
Generative Retrieval with Semantic Tree-Structured Identifiers
and Contrastive Learning

Zihua Si
Renmin University of China

Beijing, China
zihua_si@ruc.edu.cn

Zhongxiang Sun
Renmin University of China

Beijing, China
sunzhongxiang@ruc.edu.cn

Jiale Chen
Kuaishou Technology Co., Ltd.

Beijing, China
chenjiale@kuaishou.com

Guozhang Chen
Kuaishou Technology Co., Ltd.

Beijing, China
chenguozhang@kuaishou.com

Xiaoxue Zang
Kai Zheng

Kuaishou Technology Co., Ltd.
Beijing, China

{zangxiaoxue,zhengkai}@kuaishou.com

Yang Song
Kuaishou Technology Co., Ltd.

Beijing, China
ys@sonyis.me

Xiao Zhang
Renmin University of China

Beijing, China
zhangx89@ruc.edu.cn

Jun Xu∗

Renmin University of China
Beijing, China

junxu@ruc.edu.cn

Kun Gai
Independent

Beijing, China
gai.kun@qq.com

Abstract
In recommender systems, the retrieval phase is at the first stage
and of paramount importance, requiring both effectiveness and
very high efficiency. Recently, generative retrieval methods such
as DSI and NCI, offering the benefit of end-to-end differentiability,
have become an emerging paradigm for document retrieval with
notable performance improvement, suggesting their potential ap-
plicability in recommendation scenarios. A fundamental limitation
of these methods is their approach of generating item identifiers as
text inputs, which fails to capture the intrinsic semantics of item
identifiers as indices. The structural aspects of identifiers are only
considered in construction and ignored during training. In addi-
tion, generative retrieval methods often generate imbalanced tree
structures and yield identifiers with inconsistent lengths, leading
to increased item inference time and sub-optimal performance. We
introduce a novel generative retrieval framework named SEATER,
which learns SEmAntic Tree-structured item identifiERs using
an encoder-decoder structure. To optimize the structure of item
identifiers, SEATER incorporates two contrastive learning tasks to
ensure the alignment of token embeddings and the ranking orders
of similar identifiers. In addition, SEATER devises a balanced 𝑘-ary
tree structure of item identifiers, thus ensuring consistent seman-
tic granularity and inference efficiency. Extensive experiments on
three public datasets and an industrial dataset have demonstrated

∗The corresponding author. Work partially done at Engineering Research Center of
Next-Generation Intelligent Search and Recommendation, Ministry of Education.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR-AP ’24, December 9–12, 2024, Tokyo, Japan
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0724-7/24/12
https://doi.org/10.1145/3673791.3698408

that SEATER outperforms a number of state-of-the-art models sig-
nificantly.

CCS Concepts
• Information systems→ Recommender systems.

Keywords
Recommendation; Generative Retrieval; Contrastive Learning

ACM Reference Format:
Zihua Si, Zhongxiang Sun, Jiale Chen, Guozhang Chen, Xiaoxue Zang, Kai
Zheng, Yang Song, Xiao Zhang, Jun Xu, and Kun Gai. 2024. Generative Re-
trieval with Semantic Tree-Structured Identifiers and Contrastive Learning.
In Proceedings of the 2024 Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval in the Asia Pacific Region
(SIGIR-AP ’24), December 9–12, 2024, Tokyo, Japan. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3673791.3698408

1 Introduction
Modern recommendation systems (RS) predominantly use a two-
stage retrieve-then-rank strategy [5]. During retrieval, a small sub-
set of items (hundreds) is chosen from a vast item pool (millions).
Considering the large scale of the entire pool, efficiency is vital for
the retrieval model. Moreover, the success of the ranking model
depends on the quality of retrieved items, highlighting the impor-
tance of retrieval effectiveness. Traditional models leverage dual-
encoder architectures and Approximate Nearest Neighbor (ANN)
algorithms. Initially, retrieval models represent users with a single
vector [5, 13]. Subsequent studies [3, 16, 29] notice the inadequacy
of single, finite-length vector representations, leading to the in-
troduction of multi-vector retrieval. These approaches leverage
multiple vectors to better express user interests and continue us-
ing ANN across multiple vectors for inference. However, the inner
product of ANN theoretically requires a strong assumption for the
Euclidean space, which may not be satisfied in practical applica-
tions. Hence, developing a model capable of capturing complex

154

https://doi.org/10.1145/3673791.3698408
https://doi.org/10.1145/3673791.3698408
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3673791.3698408&domain=pdf&date_stamp=2024-12-08

SIGIR-AP ’24, December 9–12, 2024, Tokyo, Japan Zihua Si et al.

interactions, adequately representing user interests, and ensuring
efficiency is a direction worth exploring.

To achieve this goal, tree-based indexing models like TDM [33]
and JTM [32] from Alibaba have been introduced. They estimate
interaction probabilities using deep models and achieve affordable
efficiency by retrieving over tree-based indices, rather than the
entire item pool. A recent trend in search [24, 26] views retrieval
as a generation task. These models use transformer memory as a
differentiable index and decode document IDs autoregressively as
texts. The latest work TIGER [21] utilizes similar architectures for
RS. They construct codebooks (so-called identifiers in this paper)
to represent items and estimate interaction probabilities using the
product probabilities predicted by transformers.

Despite their achievements, these generative models cannot meet
the efficiency requirement for large-scale applications and their
performance can be improved. Regarding effectiveness, these works
treat identifier tokens purely as texts, optimizing with cross-entropy
loss loosely related to the indexing structures, neglecting the in-
herent characteristics of such structures. The structural aspects
are only considered when constructing identifiers and are not inte-
grated into the loss function during training. In terms of efficiency,
imbalanced tree-structured identifiers in DSI and NCI can result in
increased and inconsistent inference time for items. The multiple
transformer layers in TIGER increase the computational burden
during inference.

To address such problems, we propose a generative model for the
recommendation, namely SEATER, which learns SEmAntic Tree-
structured item identifiERs via contrastive learning. We leverage an
encoder-decoder model which encodes user interests and decodes
probably the next items. The decoder represents items into equal-
length identifiers with consistent semantics within the same level.
SEATER assigns balanced 𝑘-ary tree-structured identifiers to items
and learns semantics and hierarchies of identifier tokens through
contrastive learning tasks. We construct such identifiers based on
collaborative filtering information to incorporate prior knowledge.
During training, we design two contrastive learning tasks to help
the model comprehend the structure of item identifiers. Consid-
ering that each token represents an individual set of items, each
identifier token has distinct semantics. The hierarchical relation-
ship and inter-token dependency are inherent properties of such
tree-structured indices. However, relying solely on user-item inter-
actions for learning these complicated associations is challenging.
It is necessary to introduce additional tasks to learn this structural
information. We integrate two contrastive learning tasks in addi-
tion to the generation task. The first task employs the infoNCE loss,
aligning token embeddings based on their hierarchical positions.
The second task leverages a triplet loss, instructing the model to dif-
ferentiate between similar identifiers. In this way, SEATER obtains
both efficiency and effectiveness for item retrieval in RS. Extensive
experiments across four datasets validate the effectiveness of the
proposed model.

In summary, our main contributions are as follows:
•We introduce a generative framework, SEATER, for the retrieval
phase of recommendation. We elaborate on the construction of
identifiers, structural optimization based on contrastive learning.

