) shows the estimated cost-per-conversion curve as well as the bidding curve by PID,
for an ad from a real industrial OCPC platform. The curves show that PID controlled the estimated
cost-per-conversion around the line of expected conversion value (denoted as “expected cost-per-
conversion”). However, if we adjust the estimated cost-per-conversion values by counting in the
delayed conversions (i.e., at the time C , the number of conversions is calculated as the sum of received
conversions before C , and the delayed conversions that clicked before C but converted after C ), we
found that the adjusted cost-per-conversion curve (denoted as “true cost-per-conversion” in the
figure) is much lower, indicating the problem of overestimating cost-per-conversion in existing
methods. The over estimated cost-per-conversion results in lower bid. Moreover, as shown in
Figure 1 process 3, the ads will be sorted based on the bids, therefore a lower bid results in a
lower ad rank, which will decrease ad’s exposure and, consequently, reduce the likelihood of user
conversions.3 Therefore, the delayed conversion issue reduces both the platform’s revenue and
advertiser’s conversion numbers. If the platform knew the future, it could safely increase the bid
to boost the delivery of this ad, and then wait for the upcoming conversions to lower the real
cost-per-conversion to meet the constraint. The challenge is that the platform cannot know how
many delayed conversions will happen in the future in real world.

Moreover, existing bidding methods require many hyper-parameters to be determined which are
crucial for their bidding performance. Taking the fixed threshold in RSDRL [59] as an example, this
threshold denotes our optimism about the future. A low threshold means we believe there will be
few conversions in future, therefore, we will lower the bid to avoid compensation even the current
cost-per-conversion is slightly higher than the target and vice versa. Different ads have different
conversion goals, as Figure 2 shows, the optimal thresholds4 for different ads are different. Such
phenomenon indicates that to ensure the bidding performance of each ad, we need to manually set
the optimal threshold for each ad, which requires a considerable amount of effort.

3An ad requires exposure before it can lead to a conversion.
4From the perspective of the platforms, the optimal threshold means the threshold that maximizes the platform’s revenue
while avoiding any compensation.
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Fig. 2. The distribution of optimal threshold values over 80 advertisers randomly selected in an OCPC
platform. The threshold values are normalized for avoiding privacy issues.

To address these issues, in this article, we propose a novel bidding model tailored for OCPC
where each bid is estimated not only based on the observed clicks, bids, and conversions, but also
the prediction of the delayed conversions. To maximize the platform revenue and avoid the risk
of violating the advertiser’s constraint, Constrained Markov Decision Process (CMDP) and
constrained RL [13, 14, 23, 66, 73] are adapted to automatically learning the optimal parameters
from the data without any human effort. In this way, the bidding model can automatically enhance
the revenue while avoid breaking the constraint. Specifically, by formalizing the distribution of
the delayed conversion time as an exponential distribution and given the time the click has past,
the model first predicts the probability of receiving future conversion of a clicked ad. Based on
this, CMDP formulates the bidding process as a sequential decision-making, where the users and
platform correspond to the environment and agent, respectively. At each time step, the agent selects
an action which corresponds to bid price for the click, and the reward and constraint value are
calculated based on the user’s feedback. Analysis shows that Bidding with Delayed Conversions
(Bid-DC) has the ability of enhancing the future chances of ad exposures, increasing the bid stability
and preventing high fluctuations, and being adapted for other conversion goals.

The major contributions of the article can be summarized into three aspects:

(1) We analyzed the delayed conversions in OCPC, and found that current bidding methods
(e.g., PID) often overestimate the cost-per-conversion values, resulting in lower bids and
finally hurting the platform revenue and future exposure of the ads. Moreover, to ensure
their performance on each ad, we need to manually set the optimal hyper-parameters for
each ad, which requires a considerable amount of effort.

(2) We propose a novel bidding model called Bid-DC to deal with the issue, which makes more
accurate bids by taking the prediction of future conversions into consideration, and utilizes
the constraint RL framework to automatically learn the optimal parameters from the data
without any human effort.

(3) We conduct both online and offline experiments on Bid-DC. The experimental results show
that Bid-DC can effectively enhance the platform revenue while still avoiding the compensa-
tion. Empirical analysis also showed that Bid-DC improved the bidding stability.

ACM Transactions on Information Systems, Vol. 43, No. 2, Article 47. Publication date: January 2025.
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2 Literature Review
This section reviews the literature related to the research topic, the bidding methods in OCPC and
the constraint RL.

2.1 OCPC and the Bidding Methods in OCPC
As one of the most important step in Internet advertising, real-time-bidding has attracted much
research effort in recent years [12, 78–80]. For example, Yang et al. [74] convert the bidding problem
into a linear programming (LP) problem and leverage the primal-dual method to derive the
optimal bidding strategy. Arapakis et al. [3] propose a novel auction format based on a pay-per-
attention scheme which can inherit the desirable properties (strategy-proofness and efficiency).
RL has also been adapted to generate bids [46, 70, 86]. Zhao et al. [85] propose a robust Markov
decision process model at hour-aggregation level to deal with the stochastic and complex bidding
environment. Mou et al. [48] propose a sustainable online RL framework to avoid the problem of
inconsistency between online and offline. He et al. [27] unify the constrained bidding formulation
and propose an RL method to dynamically adjust parameters to achieve the optimal bid.

To meet the advertisers’ diverse needs, the advertising platforms have developed multiple pricing
methods, including CPM for brand promotions, CPC and cost-per-action (CPA) for immediate
increasing profits [4, 49]. Different from these traditional pricing methods where the bids are fixed,
OCPC is a type of pricing method where the bid is automatically determined based on the estimated
cost-per-conversion [43, 88]. As one of the most important problems in OCPC, bid optimization
has attracted a growing body of research efforts [65, 75]. The existing bidding methods tailored for
OCPC bidding problem can be categorized into three groups:

—Feedback control methods are standard methods in the bid optimization problem. Their core
idea is setting the expected cost-per-conversion as the reference and adjusts bids based on
the difference between the current cost-per-conversion and the reference, thereby keeping
the current cost-per-conversion close to the reference to avoid compensation. For example,
PID controller [74] uses proportional, integral and derivative terms which are all linear
combinations of the difference to combine the bid, while the WL controller [19] only uses
the proportional term. Despite their success, the feedback control methods have several
drawbacks. First, they fail to capture the non-linear relationship between the difference and
the bid, which is sub-optimal for the platform [8]. Second, as mentioned above, they overlook
the delayed conversions which hurt their performance. Third, they need to determine several
hyper-parameters, e.g., the proportional term’s gain factor, which requires much effort [82].

—Model based RL bidding methods can capture non-linear relationships and learn better policies
than the linear approaches [8], such as the feedback controller. Their core idea is to model
the bidding process as a Markov Decision Process and use RL to train the bidding policy in a
simulated environment [27]. For example, RSDRL [59] employs distributional RL methods IQN
[17] to learn the optimal policy with a fixed ROI threshold to avoid compensation. Similarly,
USCB [27] uses DDPG [45] to learn the policy and introduces a hyper-parameter to control
the severity of penalty when policy exceeds the constraint. Although they can capture the
non-linear relationships between the difference and the bid, they cannot address the other
two disadvantages of the feedback control methods, because they require hyper-parameters
to adjust the penalty and also overlook the delay feedback problem.

—Offline RL bidding methods train the policy directly from log data, eliminating the effort of
building a simulated environment. For example, TEE [42] employs IQL [40], CQL [41] to train
the bidding policy from the log data and uses Parameter Space Noise [53] to improve the
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enhance data quality. However, they still require the determination of the hyper-parameters
and cannot address the overestimation problem.