• Utilizing two contrastive learning tasks, the model captures the
semantics of the tokens and the hierarchies within the tree structure.
Both tasks optimize identifiers’ structures.
• The balanced 𝑘-ary tree structure ensures consistent semantic
granularity for tokens at the same level and significantly reduces
inference time compared with other tree-structured methods.
• Extensive experiments1 on three public datasets and an industrial
dataset have demonstrated that SEATER significantly outperforms
several state-of-the-art (SOTA) methods, including dual-encoder,
tree-based indexing, and generative methods.

2 RELATEDWORK

Retrieval in Recommender Systems. In RS, the retrieval phase
selects a subset of items from a vast corpus. For efficiency, the in-
dustry often uses dual-encoder models to represent users and items
as vectors [3–5, 16, 18, 29]. And user preferences towards items
are estimated through the inner product of vectors, which can be
accelerated by ANN search for inference. The initial dual-encoder
models represented users with a single vector [5, 9, 13]. Subsequent
studies [3, 4, 16, 29], observed the limitations of expressing with
a finite-length single vector and introduced multi-vector user in-
terest modeling, continuing to utilize ANN search for inference.
An alternate research direction aims to enable more intricate mod-
els with complex interaction estimation. TDM [33] and JTM [32]
proposed by Alibaba involve tree-based indexing with advanced
deep models, thereby facilitating more accurate estimation. RecFor-
est [6] constructs a forest by creating multiple trees and integrates a
transformer-based structure for routing operations. Similar to those
studies, this paper seeks to retrieve items in a generative manner
and optimize item identifiers from the indices perspective.

Generative Retrieval. In document retrieval, researchers have
investigated using pre-trained language models to generate various
types of document identifiers. For example, DSI [24] and NCI [26]
utilize the T5 [20] model to produce hierarchical document IDs,
while SEAL [2] (with BART [15] backbone) and ULTRON [31] (us-
ing T5) use titles or substrings as identifiers. AutoTSG [28] and
NOVO [27], also based on T5, employ term-sets and n-gram sets
as identifiers. There are studies exploring the identifier structures,
such as GenRet [23] and LTRGR [17]. Generative document retrieval
has been expanded to various fields. IRGen [30] uses a ViT-based
model for image search, while TIGER [21] employs the T5-based
architecture for RS. However, due to the resource-intensive nature
of multiple transformer layers, these studies are ill-suited for large-
scale item retrieval in RS. Different from them, this paper delves
into the use of more parameter-efficient models for generative re-
trieval in such systems. Also, there are previous works utilizing
the generative nature of language models for recommendation, in-
cluding P5 [7, 10], TIGER [21], and GPTRec [19]. These approaches,
after establishing item identifiers, also known as codebooks, do
not optimize these identifiers’ structures. Ideally, the models would
optimize the identifiers related to corresponding indices. Towards
this end, this paper learns the inherent hierarchy and relationships
of identifier structures with the help of contrastive learning.

1Implementations available at this link (https://github.com/Ethan00Si/SEATER_
Generative_Retrieval).

155

https://github.com/Ethan00Si/SEATER_Generative_Retrieval
https://github.com/Ethan00Si/SEATER_Generative_Retrieval

Generative Retrieval with Semantic Tree-Structured Identifiers and Contrastive Learning SIGIR-AP ’24, December 9–12, 2024, Tokyo, Japan

<EOS>

<SOS> 13 15 8

13 15 8

Interaction history of user u Identifier of item v

Share

Weights

x = [G1, · · · , GC]

~ = [~1, · · · , ~;]

1

x = [G1, · · · , GC]

~ = [~1, · · · , ~;]

1

Figure 1: A brief illustration of SEATER. The retrieval model
encodes the interacted items 𝒙 = [𝑥1, 𝑥2, · · · , 𝑥𝑡] of user 𝑢 and
decodes the identifier 𝒚 = [𝑦1, 𝑦2, · · · , 𝑦𝑙] of item 𝑣 .

3 Method
In this section, we elaborate on the proposed model, detailing its
model architecture, training, and inference stages.

3.1 Overview
Suppose a user 𝑢 ∈ U accesses a retrieval system, and the system
returns a list of candidates with each item 𝑣 ∈ I, where U and
I denote the entire sets of users and items respectively. Let’s use
𝒙 = [𝑥1, · · · , 𝑥𝑡] ∈ X to denote the historically interacted items
of user 𝑢. In generative retrieval, the identifier of each item 𝑣 ∈ I
is represented as a token sequence 𝒚 = [𝑦1, · · · , 𝑦𝑙] ∈ Y, where 𝑙
is the length of the identifier. The goal of the generative retrieval
model is learning a mapping 𝑓 : X → Y, which takes a user’s
interacted item sequence as input and generates a sequence of
tokens (candidate identifiers).

As shown in Figure 1, the retrieval model feeds the user’s be-
havior 𝒙 into the encoder. Following this, the decoder employs an
auto-regressive method to generate the item identifier 𝒚 step by
step. The probability of interaction between user 𝑢 and item 𝑣 is
estimated as:

𝑝 (𝑢, 𝑣) =
𝑙∏

𝑖=1
𝑝 (𝑦𝑖 |𝒙, 𝑦1, 𝑦2, . . . , 𝑦𝑖−1) (1)

where 𝑙 denotes the length of item identifiers. To assign items with
semantic representations, we convert all items into uniform-length
identifiers, as depicted in Figure 2 (a). Identifier tokens capture
item information from coarse to fine granularity, spanning from
the beginning to the end. We use a multi-task learning approach
to optimize both the model and identifiers, as depicted in Figure 2.
The sequence-to-sequence task directs the model to generate valid
identifiers, while the two contrastive learning tasks aid in grasping
semantics and relationships among identifier tokens.

3.2 Retrieval Model
3.2.1 Encoder-Decoder Architecture. For the retrieval model, we
employ the standard Transformer architecture [25]. Detailed Trans-
former structure specifics are omitted for brevity.

We leverage the Transformer encoder to capture user interests
from behavior sequences:

X = Encoder(𝑥1, 𝑥2, · · · , 𝑥𝑡), (2)

where X ∈ R𝑡×𝑑 denotes the encoder hidden states of user interac-
tion history 𝒙 = [𝑥1, 𝑥2, · · · , 𝑥𝑡], 𝑡 denotes the number of interacted
items. The embeddings of 𝑡 items serve as inputs to the encoder.

We exploit the Transformer decoder to model user-item interac-
tion and predict the interaction probability in an auto-regressive
manner. The decoder’s hidden states are calculated as follows:

Y = Decoder(𝒙, 𝑦1, 𝑦2, . . . , 𝑦𝑙), (3)

where Y ∈ R𝑙×𝑑 denotes the decoder hidden states of item identi-
fier 𝒚 = [𝑦1, 𝑦2, · · · , 𝑦𝑙], 𝑙 is the length of the item identifier. The
embeddings of identifiers serve as inputs to the decoder.

In our study, we refrained from stacking numerous Transformer
layers, e.g., 12 Transformer blocks in T5-Base [20]. We used just one
layer to maintain efficiency in large-scale item retrieval contexts. In
Section 5.5, we show that more layers indeed help the performance,
with potential loss of efficiency.

The probability at step 𝑖 can be modeled by softmax value of the
𝑖-th decoder hidden state y𝑖 and candidate tokens C:

𝑝 (𝑦𝑖 |𝒙, 𝑦1, 𝑦2, . . . , 𝑦𝑖−1) =
exp(y⊺𝑖 e𝑦𝑖)∑

𝑦𝑖′ ∈C exp(y⊺𝑖 e𝑦𝑖′)
, (4)

where y𝑖 ∈ R𝑑 denotes the 𝑖-th vector in Y ∈ R𝑙×𝑑 , e𝑦𝑖 ∈ R𝑑 de-
notes the embedding for token𝑦𝑖 , and𝐶 is the set of all possible next
tokens of size 𝑘 given the prefix [𝑦1, 𝑦2, . . . , 𝑦𝑖−1]. This approach es-
timates interaction probability through product probabilities. The
cross-attention mechanism and the decoder structure provide a
comprehensive capture of interaction estimation beyond the in-
ner product of dual-encoder models. Likewise, user interests are
represented using a matrice X that incorporates the full historical
sequence, as opposed to limited-length vectors. This method signif-
icantly improves the expressive power for user interests compared
to the dual-encoder models.

3.2.2 Item Identifiers. Considering SEATER retrieves items using
identifiers, the identifiers’ construction is crucial. We have estab-
lished a balanced tree structure to provide equal-length identifiers
for the retrieval task, which offers numerous advantages.

SEATER utilizes a balanced 𝑘-ary tree structure to construct
identifiers for items within set I. To incorporate prior knowledge,
we leverage a hierarchical clustering method with the constrained
k-means [1] algorithm, to convert items into identifiers. Given an
item set 𝐼 to be indexed, we recursively cluster items into equal-
size 𝑘 groups until each group has fewer than 𝑘 items. Detailed
identifier tree construction can be found in Algorithm 1. We employ
item embeddings 𝑋1:𝑁 extracted from trained SASREC [13] as the
foundation for hierarchical clustering, leading to identifiers with
collaborative filtering insights. We assign unique tokens for each
clustered node because each node represents distinct item sets. We
present a toy example to clarify our method. As shown in Figure 2
(a), a mouse, the 8-th item in set I, is mapping into the identifier
[13, 15, 8], where special tokens (start and end) are omitted. For
instance, as shown in Figure 2 (a), token ‘8’ representing item 8 and
token ‘15’ denoting items 7 and 8. Tokens’ semantic granularity

156

SIGIR-AP ’24, December 9–12, 2024, Tokyo, Japan Zihua Si et al.

Algorithm 1: Constructing equal-length identifiers.
Input: Item embeddings 𝑋1:𝑁 , number of items 𝑁 , number of branches 𝑘 .
Output: Semantic item indexes 𝐿1:𝑁

1 Function ConstructIdentifiers(𝑋) :
2 # Min(Max) size of each cluster
3 MinSize← ⌊|𝑋 |/𝑘 ⌋, MaxSize← ⌊|𝑋 |/𝑘 ⌋ + 1
4 𝐶1:𝑘 ← Constrained-Kmeans(𝑋 , MaxSize, MinSize)
5 𝐽 ← empty list
6 # Recursively clustering for each cluster
7 For 𝑖 = 0 to 𝑘 − 1 do
8 𝐽𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← [𝑖] * |𝐶𝑖+1 |
9 if |𝐶𝑖+1 | > 𝑘 then

10 𝐽𝑟𝑒𝑠𝑡 ← ConstructIdentifiers(𝐶𝑖+1)
11 else
12 𝐽𝑟𝑒𝑠𝑡 ← [0, . . . , |𝐶𝑖+1 | − 1]
13 end if
14 𝐽𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ← ConcatString(𝐽𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝐽𝑟𝑒𝑠𝑡)
15 𝐽 ← 𝐽 .AppendElements(𝐽𝑐𝑙𝑢𝑠𝑡𝑒𝑟)
16 𝐽 ← ReorderToOriginal(𝐽 , 𝑋, 𝐶1:𝑘)
17 # Upon finishing clustering, assign unique IDs for each tree node
18 if |𝑋 | = 𝑁 then
19 𝑖 ← 𝑁 + 1, visited← empty dict, 𝐿 ← 𝐽 .copy()
20 For 𝑟 = 1 to 𝑁 do
21 # Each leaf node is encoded using its item ID
22 𝐿𝑟,last column ← 𝑟
23 # Assign IDs to all non-leaf nodes
24 For 𝑙 = 1 to penultimate column do
25 if 𝐽𝑟,1:𝑙 in visited then
26 𝐿𝑟, 𝑙 ← visited(𝐽𝑟,1:𝑙)
27 else
28 𝐿𝑟, 𝑙 ← 𝑖 , visited(𝐽𝑟,1:𝑙)← 𝑖
29 𝑖 ← 𝑖 + 1
30 end if
31 return 𝐿

differs by layer: the leaf layer conveys item-specific details, the
penultimate layer captures information from a set of 𝑘 items, and
the topmost token embodies the whole item set’s semantics. Thus,
we allocate unique embeddings to individual tokens.

Formally, we embed all identifiers and items in an embedding
table E ∈ R𝑀×𝑑 , where 𝑀 is the number of identifier tokens. In
other words, each tree node has unique token embedding. Note that
the identifier tokens at the leaf layer have a one-to-one correspon-
dence with items. We share embeddings between these tokens and
items. Given 𝑁 as the item count, our identifiers add (𝑀−𝑁)𝑑 extra
embeddings compared to item embeddings. The fact 𝑀 − 𝑁 ≪ 𝑁
causes an affordable increase in space overhead. See Section 4.2 for
details.

Our construction method offers several distinct advantages: (1)
All items are mapped into equal-length identifiers due to the bal-
anced tree structure. The equal-length identifiers ensure that tokens
at the same level possess consistent hierarchical semantics. In an
imbalanced tree, an item’s identifier might end at the third level
while another extends to the fifth. This causes varied semantic
granularity among third-level tokens. Furthermore, a balanced tree
ensures shorter maximum identifier lengths (tree depth) than an
imbalanced tree. This results in faster inference speed and equiva-
lent processing time for all items, validated in Section 4.2. (2) We
build the identifier tree with item embeddings from a different re-
trieval model. Using item embeddings informed by collaborative

<SOS> <EOS>

(b) Generation Loss

generate

Pulling

13 15 8

13

15

8

13 15 8

13

generate

14 5

12 410

> >
>

1 2 3 4 5 6 7 8

11 12 14 15

13

9

10

(c) Alignment Loss

(d) Ranking Loss

10

11

1

Pushing

in-batch
negative
samples

rank(~+|x)

rank(~�1 |x)

rank(~�2 |x)

~+

~�1

~�2

1

rank(~+|x)

rank(~�1 |x)

rank(~�2 |x)

~+

~�1

~�2

1

rank(~+|x)

rank(~�1 |x)

rank(~�2 |x)

~+

~�1

~�2

1

rank(~+|x)

rank(~�1 |x)

rank(~�2 |x)

~+

~�1

~�2

1

rank(~+|x)

rank(~�1 |x)

rank(~�2 |x)

~+

~�1

~�2

1

rank(~+|x)

rank(~�1 |x)

rank(~�2 |x)

~+

~�1

~�2

1

rank(~+|x)

rank(~�1 |x)

rank(~�2 |x)

~+

~�1

~�2

1

rank(~+|x)

rank(~�1 |x)

rank(~�2 |x)

~+

~�1

~�2

1

rank(~+|x)

rank(~�1 |x)

rank(~�2 |x)