2.2 Constraint RL
One important characteristic of OCPC is the cost-per-conversion constraint (i.e., at the end of the
advertising period, the cost-per-conversion cannot higher than the expected cost-per-conversion),
which poses new difficulties in bidding [23]. From the platform’s perspective, it aims to maximize
its own revenue while also preventing breaking the constraint. Such problem formulation exactly
corresponds to the form of constraint RL [26, 35]. Based on the CMDP, the common constraint RL
problem can be formulate as:

max
c∈Π

�' (c) B .C . �� (c) ≤ 0,

where �' (c) denotes the cumulative reward of policy c (i.e., the total reward that policy c gains
within an episode), �� (c) denotes the cumulative constraint cost of policy c (i.e., the number of
constraints that policy c breaks within an episode). The aim of constraint RL is searching a policy
which maximize the cumulative reward while avoid breaking any constraint. To solve the above
equation, Achiam et al. [1] propose Constrained Policy Optimization (CPO) which utilizes
trust region at each policy update step to enforce the constraints. Jayant and Bhatnagar [33] use
Lagrangian relaxation to find an appropriate and optimal policy.

In this article, we consider the revenue as the cumulative reward and whether breaking the
advertiser’s constraintas the cumulative constraint cost, respectively, then employ constraint RL
framework to conduct bids while ensuring the compliance with the constraint.

3 Problem Formulation
This section formulates the problem of platform bidding in OCPC.

The bidding problem in OCPC can be formulated as follows. In the preparing period, the advertiser
chooses a deep conversion goal (e.g., user registration or purchase) for ad ; and sets the expected
cost-per-conversion a; . Then, the platform negotiates a compensation rate V ∈ [0, +∞) with the
advertiser on ad ; , i.e., at the end of the advertising period (e.g., at the end of a day), the platform
will compensate the loss if the actual cost-per-conversion is higher than (1 + V) · a; .

During the online advertising period, when a user DC comes at time step C , the platform sets a bid
0;C > 0 on the ad ; (process 4 of Figure 1). The ad ; as well as other ads are presented to DC , ranked
based on their bids (and other considerations such as estimated CTR/CVR etc, process 5 of Figure 1)
[11]. We use 2;C ∈ {0, 1} to denote whether DC clicked the ad ; . 2;C = 1 if clicked, otherwise 0. The
platform charges the advertiser for 0;C if 2;C = 1. Meanwhile, we use U;

C,C ′ ∈ {0, 1} to denote whether
the ad ; clicked at time step C has converted before the time step C ′ (C ′ ≥ C ).5 U;

C,C ′ = 1 means it
has converted, otherwise 0. At each time C , if the user clicks or converts on ad ; , the platform will
update the cost-per-conversion for ad ; at time C :

2?2;C =

∑C
9=1 2

;
9 · 0;9∑C

9=1 U
;
9,C

, (1)

to adjust the state of the bidding model.
At the end of the advertising period (e.g., at the end of the day), the platform needs to ensure

the final cost-per-conversion 2?2;
#
≤ (1 + V) · a; , where # is the total number of time steps in the

whole episode. Otherwise, the platform should compensate the advertiser for the loss.
5Here, we consider the conversion follows the post-click attribution in which an impression needs to have been clicked to
be considered as having led to a conversion [10].
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Table 1. Summary of the Notations

Notation Description
C time step C
# total steps in an episode (e.g., one day)
; an advertisement ;
DC the user accessed the system at step C

a; ∈ <+ advertiser’s expected cost-per-conversion on ;
V ∈ <+ compensation rate
0;C ∈ <+ the bid on click of advertisement ; exposed at step C
2;C ∈ {0, 1} whether DC clicked ad ; which was exposed to her at C
U;
C,C ′ ∈ {0, 1} observed conversion corresponds to 2;C at time C ′ > C
ΔC ∈ <+ delayed time, length between click and conversion

U;
C,#
∈ {0, 1} whether the click 2;C eventually converted

Û;
C,#
∈ {0, 1} estimation of the conversion probability for 2;C

2?2;C ∈ <+ cost-per-conversion, estimated on log data before C
2̃?2

;
C ∈ <+ true 2?2 value with the final conversion signals U;

C,#
’s

2̂?2
;
C ∈ <+ estimation of 2̃?2;C

From the platform’s perspective, its goal is to increase the revenue without incurring any
compensation. Therefore, the goal on ad ; can be formulated as:

max{
0;1,...,0

;
#

} #∑
C=1

2;C · 0;C (2)

B .C . 2?2;# ≤ (1 + V) × a
; .

Existing methods usually formulate the online bidding as a problem of sequential decision-
making. That is, at each step C , the bidding model sets the bid 0;C based on the currently estimated
2?2;C : decreasing the bid if 2?2;C > a; , or increasing the bid if 2?2;C < a; . For example, PID [6] uses
the difference a; − 2?2;C to adjust the bid, and RSDRL [59] generates a lower bid when 2?2;C

a;
is larger

than the pre-set threshold. Table 1 summarises the notations used in the article.

4 Proposed Method: Bid-DC
This section proposes a novel bidding model to deal with the delayed conversion challenge in
OCPC, called Bid-DC. Bid-DC includes two parts: the delay part and the bidding part. The goal of
the delay part is to estimate 2̃?2;C and the bidding part is to bid at each bidding process through the
estimated 2̃?2;C . In Bid-DC’s bidding part, the bidding process is formulated as a CMDP. The design
of the constraints is based on the estimated 2̃?2;C . RL is used to learn the optimal model parameters
and conduct online bidding.

4.1 Impacts of the Delayed Conversion Signals
One issue with the above methods is that they overlook the important delayed conversion phe-
nomenon in OCPC. That is, after being exposed and clicked the ad ; , DC may take a while (usually
not very short) time to return the corresponding conversion signal U;C,C at some step C ′.6 More
6In real world, DC also need some time to click ad ; . In this article, we assume that the user clicks immediately after the
exposure for ease of notation. The assumption will not change the conclusions in the article.
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Adapting CMDP for OCPC Bidding with Delayed Conversions 47:9

Table 2. Click and Conversion Signals of the ad ; Exposed at Time C

Observed at C ′ > C : (2;C , U;C,C ′ ) At the end of episode: (2;C , U;C,# )
(0, 0) (0, 0)

(1, 0)

{
(1, 1) if converted
(1, 0) if not converted

(1, 1) (1, 1)

Left: signals observed at step C ′ > C (denoted as (2;C , U;C,C ′ ); Right: true signals at
the end of the episode (denoted as (2;C , U;C,# )).

specifically, after DC clicks ad ; at C , the platform observes 2;C = 1 and the advertiser is charged 0;C .
Then, they initialize U;C,C = 0 and wait the user conversion. There are two possible results: (1) they
wait a period of time and receive the success conversion signal at time C ′, then set U;

C,C ′ = 1; (2) they
wait until the advertising period ends, and U;

C,C ′ is kept to 0 for any time C ′ ≥ C . If DC did not click ad
; , i.e., 2;C = 0, there will be no conversion and U;

C,C ′ = 0 for any C ′.
We can observe that, U;

C,#
∈ {0, 1} indicates whether the click at time C is converted eventually

before the end of the advertising (i.e., before the time step # ). We can consider U;
C,C ′ as the observed

variable at time step C ′ ∈ [C, # ] before the end of the advertising. Table 2 shows the relationship
betweenU;

C,#
andU;

C,C ′ .That is, if we observe a pair (2;C = 1, U;
C,C ′ = 0) at some time step C ′ (C < C ′ < # ),

it is possible to observe the user conversion between C ′ and # . Therefore, if there is another user
comes at C ′, the platform has to bid based on the 2?2;

C ′ which is calculated by Equation (1) where all
the observed (2;8 = 1, U;8,C = 0) pairs (for 8 = 1, . . . , C ) are charged and considered as no conversion,
though some of them may be converted in the future.