~+

~�1

~�2

1

Granularity

coarse to fine

Item
level

(a) Item Identifiers

Positive

Negative

<SOS>

Figure 2: The proposed tree-structured identifiers and multi-
task learning scheme. (a) An example of a balanced 𝑘-ary tree
structure of item identifiers. Here 𝑘 equals 2 for simplicity.
In practice, 𝑘 can be any integer ≥ 2. ‘9’ denotes the start
token. Each tree node corresponds to an unique token. (b)−(d)
denote three losses for different tasks. (b) Generation Loss:
guide the model to decode item identifiers. (c) Alignment
Loss: grasp semantics and hierarchies of tokens. (d) Ranking
Loss: differentiate between similar identifiers.

filtering, the identifiers effectively capture prior knowledge for rec-
ommendations. As shown in Figure 2 (a), items like ‘mouse’ and
‘computer’, which have similar user interactions, tend to have simi-
lar identifiers, i.e., the prefix [13, 15]. Detailed empirical analyses in
Section 5.4.1 have verified the strengths of our semantic identifiers.
Importantly, using these embeddings doesn’t add extra training
loads. This aligns with industry practices where multiple models
are used for multi-path retrieval, so there’s no added training cost
beyond SEATER. For instance, a company may simultaneously em-
ploy models like SASRec [13] and SEATER. Hence, using SASRec
embedding does not necessitate additional overhead.

3.3 Training
Traditional recommendation models rely on user-item interaction
data for training. In generative retrieval, where both the model and
indices (item identifiers) are trained, we should also consider the
indices’ structure for training. To tackle this, we propose a multi-
task learning scheme with two contrastive learning tasks and a
generation task, as shown in Figure 2.

3.3.1 Generation Loss. We formulate the retrieval task as a sequence-
to-sequence generation task for decoding item identifiers. To gener-
ate valid item identifiers, following [24, 26], we employ the sequence-
to-sequence cross-entropy loss with teacher forcing. As depicted
in Figure 2 (b), given a training sample (𝒙,𝒚), the loss function can
be written as follows:

Lgen = −
𝑙∑︁

𝑖=1
log 𝑝 (𝑦𝑖 |𝒙, 𝑦1, 𝑦2, . . . , 𝑦𝑖−1), (5)

where 𝒙 denotes the user history, and𝒚 denotes the next interacted
item’s identifier.

157

Generative Retrieval with Semantic Tree-Structured Identifiers and Contrastive Learning SIGIR-AP ’24, December 9–12, 2024, Tokyo, Japan

3.3.2 Alignment Loss. Given that each token has distinct semantics
and inter-token relationships exist, we utilize contrastive learning to
learn identifiers from the indices perspective.

As depicted by the tree-structured identifiers in Figure 2, the
parent token (e.g., 15) encapsulates its child tokens (e.g., 7 and 8), as
one can only access the child tokens through the parent token. In
tree-building, we group items into 𝑘 clusters to form 𝑘 child tokens.
Thus, semantically, the parent token should align closely with the
centroid of its child tokens. For instance, token 15 represents items
7 and 8, while token 14 represents items 5 and 6. Towards this end,
we devise a contrastive learning objective shown in the Figure 2
(c). Given a token 𝑗 , we employ the infoNCE loss to minimize the
distance between it and its parent token 𝑝 , while maximizing the
distance between it and the in-batch negative instances:

Lali = − log
exp(cos(e𝑗 , e𝑝)/𝜏)∑

𝑘∈B\𝑗 exp(cos(e𝑗 , e𝑘)/𝜏)
, (6)

where temperature 𝜏 is a hyper-parameter. The parent token 𝑝 is
viewed as the positive instance for token 𝑗 . Other tokens in the
same batch B, excluding the child and parent of 𝑗 , are viewed
as negatives. This loss pulls the representations of tokens with
parent-child relationships closer and pushes the representations of
unrelated tokens apart.

3.3.3 Ranking Loss. The generative model compares candidate
identifiers during inference (Section 3.4). Different identifier to-
kens index various items. In this way, the model needs to discern
subtle differences between similar identifiers. We select identifiers
with varying prefix lengths compared to the ground truth to guide
the model in ranking them using a contrastive learning task. The
varying prefix lengths imply the distinction of different identifiers
within hierarchies.

For each ground truth identifier 𝒚+, we randomly sample 𝑞 simi-
lar identifiers, denoted as 𝒚−1 ,𝒚

−
2 , · · · ,𝒚−𝑞 . For simplicity, in 𝒚−1 , the

‘1’ denotes the first negative sample and not the first position of
the identifier. We select 𝑞 samples with 𝑞 different shared prefix
lengths from 𝒚+. These samples indicate related items with diverse
similarity levels. For instance, as illustrated in Figure 2 (d) with
𝑞 = 2, 𝒚−1 shares one token with 𝒚+, whereas 𝒚−2 shares none. In
practice, we sample identifiers with more than two different tokens
with 𝒚+. Then, we teach the model to rank these 𝑞 + 1 identifiers.

In specific, for each sample (𝒙,𝒚), we can get the representation
vector of encoder hidden states z𝑥 ∈ R𝑑 and decoder hidden states
z𝑦 ∈ R𝑑 :

z𝑥 = MEAN(X), z𝑦 = MEAN(Y), (7)

where MEAN denotes the mean pooling, X and Y are obtained from
equation 2 and 3 respectively. After obtaining hidden states, we rank
different identifiers in pairs to instruct the model on the ranking
order among these 𝑞+1 identifiers. The paired identifiers constitute
the set Q, where |Q| = 𝐶2

𝑞+1. For any pair (𝒚†,𝒚‡) in Q, we rank
the sample with more identical prefix tokens with 𝒚+ higher. For
example, as shown in Figure 2 (c), we rank 𝒚+ higher than 𝒚−1 , 𝒚+
higher than 𝒚−2 , and 𝒚−1 higher than 𝒚−2 . In detail, we employ the
triplet loss to steer the model toward learning the desired ranking
orders:

Table 1: Time and space complexities analyses. We consider
the beam search procedure for time complexity and the size
of item identifiers for space complexity.

Models Inference Time Identifier Size
TDM [33] O(𝑏 log2 𝑁) O (𝑁𝑑)
RecForest [6] O(𝑇𝑏𝑘 log𝑘 𝑁) O (𝑇𝑘𝑑)
DSI [24] O(𝑏𝑘𝐿) O (𝑘𝑑)
NCI [26] O(𝑏𝑘𝐿) O (𝑘𝐿𝑑)
SEATER O(𝑏𝑘 log𝑘 𝑁) O (𝑁𝑑)

DSI&NCI: In the worst case, 𝐿 equals 𝑁
𝑘

, resulting in O(𝑏𝑘𝐿) deterio-
rating to O(𝑏𝑁) . Empirically, 𝐿 is 𝑐 log𝑘 𝑁 , where 𝑐 lies between 2 and
4, resulting in an inference time 𝑐 times that of SEATER.
𝑁 : the number of items; 𝑘 : the number of branches; 𝑑 : the item embed-
ding size; 𝑏: the beam size, 𝐿: the depth of tree in DSI and NCI;𝑇 : the
number of trees in RecForest

Lrank =
∑︁

(𝒚†,𝒚‡) ∈Q
max

{
0, 𝑠 (z𝑥 , z𝑦†) − 𝑠 (z𝑥 , z𝑦‡) + 𝜉

}
, (8)

where 𝑠 is a similarity function, and 𝜉 denotes a positive margin
value. Here, we use 𝒚‡ to denote the sample with more tokens
in common with 𝒚+, and 𝒚† for the one with fewer. We set 𝜉 as
an adaptive value, 𝜉 = 𝛽 ∗ (num(𝒚‡) − num(𝒚†)), to reflect rank
differences in different pairs, where 𝛽 is a hyper-parameter set to a
small positive value, and num(𝒚) denotes the number of identical
tokens between 𝒚 and 𝒚+. The function 𝑠 is defined as: 𝑠 (p, q) =
𝜎 (p𝑇W𝑠q), where 𝜎 denotes the sigmoid activation function, and
the introduction of parameters W𝑠 ensures the similarity estimation
can be more flexible.