We propose 2̃?2;C to denote the true cost-per-conversion value at time C for ad ; , which calculates as

2̃?2
;
C =

∑C
9=1 2

;
9 · 0;9∑C

9=1 U
;
9,#

, (3)

for all C = 1, . . . , # . Equation (3) also indicates that Equation (1) always overestimates the cost-
per-conversion values, i.e., 2?2;C ≥ 2̃?2

;
C for all C ≤ # because U;

9,#
≥ U;9,C for all 9 ≤ C . The analysis

also confirmed the results reported in Figure 4(a) that the curve of “true cost-per-conversion”
(2̃?2;C w.r.t. C ) is lower than “cost-per-conversion” (2?2;C w.r.t. C ). The overestimated 2?2;C results in
over-conservative bidding strategy (curve “PID bids”) and finally hurts the exposure of the ad and
future clicks and conversions. We note that in Figure 4(a), curves “true cost-per-conversion” and
“cost-per-conversion” equal at time step # , i.e., 2?2;

#
= 2̃?2

;
# . This is because the advertising ends

until all of the clicked ads convert or timeout. At the time step # , the observed conversion equals
to the final conversion U;

C,#
.

The analysis shows that to achieve more platform revenue, it is necessary to adopt a more
aggressive and precise bidding strategy which is guided by 2̃?2;C instead of 2?2;C . However, calculating
2̃?2

;
C is not trivial: at each of the bidding time C < # , 2̃?2;C cannot be calculated directly because

some U;
8,#

’s (8 < C ) are un-observable (i.e., those not converted clicks (2;8 = 1, U;8,C = 0)).

4.2 Bid-DC’s Delay Part
We observed that for an ad, the delayed conversion time ΔC (the interval between the click time
and the real conversion time) roughly obeys the exponential distribution, as shown in Figure 3.
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Fig. 3. The delayed time distribution for 4 ads in an industrial dataset.7 The percentage of the conversions
w.r.t. the delay time (in minutes) in the industrial dataset. The delay time is calculated as the interval between
the user click time and the corresponding convert time. Note that the last column displays all the conversions
whose delayed time > 200 minutes.

This similar phenomenon was also observed in existing studies [10]. Following the practices in
[10, 84], Bid-DC’s delay part also uses the exponential distribution to formulate the probability
that a click’s delayed time length is ΔC > 0:

5 (ΔC |G) = _(G)4−_ (G )ΔC , _(G) ≥ 0, (4)

where _ = _(G) is a parameter determined by the click’s feature G .
Therefore, for a clicked but not converted signal pair (2;C = 1, U;

C,C ′ = 0), which observed at time
C ′, and has passed ΔC = C ′ − C length, the probability that the click will eventually convert, i.e.,
denoted as % (U;

C,#
= 1|2;C = 1, U;

C,C ′ = 0,ΔC), is equal to the probability that the ad’s delay time is
greater than ΔC but smaller than # − C , which can be calculated as:

% (U;C,# = 1|2;C = 1, U;C,C ′ = 0,ΔC, G) =
∫ #−C

ΔC
5 (D |G)3D

=

∫ #−C

ΔC
_(G)4−_ (G )D3D

= 4−_ (G )ΔC − 4−_ (G ) (#−C ) .

(5)

7Here, the distribution refers to the time distribution between a click and a conversion, including un-converted clicks.
Moreover, although the un-converted clicks are far more than the converted ones, their delay times are infinite, i.e., delay
time→∞. Their percentages will be spread across an infinitely long x-axis, making the percentage at each point very small,
therefore the distribution is close to an exponential distribution. Existing study [84] also uses the exponential distribution
to model the distribution.
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Through Equation (5), we can estimate 2̃?2;C as:

2̂?2
;
C =

∑C
9=1 2

;
9 · 0;9∑C

9=1 Û
;
9,#

, (6)

where the estimation Û;
9,#

is defined as

Û;8,# =


1 if 2;8 = 1 ∧ U;8,C = 1;

0 if 2;8 = 0 ∧ U;8,C = 0;

% (U;
8,#

= 1|2;8 = 1, U;8,C = 0,ΔC) if 2;8 = 1 ∧ U;8,C = 0.

(7)

Equation (7) shows, during the estimation of the 2̂?2;C , if the system observed a clicked while
unconverted ad, Bid-DC’s delay part replaces the observed signal U;8,C = 0 with the probability that
it will be eventually converted (defined in Equation (5)). For other cases, according to the analysis
in Table 2, we know that Û;

8,#
= U;8,C (the observed value).

4.3 Fitting the Parameter in Bid-DC’s Delay Part
To learn the optimal _(·) in Equation (4), we adopt the idea of minimizing negative log-likelihood
over the empirical data distribution.

Suppose the learning data includes = history clicks, {G8 , 48 , 38 , X8 }=8=1, where G8 represents the
features of the click, 48 indicates the elapsed time since the click, 38 represents the delay time
between the click time and the conversion time and X8 represents whether the click has been
converted before we collect the data.

However, due to the delay feedback problem, there also exists a right-censoring problem in the
training data. When we collect the history data, some of the click’s conversion may not received
(i.e., X8 = 0), for those data, we do not know the exact delay time 38 , we only know the elapsed time
48 and 38 ≥ 48 since the conversion has not received after 48 time.

Inspired by the survival analysis technique [5, 67, 87], using � to donate the delay time random
variable and the likelihood can be shown as follows:

L(_) =
=∏
8=1

% (� = 38 |G8 )X8% (� ≥ 48 |G8 )1−X8

=

=∏
8=1

(5 (38 , G8 ))X8
(∫ ∞

48

5 (48 , G8 )3C
)1−X8

=

=∏
8=1

_(G8 )X84G?{−_(G8 ) (48 + (38 − 48 )X8 )}.

The learning process amounts to minimizing the following negative log-likelihood:

#!!� (_) = − log(L(_))

=

=∑
8=1

X8 log(_(G8 )) − _(G8 ) (48 + (38 − 48 )X8 ) .
(8)

4.4 The Bid-DC’s Bidding Part
Based on the above observation and analysis, Bid-DC’s bidding part formulates bidding process
as an CMDP. At each time step C = 1, 2, · · · , # , the CMDP corresponding to ad ; decides the bids
based on the current state. The state, action, reward, constraint, policy are set as:
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State ( : We design the state at step C as a tuple B;C = [c = 〈2;
C−: , · · · , 2

;
C 〉, d = 〈3C−: , · · · , 3C 〉, f =

〈50, 51, · · · , 5<〉, where c ∈ {0, 1}: records the user click information at the past : time steps to
denote the user history information, where : is a hyper-parameter; f = 〈50, 51, · · · , 5<〉] denotes the
bidding feature vector which includes the user features (like gender, shopping level, age, etc.), ad
features (ad category, ad group, ad position, etc.), where< is a hyper-parameter; d = 〈3C−: , · · · , 3C 〉
represents the difference between cost-per-conversion and the expected cost-per-conversion at the
past : steps to denote the bidding history information. For 9 = 0, 1, · · · , : , 3C− 9 is defined as

3C− 9 = E
; − 2?2;C− 9 ,

where 2?2;C− 9 is defined in Equation (1). For the cases that C < : , we use zero to padding.
Action �: � ⊆ <+ is the set of actions (bids) the agent can choose from. That is, at each C , the

agent chooses 0;C ∈ � for conducting the bidding.
Reward ': The reward can be considered as an evaluation of the quality of the bidding. From the

viewpoint of platform, an important goal is to maximize platform revenue. Therefore, at time step
C , we set the reward of issuing bid 0;C on state B;C as the charges to the advertiser:

A ;C = 0
;
C · 2;C ,

where 2;C ∈ [0, 1] denotes whether the user clicked the ad, since the platform will charge the
advertiser for 0;C if the user clicks the ad.

Constraint C: To avoid compensation, Bid-DCmakes use of CMDPwhich augments the traditional
MDP with a set of auxiliary cost functions C which restrict the bids that the model can choose.
Instead of setting the constraint based on 2?2;C (i.e., which has been used in existing biddingmethods),
Bid-DC sets the cost based on the estimation of 2̃?2;C by Bid-DC’s delay part, which has the potential
to achieve higher revenue.

Specifically, following the practices in [1], the constraint for Bid-DC can be defined as a set
C = {(�;C , Z ;C = 0)} where each constraint (for ad ; at the step C ) �;C is a mapping to a binary
constraint cost and Z ;C = 0 are the limits.8 �;C is a function defined on the log ( = {(2;8 , U;8,C )}C8=1
which is collected for ; until step C :

�;C =

{
0 2̂?2

;
C ≤ a; × (1 + V);

1 else,
(9)

where V is the fixed compensation rate negotiated by the advertiser and platform, and 2̂?2;C is the
estimation of 2̃?2;C by Bid-DC’s delay part (i.e., Equation (6)).
Policy c : In Bid-DC, the policy is implemented as a 3-layer MLP which takes s;C as inputs

(concatenating the sequence of c = 〈2;
C−: , · · · , 2

;
C 〉, sequence f = 〈50, 51, · · · , 5<〉 and sequence of

d = 〈3C−: , · · · , 3C 〉 as a 2 × (: + 1) +< input nodes) and output a non-negative real number which
represents the bid for the clicking of ad ; , parameterized by a set of parameters �, denoted as
c (B;C ;�).

8Please note that we define all of the limits as zero because �;
C ∈ {0, 1} and we don’t want any of the bids violating its

constraints.
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In Bid-DC, the CMDP also requires that the policy be chosen from a set of feasible policies:

Π� = {c ∈ Π� : ∀8, ��8
(c) ≤ 0}, (10)

where Π� is the set of all possible policies defined by the neural network parameterized by �, and

��8
(c) = �

g∼c

[
#∑
C=0

WC�;C

]
,

denotes the expected discounted return of policy c with respect to the binary constrained cost
function�;C , and W ∈ [0, 1] is the discount factor. In Equation (10), ��8

(c) ≤ 0 means the upper limit
is zero, and all of the actions should satisfy the constraint.

Note that the cost value is �;C in Equation (9) and the upper limit is set to 0, which means we do
not allow any action to violate any constraint.

4.5 Online RL for Bid-DC’s Bidding Part
Constraint RL is adopted for determining the parameters �. Theoretically, the learning of optimal
policy c∗ amounts to the following optimization problem [61, 77]:

c∗ = argmax
c∈Π�

� (c) = �
g∼c

[
#∑
C=0

2;C · 0;C

]
, (11)

where g is the episode sampled according to c , and the objective � (c) represents the expected total
revenue of the platform.

In Bid-DC’s bidding part, RL algorithm of CPO [1] is used to conduct the optimization in an
online manner. Specifically, after collecting the data D using the Algorithm 1, CPO is executed on
D which actually conducts local policy search [52]. Specifically, for the :th iteration of the training,
its goal is to update c: to c:+1 by solving the following problem:

c:+1 = argmax � (c)
c∈Π�

B .C .  !(c, c: ) ≤ X,
(12)

where “ !” is the KL-divergence [7], and X > 0 is a step size. Here we use KL-divergence constraint
to prevent excessively large model updates and ensure training stability [57]. However, Equation
(12) cannot be directly solved to update the policy, because it requires offline evaluation of the
policy c:+1 to determine whether the policy c:+1 can ensure the constraints which is known to
be difficult [34]. Therefore, motivated by the CPO algorithm [1], we replace the objective and
constraints in Equation (12) with surrogate functions. The approximation to Equation (12) is:

\:+1 = argmax
\

6) (\ − \: )

B .C . 2 + 1) (\ − \: ) ≤ 0 (13)
1
2
(\ − \: ))� (\ − \: ) ≤ X,

where \ denotes the parameter in policy c , 6 denotes the gradient of the objective, 1 denotes
the gradient of the constraint, � is the Hessian of the KL-divergence and 2 � �� (c: ). A dual to
Equation (13) is:

max
a�0,_≥0

−1
2_
(6)�−16 − 2A)a + a)(a) + a)2 − _X

2
, (14)
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Algorithm 1: Data Collection and Online Bidding

Require: ad ; , expected cost-per-conversion a; ; compensation rate V
Ensure: replay buffer D;

D; ← ∅ ⊲ Init replay buffer
(ck; , cv; ) ← (∅, ∅) ⊲ Init click and conversion sequences
TotalCost← 0 ⊲ Init total cost
for C = 1, 2, . . . do

Observe state B;C
Bidding with 0;C ← c (B;C ;�), displaying ; and other ads
Receive user feedback signals 2;C and {U;C ′,C : C ′ ≤ C} ⊲ user click on current bid, and some

delayed conversions
TotalCost← TotalCost + 0;C · 2;C ⊲ Add the cost
ck; ← ck; ⊕ {2;C } ⊲ Append to click sequence
cv; ← cv; ⊕ {U;C,C = 0} ⊲ Append to conversion sequence
For all {U;

C ′,C : C
′ ≤ C}: cv; [C ′] ← U;

C ′,C ⊲ Update conversion sequence with newly received
signals

cv2← cv ⊲ For estimating Û;
8,#

’s
for 9 = 1, · · · , C do

if ck[ 9] = 1 ∧ cv[ 9] = 0 then
cv2[ 9] ← 4−_ΔC ⊲ Prob. of conversion, Equation (5)

end if
end for
2̂?2

;
C ← TotalCost/∑C

9=1 cv2[ 9] ⊲ Equation (6)

�;C ←
{
0 if 2̂?2;C ≤ a; · (1 + V)
1 else

⊲ Calculate constraint, Equation (9)

A ;C ← 2;C · 0;C ⊲ Calculate reward
D; ← D;

⋃{(B;C , 0;C , A ;C ,�;C )}
end for
return D;

where A � 6)�−11, ( � 1)�−11. Then, we can update the policy c: through duality as follows:

\:+1 = \: +
1
_∗
�−1 (6 − 1a∗),

where _∗ and a∗ is a solution to Equation (13). The detailed description is shown in Appendix A.
The bidding and collecting data process can be carried out together which is shown in Algorithm 1.

4.6 Analysis of Bid-DC
Bid-DC provides a new approach to bid by considering the impact of delayed conversions in OCPC.
More importantly, Compared with the existing bidding models such as PID, WL, and RSDRL etc,
Bid-DC offers several advantages besides enhancing the platform revenue as discussed before.

First, the bidding mechanism provided by Bid-DC will effectively increase the chances of ad
exposure. At each step C , Bid-DC uses the true cost-per-conversion 2̂?2;C in Equation (6) rather than
the original 2?2;C in Equation (1) to guide the bidding. Due to the delayed conversion nature of the
clicked ads, it is easy the know that 2̂?2;C ≤ 2?2;C , which leads to the bidding models to make more
aggressive bids (i.e., higher bidding prices). Since the order and the exposure opportunity of an ad
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are largely determined by the bid, increasing the bid will raise the number of impressions the ad
can get, which will eventually benefit for brand promotions. Moreover, higher exposure indicates
higher conversion numbers, therefore, Bid-DC can also improve the advertiser’s profit.

Second, Bid-DC increases the bid stability and prevents the high fluctuations during the bidding
process. Existing studies have shown that high fluctuations would hurt the stability of the bidding
model [64, 82]. (1) One reason that causes the high fluctuations in existing methods is the payment
and cost-per-conversion estimation mechanisms. After each bidding, existing methods have to
decrease their future bids if observed user clicks. This is because the advertiser pays the clicks
immediately while the conversions will occur in the future, resulting overestimation of cost-per-
conversion 2?2;C , and finally increase the bids in the future time steps. In Bid-DC, however, the
probability of the conversion is estimated at each step. Therefore, the problem of overestimating the
cost-per-conversion is alleviated; (2) Another reason that causes the high fluctuations in existing
methods is the uncertain returning of the delayed conversion signals. Suppose that a lot of new
conversion signals (i.e., newly observed U;

C ′,C = 1’s) are returned at time C , existing methods have
to suddenly decrease their 2?2;C and thereafter significantly increase the bids, causes the high
fluctuations. In Bid-DC, the fluctuations will be suppressed because it uses Û;

C ′,# = 1 to estimate the
2̂?2

;
C . Even there is a large number of new conversion signals, the decreasing of 2̂?2;C will be much

smaller because Bid-DC has estimated their conversion probability (i.e., change the conversion
signals from 0 to their conversion probability before the real conversions).