3.3.4 Multi-task Training. Finally, we train our model in an end-
to-end manner under a multi-task learning scheme:

L = Lgen + 𝜆𝑎Lali + 𝜆𝑟Lrank . (9)
where 𝜆𝑎 and 𝜆𝑟 are hyper-parameters to balance different tasks.
We also introduce 𝐿2 regularization to avoid over-fitting, which is
omitted here for conciseness.

3.4 Inference
In the inference phase, our objective is to extract the top 𝑛 items
from the entire candidate set. To achieve this, we employ a con-
strained beam search mechanism on the decoder module, specifically
targeting tree-based identifiers, following NCI [26]. This ensures
that the model’s decoding aligns with the designated prefix tree,
yielding valid identifiers.

4 Discussion
In this section, we compare SEATER with related previous work.

4.1 Comparison with Existing Work
Generative retrieval is an emerging research direction. We are at the
forefront of incorporating the optimization of identifier structural
information into the training phase of RS.

DSI [24] and NCI [26] pioneer in learning a generative model
to map a string query to relevant docids for document retrieval.

158

SIGIR-AP ’24, December 9–12, 2024, Tokyo, Japan Zihua Si et al.

They discover that tree-structured identifiers can establish struc-
tured information for candidate sets. TIGER [21], GPTRec [19],
and P5 [7, 11] employ text, user-item interactions, or historical
sequences as prior knowledge, utilizing distinct indexing methods,
e.g., RQ-VAE and SVD. They consider the structure of identifiers in
the construction phase, yet neglect it during the training process.
The user-item interactions are insufficient for the model to learn
complex structured information. SEATER optimizes structured in-
formation based on these findings. We construct a balanced tree
to map items to equal-length identifiers, ensuring semantic con-
sistency at each layer and enabling more efficient inference with
reduced tree depth. We also introduce two contrastive learning tasks
to the model training to aid in understanding the structure of the
identifiers. Furthermore, SEATER achieves superior performance
with just 1 transformer layer (with more parameters, SEATER can
be better, as shown in Section 5.5), whereas previous works required
multiple layers, such as TIGER with 4 layers and P5 with 6 layers.

4.2 Efficiency Analyses
We list complexity analysis of representative works with tree-
structured identifiers in Table 1, validating that structures of item
identifiers in SEATER are more efficient.

Regarding space complexity, our emphasis is on the storage
cost of identifiers. Given that current recommendation systems
inherently require storing an item embedding table of size 𝑁𝑑 (𝑁 :
the item count), our evaluation concentrates on the extra space
introduced by identifiers. In SEATER, identifiers’ leaf tokens share
embeddings of corresponding items; only non-leaf tokens add to
additional space overhead. Due to the structure of a balanced tree,
the number of non-leaf tokens can be cumulatively calculated per
layer: 1 + 𝑘 + 𝑘2 · · · + ⌈

𝑁
𝑘
⌉

𝑘 + ⌈𝑁𝑘 ⌉ =
𝑘 ⌈ 𝑁

𝑘
⌉−1

𝑘−1 . If 𝑁 is the power

of 𝑘 , then 𝑘 ⌈ 𝑁
𝑘
⌉−1

𝑘−1 = 𝑁−1
𝑘−1 . In our experiments, 𝑘 is set to 8 or

16. Consequently, the additional space cost 𝑁−1
𝑘−1 𝑑 introduced by

identifiers is significantly smaller compared to 𝑁𝑑 (size of item
embedding table).

To reduce time complexity, we leverage beam search during de-
coding. In real-world applications, intermediary encoder outputs
in SEATER can be efficiently precomputed and stored, as shown
in previous works. The bottleneck during inference is the beam
search over identifiers. Compared to TDM’s binary tree and Rec-
Forest’s multiple trees, SEATER evidently shows an advantage in
inference speed, as denoted in Table 1. Although DSI and NCI share
a similar tree construction method with SEATER, their inference
steps often amount to several times greater than SEATER. Due to
their utilization of an imbalanced tree structure for identifiers, the
max length of identifiers often is a constant multiple of log𝑘 𝑁 ,
and the max length critically influences inference speed. Therefore,
SEATER demonstrates a superior inference time relative to other
tree-based and generative models.

5 Experiment
5.1 Experimental Setup
We adhere to standard practices [3, 6, 29, 33] for item retrieval by
choosing suitable datasets, baselines, and evaluation metrics.

Table 2: Statistics of three public and one industrial datasets.

Dataset #Users #Items #Interactions Density
Yelp 31,668 38,048 1,561,406 0.130%
News 50,000 39,865 1,162,402 0.050%
Books 459,133 313,966 8,898,041 0.004%
Micro-Video 0.75 million 6.1 million 85 million 0.002%

5.1.1 Dataset. Table 2 reports basic statistics of all the datasets.
We have selected the following three public datasets: 1) Yelp2: This
dataset is adopted from the 2018 edition of the Yelp challenge. The
dataset encompasses business activities that occurred on the Yelp
platform. 2) Books3: The Amazon review dataset [8] is one of
the most widely used recommendation benchmarks. We adopt the
‘Books’ subset. 3) News4: The MIND dataset is a benchmark for
news recommendation. It is collected from the behavior logs of the
Microsoft News website. We adopt the ‘MIND-small’ subset.

To evaluate our model in a real-world situation, we collected
an industrial large-scale dataset from a commercial app. 4) Micro-
Video: we randomly selected 0.75 million users who used a micro-
video app over two weeks in 2023. The historical behaviors have
been recorded. Unlike other public datasets, this industrial dataset
has not undergone any filtering and exhibits high sparsity that
aligns with real industrial scenarios.

5.1.2 Evaluation Metrics & Protocal. Following the common prac-
tices [3, 6, 29], we divide each dataset into three parts, i.e., train-
ing/validation/test sets by partitioning the users in a ratio of 8:1:1.
For evaluation, we take the first 80% historical behaviors as context
and the remaining 20% as ground truth. We strictly adhere to the
evaluation framework in [3]. Please refer to [3] for details. As for
metrics, we employ three widely used metrics, including Hit Ratio
(HR), Normalized Discounted Cumulative Gain (NDCG)5, and Recall
(R). Metrics are calculated based on the top 20/50 recommended can-
didates (e.g., HR@20). We calculated them according to the ranking
of items and reported the average results.

5.1.3 Baseline and Implementation Details. We compare our model
with SOTA models for item retrieval. The mainstream models com-
monly adopt a dual-encoder architecture: (1) YoutubeDNN (ab-
breviated as Y-DNN) [5]; (2) GRU4Rec [9]; (3) MIND [16]; (4)
ComiRec [3] (the ComiRec-SA variant); (5) SASREC [13]; (6)
BERT4REC [22]; (7) Re4 [29]; We also include models with tree-
based indexing : (8) TDM [33]; (9) RecForest [6]; Furthermore,
we include latest generative recommendation models: (10) GP-
TRec [19] (the GPTRec-TopK variant); (11) TIGER [21] (imple-
mented with 4 layers, the same as the original paper).