Third, Bid-DC can be easily adapted to different conversion goals. It has been widely observed
that in real applications, different conversion goals usually have different delay time (e.g., user reg-
istration usually have shorter delay time than user purchase). Bid-DC learns the optimal parameter
_(G) ≥ 0 in Equation (5) over history to characterize the delayed time.

Please note that If the ad’s conversion goal has a very short delay, i.e., if the delayed conversions
are always received before the updating process, or if the conversion rate is very low, resulting
in few conversions, Bid-DC’s effectiveness will be reduced due to the limited number of delayed
conversions.

5 Experimental Study
We conducted both online and offline experiments to verify the effectiveness of Bid-DC in OCPC
bidding. The Bid-DC and experiments’ implement details are shown in Appendix B.

5.1 Experimental Setting
5.1.1 Dataset. The experiments were conducted based on two publicly available datasets iPinYou

[31, 44], Criteo [20] and two industrial-scale OCPC datasets collected from a commercial OCPC ad
platform. We use these datasets to test the performance of Bid-DC over different ads.

iPinYou dataset consists of 64.75M bid record, 19.50M impressions, 14.79K clicks and 1.1K conver-
sions from some real advertising campaigns [8]. Each click/conversion record includes the bid and
time. We use the information and transform into a dataset that can be used for OCPC. Specifically,
we extracted the clicks and conversions log for each advertising campaign from the iPinYou dataset,
and then sorted them according to the time stamp to simulate the user feedback. Additionally,
we also use the bidding prices in the log data as the expected cost-per-conversion, which were
pre-set by the advertisers. According to the information released by the data publisher [44], the last
three-day data of each campaign is split as the test data, and the rest as the training data. To test
the robust performance of Bid-DC (the performance over different advertisers), we further split 8
advertisers in the iPinYou dataset into two categories: (1) Four normal advertisers: advertisers who
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received at least 20 conversions; (2) Four special advertisers: advertisers who received less than 20
conversions (most advertisers in this category received only 0 or 1 conversion).

Criteo includes 30 days of Criteo live traffic data which contains 16.5M bidding records [20]. Each
auction includes whether this auction leads to the click/conversion, the highest bid price and value
corresponding to the conversion. We use the information and transform it into an OCPC bidding
dataset. We sorted the auctions based on the timestamp, and used the conversion value to denote the
expected CPA. Following the previous bidding methods [82, 83], in each auction, if the bid generates
by the bidding method upper than the highest bid price, the advertiser will win this auction and
will get charge/conversion based on the click signal/conversion signal respectively. Since here we
use the first-price auction [15], the platform will charge the advertiser the bid. According to the
publisher [20], the 21 previous days are considered as training data, while the last 7 days of logs
are considered as test data.

The industrial OCPC dataset 1 consists of 8 days log data corresponding to 10 randomly selected
OCPC advertisers from an online advertising platform for mobile apps. The dataset in total consists
of about 1.7M clicks (downloads) and 82K conversions (activation). We used the first 7-day log data
as the training set and the last day as the testing set.

The industrial OCPC dataset 2 settings are identical to the industrial OCPC dataset 1, except the
conversion goal is set to purchase. The dataset consists of about 2M clicks (downloads) and 32K
conversions (purchases), which contains more sparse conversions than that of the industrial OCPC
dataset 1.

The Expanded industrial OCPC dataset 1 is a larger version ofThe industrial OCPC dataset 1, which
consists of 8 days log data corresponding to 100 randomly selected OCPC advertisers.

The Expanded industrial OCPC dataset 2 is a larger version ofThe industrial OCPC dataset 2, which
also consists of 8 days log data corresponding to 100 randomly selected OCPC advertisers.

In the experiments, the iPinYou dataset and the criteo dataset serves as the standard public
bidding datasets that facilitate the reproduction and comparison of other methods with Bid-DC.
The two industrial OCPC datasets enable us to effectively present and analyze the performance
of Bid-DC in real-world OCPC settings, and test whether Bid-DC is capable of handling different
conversion goals as mentioned in Section 4.6. The two expanded OCPC dataset is used to to validate
the effectiveness and robustness of Bid-DC.

5.1.2 Compared Methods and Evaluation Metric. We compare the Bid-DC with the following
baselines in the experiments to show the performance of Bid-DC:
PID [6]: PID controller is a classic feedback control mechanism which has been widely used in

the bidding of Real-Time Display Advertising [82]. PID controller uses proportional, integral, and
derivative items to adjust the bids according to the estimated cost-per-conversion.
WL [19]: WL controller is another feedback control mechanism. Compared to PID, the WL

controller only uses the proportional item.
LP [63]: LP is used to maximize an object while still meet some constraints. Maximizing platform

revenue in OCPC can also be treated as an LP problem, where the future clicks and conversion
numbers are modeled by a Gaussian distribution, and solve an LP problem at the each time step to
obtain the optimal bid for the next time step.
RSDRL [59]: RSDRL uses RL and an ROI-sensitive agent to bid in OCPM setting. In this article,

we used it to bid in OCPC.
USCB [27]: USCB is a DRL bidding method which uses hyper-parameters to non-linearly control

the constraint while maximize the objective.
TEE [42]: TEE uses offline RL to train the optimal policy from data. It also proposes Safe Explo-

ration by Adaptive Action Selection to ensure the safety while online.
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Moreover, to test Bid-DC can automatically find the optimal bidding strategy for each advertiser,
here, we tune the hyper-parameters of each baseline bidding strategy using the training data set.

As for evaluation metrics, following the previous work [9, 22, 59], we mainly use the platform
revenue to test the performance improvements over the corresponding baselines.

Table 3 reports the revenue of the proposed Bid-DC and the baselines on iPinYou dataset, Criteo
dataset, industrial OCPC dataset 1 and industrial OCPC dataset 2, respectively. The compensation
bound donates the 120% of the expected conversion values (i.e., the platform should compensate
advertiser if the total charges exceed it) are listed in the last column. Each line represents an ad and
their IDs in the dataset are listed in the first column (denoted as Campaign No.). We found that on
all four datasets, Bid-DC outperformed all the baselines while ensuing the total charges are lower
than the compensation bound. The results verified the effectiveness of Bid-DC in safely improving
the revenue, on both types of advertisements. Also, we can see LP performs poor on those datasets,
it is because LP is a static bidding method that cannot handle dynamic bidding environments.

As mentioned in Section 5.1.1, the iPinYou dataset contains two types of advertisers: Normal
advertisers (the first 4 lines in the table) and Special advertisers (the last 4 lines in the table).We found
that on both types of the campaigns, Bid-DC can outperform all of the baselines, which demonstrates
the robustness of Bid-DC. Compared to special advertisers which has much sparse clicks and
conversions, the revenue achieved by Bid-DC on normal campaigns is much (relatively) closer
to their upper bounds. The results is easy to explain: with more observed clicks and conversions,
Bid-DC can predict the future conversions more accurately, leading to more accurate bids.

We also found Bid-DC outperforms the baselines on advertisers with different conversion goals
(i.e., OCPC dataset 1 and OCPC dataset 2) in terms of revenue. The results show, through constraint
RL, Bid-DC can automatically learn the optimal bidding strategy for different advertisers without
any human effort which makes Bid-DC easily adapts to other advertising scenario.

Moreover, we test the performance of Bid-DC on the Expanded industrial OCPC dataset 1 and
OCPC dataset 2. Table 4 reports the revenue and standard deviation of the proposed Bid-DC and
the baselines on the expanded OCPC dataset. We found Bid-DC outperforms all baselines, which
demonstrates the effectiveness and robustness of Bid-DC.

5.2 Empirical Analysis
In this section, we conducted empirical analysis for the proposed Bid-DC. All of the analysis were
conducted on the campaigns from the OCPC industrial dataset 1, which accurately reflect the
bidding effects in real bidding environment. We mainly compared Bid-DC with PID because PID
has been widely used in the real online bidding environment.

5.2.1 How Bid-DC Alleviates the Problem of Overestimating Cost-per-Conversion? Bid-DC is
motivated from the observation that existing methods make over-conservative bids due to the
overestimation of cost-per-conversion, as shown in Figure 4(a). We conducted experiments to show
whether Bid-DC addressed the issue.

Figure 4 shows the bids and cost-per-conversion curves generated by Bid-DC for the same cam-
paign as that of used in Figure 4(a). Comparing to the results in Figure 4(a), we can see that Bid-DC
conducts more aggressively bids (curve “Bid-DC’s bid”), making the “true cost-per-conversion”
curve much closer to the line “expected cost-per-conversion.” The results clearly indicate that the
prediction of the future conventions in Bid-DC effectively improved the bids, and finally enhanced
the revenue.

Though Bid-DCmakes aggressive bids, the curve “true cost-per-conversion” is still lower than the
compensation bound at most of the time steps. At the end of the episode, “true cost-per-conversion”
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Table 3. Revenues of Bid-DC and Baselines Over Each Advertisement on iPinYou Test Set (Sums of 3 Days’
Revenues), Criteo Test Set (Sums of 7 Days’ Revenues), Industrial OCPC Test Set 1 (1 Day Revenue) and

Industrial OCPC Test Set 2 (1 Day Revenue)

Dataset Campaign
No. PID WL LP RSDRL USCB TEE Bid-DC Compensation

bound

iPinYou

3476 3,940.45 3,928.12 3,814.55 4,216.56 4,104.78 4,006.31 4,285.15 5,018.4
2259 17,712.27 17,683.71 14,275.51 18,591.39 18,464.39 18,601.33 18,943.45 22,041.6
2821 69,344.52 69,332.16 60,256.39 72,411.61 72,512.98 70,145.62 73,295.75 84,506.4
3358 27,360.99 27,356.81 27,648.03 27,926.11 28,014.32 28,127.59 28,328.31 32,001.6
3386 27.74 27.74 - 43.66 43.7 44.1 44.8 300
3427 21.65 21.64 - 33.69 32.59 33.04 34.08 234
1458 73.87 73.87 1,159.41 97.35 97.42 98.51 105.38 360.0
2997 24.87 24.87 - 35.07 35.68 35.17 36.02 277

Criteo

1 355.67 362.13 298.72 374.29 385.96 373.21 399.25 412.4
2 302.74 303.12 263.65 359.81 354.12 361.18 362.98 397.21
3 284.31 284.13 213.74 322.78 317.25 319.41 343.75 356.51
4 449.43 444.15 401.98 489.97 491.45 487.27 501.23 514.64
5 131.62 130.42 101.41 116.24 118.92 105.64 129.82 132.86
6 121.97 122.02 102.81 135.61 136.08 132.11 141.06 149.97
7 92.21 91.98 90.03 111.21 106.28 108.59 124.88 129.98

OCPC 1

1 1 0.99 0.87 1.02 1.04 1.01 1.12 1.24
2 1 0.99 0.81 1.12 1.14 1.09 1.18 1.31
3 1 1 0.77 1.05 1.07 1.04 1.09 1.18
4 1 1.01 0.8 1.01 1.03 1.01 1.07 1.17
5 1 0.99 0.65 1.03 1.04 1.05 1.09 1.17
6 1 0.98 0.78 1.08 1.04 1.05 1.13 1.29
7 1 1 0.92 1.02 1.01 1.03 1.07 1.15
8 1 1 0.73 1.04 1.07 1.06 1.12 1.19
9 1 0.98 0.91 1.09 1.05 1.11 1.13 1.16
10 1 0.99 0.87 1.06 1.06 1.06 1.15 1.23

OCPC 2

1 1 0.98 0.72 1.07 1.08 1.07 1.08 1.19
2 1 0.99 0.91 1.05 1.04 1.07 1.07 1.18
3 1 1 0.73 1.07 1.07 1.02 1.09 1.17
4 1 0.98 0.65 1.16 1.14 1.12 1.19 1.33
5 1 1.01 0.76 1.05 1.06 1.02 1.08 1.12
6 1 0.99 0.93 1.07 1.08 1.04 1.09 1.14
7 1 1 0.79 1.08 1.05 1.02 1.10 1.18
8 1 0.98 0.72 1.09 1.08 1.08 1.12 1.17
9 1 1.01 0.79 1.04 1.05 1.02 1.06 1.09
10 1 1.01 0.87 1.06 1.04 1.07 1.09 1.11

The compensation bound is defined as 120% × a; × #final conversions. The platform will compensate to the advertiser if
the revenue is larger than the compensation bound. ‘-’ means the value is not available because the conversions are too
sparse, causing numerical errors in LP. To avoid privacy issues, the results on industrial OCPC test set 1 and test set 2 are
displayed as the relative values over the revenue of PID. Note that less than 1 means under-performing PID. The best
results are bolded.

is very close to the “expected cost-per-conversion,” indicating that the constraints in CMDP safely
make bids so that the final cost-per-conversion is under control and compensation is avoided.

Figure 4 shows a new curve denoted “predicted cost-per-conversion by Bid-DC,” which is
calculated with the predicted delayed conversions Û;C (i.e., 2̂?2

;
C in Equation (6)). We can see that

the curve is much closer to the “true cost-per-conversion” than the curve “estimated cost-per-
conversion.”
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Table 4. The Average and Standard Deviation Revenue of Bid-DC and Other Baselines Over Two
Expanded OCPC Datasets

Expanded Dataset PID WL LP RSDRL USCB TEE Bid-DC Bound
Expanded OCPC 1 1± 0.0 0.99± 0.0 0.87± 0.0 1.14± 0.007 1.13± 0.0 1.15± 0.006 1.21± 0.005 1.30
Expanded OCPC 2 1± 0.0 1± 0.0 0.76± 0.0 1.10± 0.008 1.09± 0.0 1.11± 0.007 1.15± 0.008 1.24

The compensation bound (Bound for short) is defined as 120% × a; × #final conversions. Here we carefully
select baselines’ hyper-parameters on the training set to ensure the baselines’ revenue does not exceed the
compensation bound. To avoid privacy issues, the results are displayed as the relative values over the revenue of
PID. Please note that PID, WL, LP and USCB are deterministic strategies, which means their standard deviations
are 0. The best results are bolded.

Fig. 4. Cost-per-convention curves and bid curves generated by Bid-DC and PID on an ad from a real
industrial OCPC platform. For both Figure 4(a) and (b), the curve “true cost-per-conversion” denotes the
cost-per-conversion which takes the future conversions of the clicked ads into consideration (i.e., 2̃?2;C in
Equation (3)) and line “expected cost-per-conversion” represents the expected cost-per-conversion set by the
advertiser which does not change over the time. For Figure 4(a), the curve “estimated cost-per-conversion”
denotes the cost-per-convention curve generated by PID, i.e., Equation (1), and the curve “PID’s bid” denotes
the PID’s bidding curve; For Figure 4(b), the curve ”estimated cost-per-conversion” denotes the cost-per-
conversion estimated without taking delayed conversions into consideration (i.e., 2?2;C in Equation (1), which
is the same curve in Figure 4(a), but with Bid-DC as the bidding controller.). The “Bid-DC’s bid” denotes the
bidding curve by the proposed Bid-DC. The curve “predicted cost-per-conversion by Bid-DC” denotes the
cost-per-conversion calculated based on the predicted Û;

C,#
in Bid-DC (i.e., 2̂?2;C in Equation (6)). All values

have been re-scaled for avoiding privacy issues.