We also compare SEATER with DSI and NCI. Since DSI and
NCI are primarily designed for search, leveraging textual query
information as encoder input and built upon T5, they are not di-
rectly suitable for recommendation settings. SEATER’s distinction
with them stems from its approach to employing identifiers and
the additional losses. To compare with DSI and NCI, we adapted

2https://www.yelp.com/dataset
3http://jmcauley.ucsd.edu/data/amazon/
4https://msnews.github.io/
5We compute the values based on the official definition of NDCG [12], while a few
existing works do not. Details in https://github.com/Ethan00Si/SEATER_Generative_
Retrieval/blob/main/Disccussion_of_NDCG.md

159

https://www.yelp.com/dataset
http://jmcauley.ucsd.edu/data/amazon/
https://msnews.github.io/
https://github.com/Ethan00Si/SEATER_Generative_Retrieval/blob/main/Disccussion_of_NDCG.md
https://github.com/Ethan00Si/SEATER_Generative_Retrieval/blob/main/Disccussion_of_NDCG.md

Generative Retrieval with Semantic Tree-Structured Identifiers and Contrastive Learning SIGIR-AP ’24, December 9–12, 2024, Tokyo, Japan

Table 3: Performance comparison on three public datasets and an industrial dataset. The best and the second-best performances
are denoted in bold and underlined fonts, respectively. * indicates significant improvements with p-value < 0.05. In this table,
SEATER uses a single layer of encoder-decoder. The performance of SEATER is further improved with more layers of encoder-
decoder, as shown in Section 5.5.

Datasets Metric Dual-encoder Tree-based Indexing Generative

Y-DNN GRU4Rec MIND ComiRec SASREC BERT4REC Re4 TDM RecForest GPTRec TIGER SEATER

Yelp

NDCG@20 0.0412 0.0426 0.0414 0.0381 0.0466 0.0458 0.0362 0.0414 0.0434 0.0440 0.0539 0.0572∗
NDCG@50 0.0613 0.0628 0.0611 0.0581 0.0699 0.0688 0.0595 0.0610 0.0646 0.0653 0.0769 0.0810∗
HR@20 0.3366 0.3467 0.3502 0.3263 0.3711 0.3746 0.3263 0.3493 0.3503 0.3487 0.4087 0.4201
HR@50 0.5396 0.5507 0.5409 0.5319 0.5799 0.5774 0.5468 0.5439 0.5512 0.5527 0.5922 0.6118∗
R@20 0.0511 0.0529 0.0522 0.0508 0.0594 0.0590 0.0462 0.0524 0.0549 0.0559 0.0679 0.0720∗
R@50 0.1045 0.1071 0.1046 0.1034 0.1206 0.1204 0.0976 0.1040 0.1110 0.1121 0.1271 0.1353∗

News

NDCG@20 0.0782 0.0836 0.0803 0.0753 0.0871 0.0829 0.0821 0.0830 0.0811 0.0813 0.0919 0.0942
NDCG@50 0.1047 0.1114 0.1076 0.1011 0.1142 0.1072 0.1107 0.1067 0.1068 0.1065 0.1182 0.1225∗
HR@20 0.3772 0.3872 0.3854 0.3738 0.3905 0.3640 0.3896 0.3821 0.3687 0.3731 0.4019 0.4070
HR@50 0.5374 0.5480 0.5328 0.5279 0.5548 0.5210 0.5392 0.5248 0.5299 0.5305 0.5531 0.5747∗
R@20 0.1192 0.1335 0.1282 0.1287 0.1383 0.1275 0.1292 0.1280 0.1270 0.1324 0.1408 0.1456∗
R@50 0.2057 0.2287 0.2136 0.2163 0.2304 0.2099 0.2236 0.2080 0.2142 0.2182 0.2292 0.2429∗

Books

NDCG@20 0.0243 0.0192 0.0233 0.0250 0.0402 0.0352 0.0397 0.0235 0.0411 0.0271 0.0468 0.0592∗
NDCG@50 0.0319 0.0260 0.0291 0.0331 0.0531 0.0457 0.0494 0.0330 0.0494 0.0373 0.0573 0.0713∗
HR@20 0.0977 0.0820 0.0861 0.1169 0.1661 0.1374 0.1455 0.1101 0.1347 0.1181 0.1637 0.2006∗
HR@50 0.1574 0.1354 0.1301 0.1788 0.2553 0.2124 0.2163 0.1832 0.1978 0.1962 0.2380 0.2813∗
R@20 0.0447 0.0361 0.0402 0.0574 0.0793 0.0679 0.0712 0.0475 0.0625 0.0533 0.0766 0.0972∗
R@50 0.0750 0.0626 0.0618 0.0890 0.1298 0.1088 0.1092 0.0849 0.0951 0.0938 0.1179 0.1448∗

Micro-Video

NDCG@20 0.0149 0.0202 0.0195 0.0211 0.0205 0.0197 0.0235 0.0201 0.0189 0.0187 0.0230 0.0350∗
NDCG@50 0.0186 0.0254 0.0244 0.0289 0.0253 0.0238 0.0293 0.0240 0.0214 0.0221 0.0279 0.0406∗
HR@20 0.1589 0.1991 0.1876 0.2198 0.2151 0.1951 0.2251 0.1980 0.1789 0.1877 0.2223 0.2824∗
HR@50 0.2728 0.3287 0.3027 0.3567 0.3424 0.3159 0.3624 0.3077 0.2898 0.2928 0.3576 0.4037∗
R@20 0.0118 0.0186 0.0175 0.0199 0.0191 0.0167 0.0231 0.0190 0.0178 0.0166 0.0211 0.0310∗
R@50 0.0269 0.0383 0.0357 0.0403 0.0391 0.0338 0.0451 0.0342 0.0322 0.0331 0.0418 0.0566∗

SEATER by omitting the supplementary losses and adopting iden-
tifier structures from DSI and NCI. Detailed experimental results
can be found in Table 4 and Section 5.3.

For baselines, we tune the hyper-parameters following the sug-
gestions in the original papers. For SASREC and the five dual-
encoder models, we train them using the sampled softmax loss [3],
commonly adopted for the matching phase, setting the negative
sample size to 1280. For other baseline models, we adopt the loss
functions and training procedures described in the original pa-
pers. For all models, the dimension of item embeddings is set to 64.
All the dual-encoder and transformer-based models make predic-
tions based on brute-force retrieval, which involves calculating
the probability over all items. For fair competition, we use the same
item embeddings to build indexes for both SEATER and RecForest.
Considering that TIGER requires using item text information to
construct codebooks, and only the MIND dataset provides texts of
items, we leveraged the SASREC embeddings for other datasets.
As for TDM, RecForest, and SEATER, they predict based on beam
search over item indexes, where we set the beam size to 50 for all
of them.