To quantitatively verify Bid-DC can more accurately estimate the cost-per-conversion, we
randomly select 24 time steps during the advertising period for 100 OCPC advertisers. We then use
the averageMean Absolute Percentage Error (MAPE) [29] as a metrics to measure the difference

between the predicted and true cost-per-conversion: MAPE = 1
100

∑100
;=1

1
24

∑24
8=1
|2̂?2;C8 −2̃?2

;
C8
|

2̃?2
;
C8

, where

2̂?2
;
C8
is the predicted cost-per-conversion at C8 for ad ; , 2̃?2C8 is the true cost-per-conversion at C8

for ad ; and C1, C2, . . . , C24 denote 24 time points. We also added two baselines, which are commonly
used to estimate delay, to demonstrate Bid-DC’s delay part’s effectiveness in estimating the true
cost-per-conversion:
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Table 5. The MAPE Value (Smaller Means Better) of Bid-DC
and Other Baselines for 24 Time Points Over 100 Randomly

Selected Ads on a Real OCPC Platform

Methods Not-predict FSIW Bayesian Bid-DC
MAPE 7.45 3.45 2.71 1.02

Not-predict means we do not consider the delayed conversions when
estimating the cost-per-conversion. The best result is bolded

—Bayesian methods are widely used to estimating the delay time [21, 60]. The core idea of
bayesian methods is we first set a prior relation between the feature and the delay time and
then update the relation through Bayes’ theorem. Although they are widely used in estimating
delay time, in OCPC, what we need to predict is the probability of a conversion occurs within
a certain period rather than a specific delay time, which is inconsistent with goal of bayesian
methods.

—FSIW is usually used to dealing with delayed feedback problem in the CVR prediction [76].
However, in OCPC,we only consider the conversions arrive before the end of advertising, clicks
at different time has different attribution window, e.g., click arrives early during the advertising
period has more probability to convert than which arrives later, which is inconsistent with
FSIW’s assumption.

Table 5 shows the result. We found the MAPE value of Bid-DC is 1.02 which is much smaller than
the baselines, which means predicted cost-per-conversion by Bid-DC is closer to true cost-per-
conversion. The results indicated that Bid-DC effectively alleviated the problem of overestimating
the cost-per-conversion that is caused by the delayed conversions.

Comparing the “estimated cost-per-conversion” curves in Figure 4(a) and Figure 4 (both are
calculated with Equation (1), we found the aggressive bids made by Bid-DC greatly enhanced the
originally estimated cost-per-conversion. This is because increasing bids directly increases the total
costs. However, the “estimated cost-per-conversion,” “true cost-per-converstion,” and “predicted
cost-per-conversion” merge at the end of the episode. This is because the episode ends at time #
with all conversion signals returned. That is, at the time # , there is no delayed conversion problem
anymore.

Also note that at the beginning of the episode, Figure 4(a) and Figure 4 showed high fluctuations on
bids and cost-per-conversion.This is because at the beginning, the number of clicks and conversions
are small. A small number of clicks and conversions have high impacts on the estimations of cost-
per-conversion. This also confirmed the results reported in Table 3: campaigns with sparse clicks
and conversions are relatively difficult to improve.

5.2.2 The Effects of the Constraints in Bid-DC. Bid-DC uses the constraints in CMDP for avoiding
compensation. Figure 5 shows the results of Bid-DC with and without the constraints, i.e., setting all
�;C = 0 and directly updating the policy to maximize the revenue through trust region methods [57],
on the same campaign used in Section 5.2.1. We also show the compensation bound (denoted as
“compensation bound”) for reference. We found that without the constraint, it is easy for Bid-DC to
bid too high, making cost-per-conversion exceed the compensation bound and cause compensation
at the end of the episode. After adding the constraint, the CMDP module in Bid-DC effectively
controlled the cost-per-conversion values and avoided the compensation.

Moreover, to avoid reward sparsity [25], i.e., reward is only received at the end, potentially
causing the bidding model to exceed the advertiser’s constraints, as shown in Equation (9), Bid-DC
applies constraints at each bidding step, which is stricter than the advertiser’s constraint. Table 6
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Fig. 5. The cost-per-conversion curves of Bid-DC with and without constraints, respectively. Curve “cost-per-
conversion with constraint” denotes the curve of 2?2;C/a; for Bid-DC. Curve “cost-per-conversion without
constraint” denotes the 2?2;C/a; for variation of Bid-DC without the constraint (i.e., by setting all �;C = 0 in
Algorithm 1). The curve “compensation bound” donates the relative compensation bound (i.e., 120%).

Table 6. The Average Revenue and Compensation Numbers
(i.e., How Many Ads Result in Compensation?) of Bid-DC and

Bid-DC Which Only Has �# = 1 if 2̂?2;# > a; × (1 + V)
(Named as Bid-D�# ) on the Expanded OCPC Dataset 1

Methods Average Revenue Compensation Number
Bid-D�# 1.28 8
Bid-DC 1.21 0

To avoid privacy issues, the results are displayed as the relative values
over the revenue of PID.

reports the results of experiments on the expanded OCPC dataset 1. From the results, we found
that if we only apply the constraint at the end, Bid-DC will cause some ads to compensate, which
is the platform aims to avoid. Therefore, we apply constraints at every bidding step to ensure that
Bid-DC results in no compensation.

5.2.3 Can Bid-DC Improve the Bid Stability? In Section 4.6, we show that Bid-DC has more
stable bids. In this section, we conducted experiments to verify the conclusion. Figure 6 shows the
bidding curves of Bid-DC and PID, respectively, based on the same campaign used in Section 5.2.1.
Comparing these two curves, it is easy to find that “PID’s bid” fluctuates more violently than
“Bid-DC’s bid”. We also calculated the variances over all the bids (smaller is better). The variance of
the bids made by PID is 1.29, which is much larger than the variance of the bids made by Bid-DC is
0.57. The results confirmed the conclusion that Bid-DC has the ability of making more stable bids.

We note that at the beginning of the episode, Bid-DC has a short time high fluctuates. This is
caused by the unstable estimation of 2̂?2;C due to the too small number of clicks and conversions. In
Bid-DC, the high fluctuates will be alleviated quickly after receiving more clicks and conversions.
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Fig. 6. Bidding curves generated by the PID and Bid-DC.

Fig. 7. The deployment of Bid-DC in OCPC. Please note that the yellow background with red name is the
difference between Bid-DC’s bidding system and the original system, i.e., the difference compared with
Figure 1.

5.3 Online Experimental Results
Figure 7 shows how to deploy Bid-DC in OCPC. Compared with Figure 1, there are three differences
during the preparing period and advertising period.

(1) In the preparing period, rather than just learning the bidding model and the CVR/CTR model,
we will learn Bid-DC’s delay part (i.e., discussed in Section 4.3), Bid-DC’s bidding part (i.e.,
discussed in Section 4.5) and the CTR/CVR model.

(2) During the advertising period, when a user clicks the ad, Bid-DC’s delay part will take the
click’s feature as input and output the convert probability for the click (i.e., Equation (5)). The
platform will cache all convert probabilities to prepare for the feedback updating process.

(3) For every 15 minutes, the feedback updating process starts. The platform estimates the
cost-per-conversion through total charge of the advertiser, current received conversions and
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Table 7. Online A/B Test Results

Metric Relative improvement
Revenues 10%

Click numbers 7%
Conversion numbers 6%
Compensation rate 0%

the cached estimated convert probabilities for the unconverted click (i.e., Equation (6)). This
estimated cost-per-conversion 2̂?2;C will be used to update the state of Bid-DC’s bidding part,
helping it bidding more precisely.

We have deployed Bid-DC on a real OCPC platform for a week, comparing it with the baseline
bidding method: RSDRL method. Table 7 shows the results the 7-day online A/B test. The revenue
and compensation rate metrics are related to the platform and the click numbers and conversion
numbers metrics are related to the advertisers. We found all of them are improved without incurring
any compensation. From the results of the online A/B test, as discussed in Section 4.6, besides
improving the platform’s revenue, Bid-DC also can improve the ad’s click numbers and conversion
numbers which indicates that Bid-DC is beneficial for both advertisers and platform.

6 Conclusion
In this article, we analyzed the delayed conversions in OCPC, and found that the delayed conversions
make existing methods overestimate the cost-per-conversion values, leading to over conservative
bidding policy, and finally hurt the platform revenue and ad’s exposures. Moreover, the hyper-
parameters in the existing biddingmethods require much human effort to determine for different ads.
To deal with those issues, this article proposes a novel bidding mechanism called Bid-DC in which
the conversion probability of a clicked but not converted ad is predicted and used to re-estimate
the click-per-conversion values. To avoid the risk of compensation, constrained MDP is adapted to
modeling the bidding process and constrained RL is used to automatically learn the optimal bidding
policy without any human effort. Offline experimental results based on the publicly available
iPinYou dataset, Criteo dataset and two real industrial OCPC datasets showed that Bid-DC can
effectively enhance the revenues of all campaigns. Online A/B test result shows, beside improving
platform’s revenue, Bid-DC also can improve the ad’s click numbers and conversion numbers
which means Bid-DC benefits to both advertisers and platform. Empirical analysis also showed that
Bid-DC improved existing methods through more accurately estimation of the cost-per-conversion
values and can make more stable bids.

Future work includes theoretical analysis of the unbiasedness and variance of the predicted
conversions, and personalized and accurate prediction of the conversion probabilities based on the
user and advertisement information.
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Appendices
A Details of the Model Updating
In this section, we provide a detailed description of how to replace the objective and constraints
with the surrogate functions in Equation (12).

First, we introduce the three bounds which will be used to replace the objective and constraints:

Lemma 1. Through Pinsker’s inequality [16]: for two arbitrary ? , @, we have �)+ (? | |@) ≤√
� ! (? | |@)/2. Combining with Jensen’s inequality, we have:

�B∼3c [�)+ (c ′ | |c) [B]] ≤ �B∼3c
[√

1
2
� ! (c ′ | |c) [B]

]
≤

[√
1
2
�B∼3c�)+ (c ′ | |c) [B]

]
,

where 3c denotes the state distribution [72] of policy c , �)+ (c ′ | |c) [B] is the TV-divergence of policy
c and c ′ over state B and � ! (c ′ | |c) [B] is the KL-divergence of policy c and c ′ over state B .

Lemma 2. Based on [1], for any two policies c ′ and c , with nc ′ � maxB |�0∼c ′ [�c (B, 0)] |, we have:

� (c ′) − � (c) ≥ 1
1 − W �B∼3

c ,0∼c ′

[
�c (B, 0) − 2Wnc

′

1 − W �)+ (c
′ | |c) [B]

]
≥ 1

1 − W �B∼3
c ,0∼c ′

[
�c (B, 0) − 2Wnc

′

1 − W

√
1
2
�B∼3c�)+ (c ′ | |c) [B]

]
,
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where W is the discount factor [36] and �c (B, 0) denotes the advantage function [58] over state-action
pair (B, 0).

Lemma 3. Based on [1], for any two policies c ′, c and cost function � , with nc
′

�
� maxB |�0∼c ′

[�c
�
(B, 0)] |, we have:

�� (c ′) − �� (c) ≤
1

1 − W �B∼3
c ,0∼c ′

[
�c� (B, 0) +

2Wnc
′

�

1 − W �)+ (c
′ | |c) [B]

]
≤ 1

1 − W �B∼3
c ,0∼c ′

[
�c� (B, 0) +

2Wnc
′

�

1 − W

√
1
2
�B∼3c�)+ (c ′ | |c) [B]

]
,

where �c
�8
(B, 0) denotes the advantage function of the cost function�8 [58] over state-action pair (B, 0).

Based on the above lemmas, we can transform Equation (12) to

c:+1 = argmax
c

1
1 − W �B∼3

c: ,0∼c

[
�c: (B, 0) − 2Wnc:

1 − W

√
1
2
�B∼3c:�)+ (c | |c: ) [B]

]
B .C . �� (c: ) +

1
1 − W �B∼3

c: ,0∼c

[
�c� (B, 0) +

2Wnc:
�

1 − W

√
1
2
�B∼3c�)+ (c | |c: ) [B]

]
≤ 0

� ! (c, c: ) ≤ X.
Similar to trust region method [57], we set X as a very small number, i.e., we update the policy in a
small trust region, where we can assume X ≈ 0 and W is fixed discount factor, we can have:

c:+1 = argmax
c

�B∼3c: ,0∼c [�c: (B, 0)]

B .C . �� (c: ) +
1

1 − W �B∼3
c: ,0∼c

[
�c� (B, 0)

]
≤ 0 (A1)

� ! (c, c: ) ≤ X.
Then as shown in CPO method [1], if W is small, the objective and cost function can be well-
approximated by linearizing around c: , and the KL-divergence constraint is well-approximated by
second order expansion. The approximation to Equation (A1) is:

\:+1 = argmax
\

6) (\ − \: )

B .C . 2 + 1) (\ − \: ) ≤ 0 (A2)
1
2
(\ − \: ))� (\ − \: ) ≤ X,

where 6 denotes the gradient of the objective, 1 denotes the gradient of the constraint, � is the
Hessian of the KL-divergence which assumes to be positive-definite as in [1] and 2 � �� (c: ). A
dual to Equation (A2) can be

max
a�0,_≥0

−1
2_
(6)�−16 − 2A)a + a)(a) + a)2 − _X

2
, (A3)

where A � 6)�−11, ( � 1)�−11.
If there is at least one strictly feasible point, the optimal point \ satisfies

\:+1 = \: +
1
_∗
�−1 (6 − 1a∗),

where _∗ and a∗ is a solution to Equation (A3).
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If there does not exist a feasible point, we directly update \: to decrease the cost function ��
under the KL-divergence constraint by:

\:+1 = \: −
√

2X

1)�−11
�−11,

which is calculated based on [37] and [1].

B Implement Details
B.1 Bid-DC’s Implementation
Bid-DC’s bidding part adopts an actor-critic framework [2, 24, 39] and uses CPO to train the policy.
The policy c and the critic networks + and +� in CPO are all implemented as fully connected
neural networks with 3 hidden layers [62]. The batch size is set to 128, discounted factor W = 1, and
the size of replay memory is set to 10,000. The learning rate of actor network is set to 3e-4. The
learning rate for learning two critic networks are set to 1e-3, and the penalty is set to 5e-2. The
target KL divergence [28, 54] in CPO is set to X = 0.01. The Bid-DC’s delay part is a three-layer
fully connected network, which takes the click’s feature as its input and output the value of _.
The training batch size is set to 256 with a 1e-3 learning rate. The implementation of the baselines
follows the original papers [27, 42, 59].

B.2 Offline Experiment’s Implementation
The offline experiment is similar to the one used in USCB [27]. We use ad’s data log to construct
the offline experiments, which can be described in the following seven steps.

(1) Select an ad and collect all the bidding logs of the ad, i.e., all the bidding the ad participates
in during its advertising.

(2) Sort all bidding logs based on its bidding time.
(3) For each bidding log, retrieve the bid value log corresponding to each position, i.e., How

much bid is required to place the ad in each position in the ad list shown in Figure 1.
(4) Simulate the advertising process for the ad. For each bidding log, the ad submits a bid to

determine the position observed by the user based on the bid log. Then, we simulate the
user’s click action based on the click model9 and simulate the convert action based on the
CVR prediction [18].

(5) We use the click log and conversion log to simulate the delay. For each bidding log, if both
a click log and a conversion log are present, we set the interval time between them as the
delay time for the corresponding click. If there is no conversion log for a click, we set the
delay time to 0, indicating no delay.

(6) For every 15 minutes, the bidding model will change its state based on the current advertising
state, e.g., current cost-per-conversion.

(7) At the end of advertising, we will check the performance of bidding as shown in Figure 1.
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9https://github.com/varepsilon/clickmodels
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