We tune the hyper-parameters of SEATER as follows: the number
of layers for encoder and decoder is set to 1; the values of loss
coefficients, i.e., 𝜆𝑎 and 𝜆𝑟 , are searched from [1e-2, 9e-2] with step
2e-2; the 𝐿2 regularization weight is searched from [1e-4, 1e-5, 1e-6,
1e-7]; the number of tree branches 𝑘 is searched in [2, 4, 8, 16, 32];

the number of sampled identifiers 𝑞 is set to 4; the margin value 𝛽 is
searched in [0.01, 0.001, 0.0001]. We use Adam [14] for optimization
with a learning rate of 0.001, and adopt the early stop training to
avoid over-fitting. We provided code and data at an anonymous link
(https://github.com/Ethan00Si/SEATER_Generative_Retrieval).

5.2 Overall Performance
Table 3 reports the overall performance on the four datasets. We
have the following observations:
• SEATER achieves the best performance on all datasets.
SEATER consistently outperforms baselines of various types by
a large margin. Specifically, the relative improvements in R@50
on the Yelp, News, Books, and Micro-Video datasets are 6.45%,
5.43%, 11.56%, and 25.50%, respectively. These results underscore
SEATER’s effectiveness.
• SEATER significantly outperforms dual-encoder models
and tree-based indexing models. Compared with dual-encoder
models like SASREC, SEATER’s improvement primarily stems from
its generative decoding method, which models interaction proba-
bilities more precisely than the inner product used by dual-encoder
models. SEATER’s improvement over models like ComiRec and Re4,
which use multiple vectors to express user interests, confirms that
expressing user interests through behavioral sequences provides a
more comprehensive and thorough representation than using com-
pressed vectors. Additionally, SEATER surpasses models employing

160

https://github.com/Ethan00Si/SEATER_Generative_Retrieval

SIGIR-AP ’24, December 9–12, 2024, Tokyo, Japan Zihua Si et al.

Table 4: Ablation study on four datasets. We assess the proposed two losses and the designed identifiers. Each loss contributes
positively to the model, as shown in the middle four rows. Using DSI and NCI’s decoder shows worse performance compared to
SEATER’s decoder structure, as shown in the last two rows.

Variants Yelp News Books Micro-Video

NDCG@50 HR@50 R@50 NDCG@50 HR@50 R@50 NDCG@50 HR@50 R@50 NDCG@50 HR@50 R@50

(0) SEATER 0.0810 0.6118 0.1353 0.1225 0.5747 0.2429 0.0713 0.2813 0.1448 0.0406 0.4037 0.0566

(1) w/o Lrank & Lali 0.0736 0.5920 0.1241 0.1142 0.5546 0.2309 0.0715 0.2770 0.1411 0.0390 0.3856 0.0514
(2) w/o Lrank 0.0748 0.6029 0.1266 0.1201 0.5687 0.2386 0.0710 0.2802 0.1433 0.0394 0.3947 0.0531
(3) w/o Lali 0.0782 0.6054 0.1317 0.1167 0.5548 0.2335 0.0721 0.2779 0.1427 0.0395 0.3931 0.0534
(0) + w/o Lrank for negatives 0.0760 0.6063 0.1298 0.1208 0.5717 0.2401 0.0714 0.2807 0.1441 0.0402 0.3965 0.0544

(1) + DSI Identifiers 0.0551 0.5019 0.0952 0.0947 0.4862 0.1919 0.0408 0.1908 0.0902 0.0225 0.2727 0.0313
(1) + NCI Identifiers 0.0618 0.5316 0.1053 0.1047 0.5145 0.2067 0.0565 0.2128 0.1024 0.0343 0.3074 0.0365

contrastive learning to enhance user interest representation, such as
Re4, validating the effectiveness of optimizing identifiers as indices.
• SEATER surpasses other generative methods in overall
comparisons. TIGER utilizes 4 layers of encoder-decoder, while
SEATER, with only 1 layer in this table, still achieves superior
performance after significantly reducing resource consumption,
validating the efficiency of SEATER. Moreover, on sparser and
larger datasets, the improvement of SEATER is larger. The results
indicate SEATER is better suitable for industrial applications. The
improvement over TIGER and GPTRec also validates the effective-
ness of enhancing the structure of item identifiers in SEATER, i.e.,
the balanced tree structure and contrastive learning tasks for un-
derstanding structural information.

5.3 Ablation Study
We evaluated the performance impact of SEATER’s components
via an ablation study. The results are reported in Table 4.

To assess the efficacy of the proposed losses Lrank and Lali, we
test the following variants: Variant (1) excludes both loss terms;
while Variants (2) and (3) remove Lrank and Lali respectively, to
study their contributions. Both loss functions demonstrate a fa-
vorable influence on the model performance. Removing either one
individually leads to a decline in overall performance. Further-
more, we advanced our investigation by eliminating the ranking
among negative samples within the ranking loss Lrank, as shown
in Equation 8. This led to the creation of Variant (0) + w/o Lrank for
negatives. The performance of this Variant exceeds that of Variant
(2) but falls short of Variant (0). This observation suggests that
the inclusion of ranking among negative samples enhances the
model’s capability. These phenomenons illustrate that these two
loss functions aid the model in comprehending the tree structure
of identifiers, such as the inter-token relationships and hierarchies
within the tokens.

To compare SEATER with DSI and NCI, we created two variants
(1) + DSI Identifiers and (1) + NCI Identifiers, based on Variant (1).
These variants leverage the imbalanced tree construction, token
embedding allocation methods, and decoder structures from DSI
and NCI. In specific, (1) + DSI Identifiers assigns 𝑘 unique token
vectors for a 𝑘-ary imbalanced tree. (1) + NCI Identifiers employs
a layer-wise assignment of token embeddings which allocates 𝑘𝐿
unique token vectors for a 𝑘-ary imbalanced tree of depth 𝐿. (1) +

Imbalanced Balanced
0.19
0.20
0.21
0.22
0.23
0.24
0.25

R
@
50

News
Random BERT SASREC

Figure 3: Different methods to construct identifiers. The col-
laborative filtering information and balanced structuremake
identifiers more informative.

NCI Identifiers also employs the PAWA decoder following the NCI
paper. Apart from these, all other variables, such as the embedding
used in building identifiers and the number of model layers, remain
consistent with SEATER for a fair comparison. A significant decline
in performance is noted in both variants compared with Variant
(1), exhibiting an average performance drop exceeding 10%. This
phenomenon validates the effectiveness of a balanced structure
and suggests that shared embeddings for identifier tokens limit
performance, especially in large-scale recommendation scenarios.

5.4 Study on Item Identifiers
5.4.1 Impact of Different Item Identifiers. To verify our statements
in Section 3.2.2, we investigated the impact of tree balance and
the utilization of different embeddings on model performance. As
for tree balance, we utilized constrained k-means for a balanced
tree and k-means for an imbalanced tree. As for embeddings used
for hierarchical clustering, we explored employing SASREC’s item
embeddings, obtaining embeddings from items’ textual descriptions
using BERT, and randomly initialized embeddings. Owing to the
exclusive presence of items’ textual descriptions in the News dataset,
we conducted experiments on this particular dataset. For BERT
embeddings, we concatenated the category, subcategory, title, and
abstract of the news articles within the News dataset to form the
input for BERT. Subsequently, we extracted the embedding of the
[CLS] token and employed it as the corresponding item embedding.
For randomly initialized embeddings, we create them with random
samples from a uniform distribution.

161

Generative Retrieval with Semantic Tree-Structured Identifiers and Contrastive Learning SIGIR-AP ’24, December 9–12, 2024, Tokyo, Japan

(2, 17) (4, 9) (8, 7) (16, 5) (32, 5)
(#Branch k, #Legnth l)

0.110

0.115

0.120

0.125

0.130

0.135
R@50

0.56

0.57

0.58

0.59

0.60

0.61

Yelp
HR@50

(2, 20)(4, 11) (8, 8) (16, 6)(32, 5)
(#Branch k, #Legnth l)

0.105

0.115

0.125

0.135

0.145

0.155 R@50

0.220

0.235

0.250

0.265

0.280

0.295
Books

HR@50

Figure 4: Impact of branch number 𝑘 , ranging from 2 to 32,
in terms of R@50 and HR@50. The corresponding identifier
length 𝑙 is also annotated.

The results are shown in Figure 3. We observed that utilizing a
balanced tree yields performance improvements compared to using
an imbalanced tree when employing identical sources of item em-
beddings. This is because a balanced tree ensures that tokens at the
same level carry consistent semantic granularity, thereby capturing
similar semantics within one layer. We also observed that employ-
ing the item embeddings from SASREC yields optimal performance.
This is attributed to its alignment with collaborative filtering in-
formation, rendering it more suitable for recommendation tasks.
Utilizing random identifiers yields the poorest performance, as it
fails to impart any information gain to the identifiers.

5.4.2 Effect of Branch Number 𝑘 . The variation in branch number
𝑘 leads to a corresponding alteration in the length 𝑙 of the item
identifier. As 𝑘 increases, 𝑙 decreases. We adjusted the size of 𝑘 and
recorded the corresponding values of 𝑙 along with the model’s per-
formance. This experiment employed two datasets, Yelp and Books,
with varying item quantities. The results are illustrated in Figure 4.
We observe that as 𝑘 increases from 2 to 8 on the Yelp dataset (or 2
to 16 on the Books dataset), the model’s performance reaches its
peak, while further increasing 𝑘 leads to a decline in performance.
The performance improvement resulting from increasing 𝑘 can be
attributed to the reduction in identifier length 𝑙 . As the beam search
for inference cannot guarantee the selection of the correct next
tokens at every step, a greater number of beam search steps (larger
𝑙) increases the probability of ultimate errors (due to cumulative
errors). The decline in model performance as 𝑘 increases from 8 to
32 on the Yelp dataset (or 16 to 32 on the Books dataset) is attributed
to the fact that 𝑙 remains relatively unchanged while 𝑘 continues to
increase. The beam search selects the top 𝑏 options from 𝑏 ∗𝑘 candi-
date results at each step. The increase of 𝑘 amplifies the difficulty of
beam search at every step, while 𝑙 results in a relatively unchanged
total number of steps. Hence, both large and small values of 𝑘 can
lead to a decline in model performance.

5.5 Analysis on Parameter Count
We investigated the impact of the number of encoder-decoder layers.
We observed distinct patterns across datasets of varying scales. The
experiments were conducted on a small-scale dense dataset, Yelp,
and a large-scale sparse dataset, Books.

As shown in the left part of Figure 5, when the number of lay-
ers increases from 1 to 3, the performance is further improved on
the Yelp dataset. However, as the model’s depth continues to in-
crease, performance gradually deteriorates. We discovered that this
phenomenon is attributed to the smaller scale of the Yelp dataset,

1 2 3 4 5
#Layers

0.127

0.130

0.133

0.136

0.139

0.142
R@50

0.600

0.604

0.608

0.612

0.616

0.620Yelp
HR@50

1 2 3 4 5
#Layers

0.140

0.145

0.150

0.155

0.160

0.165
R@50

0.280

0.286

0.292

0.298

0.304

0.310Books
HR@50

Figure 5: Analysis of the number of transformer layers.

where overfitting occurs as the model’s depth increases. As shown
in the right part of Figure 5, by increasing the model depth on the
Books dataset, there is a continuous improvement in the model’s
performance. We posit that this is because a larger parameter count
enhances the model’s expressive capability on this dataset of a
larger scale. We leave deeper models, such as those with 12 lay-
ers, for future work. Increasing the number of layers leads to a
linear growth in computational complexity. This implies that the
computational resources consumed by 2-layer and 3-layer models
can be roughly considered as 2 times and 3 times that of a 1-layer
model, respectively. Thus, considering the lower speed of deeper
models, we find that 1-layer models can strike a satisfactory balance
between performance and efficiency, as they have already attained
peak performance compared with other baselines. Deepening the
number of model layers is a promising direction for future research.

6 Conclusion
In this paper, we propose a generative retrieval model, namely
SEATER, for recommendation. With contrastive learning tasks and
balanced identifiers, SEATER achieves both efficiency and effective-
ness by enhancing the structure of item identifiers. With the help
of two contrastive learning tasks, SEATER captures the nuances of
identifier tokens, including unique semantics, hierarchies, and inter-
token relationships. Specifically, SEATER aligns token embeddings
based on their hierarchical positions using the infoNCE loss and
directs the model to rank similar identifiers in desired orders using
the triplet loss. SEATER exploits a balanced 𝑘-ary tree structure
for identifiers, leading to rational semantic space allocation and
fast inference speed. This balanced structure maintains semantic
consistency within the same level while different levels correlate to
varying semantic granularities. Detailed analyses of time and space
complexities validate the efficiency of the proposed model, enabling
its application on large-scale retrieval. Extensive experiments on
three public datasets and an industrial dataset verify that SEATER
consistently outperforms SOTA models of various types.

Acknowledgments
This work was funded by the National Key R&D Program of China
(2023YFA1008704), the National Natural Science Foundation of
China (No. 62377044), Beijing Key Laboratory of Big Data Manage-
ment and Analysis Methods, Major Innovation & Planning Interdis-
ciplinary Platform for the "Double-First Class" Initiative, funds for
building world-class universities (disciplines) of Renmin University
of China, and PCC@RUC. Supported by Kuaishou Technology. Sup-
ported by the Outstanding Innovative Talents Cultivation Funded
Programs 2024 of Renmin University of China.

162

SIGIR-AP ’24, December 9–12, 2024, Tokyo, Japan Zihua Si et al.

References
[1] K.P. Bennett, P.S. Bradley, and A. Demiriz. 2000. Constrained K-Means Clustering.

Technical Report MSR-TR-2000-65. 8 pages. https://www.microsoft.com/en-
us/research/publication/constrained-k-means-clustering/

[2] Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis, Wen tau Yih, Sebastian
Riedel, and Fabio Petroni. 2022. Autoregressive Search Engines: Generating
Substrings as Document Identifiers. In arXiv pre-print 2204.10628. https://arxiv.
org/abs/2204.10628

[3] Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, and Jie Tang.
2020. Controllable Multi-Interest Framework for Recommendation. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2942–2951.

[4] Zheng Chai, Zhihong Chen, Chenliang Li, Rong Xiao, Houyi Li, Jiawei Wu,
Jingxu Chen, and Haihong Tang. 2022. User-Aware Multi-Interest Learning for
Candidate Matching in Recommenders. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(Madrid, Spain) (SIGIR ’22). Association for Computing Machinery, New York,
NY, USA, 1326–1335. https://doi.org/10.1145/3477495.3532073

[5] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. New York, NY, USA.

[6] Chao Feng, Wuchao Li, Defu Lian, Zheng Liu, and Enhong Chen. 2022.
Recommender Forest for Efficient Retrieval. In NeurIPS. http://papers.nips.
cc/paper_files/paper/2022/hash/fe2fe749d329627f161484876630c689-Abstract-
Conference.html

[7] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2022.
Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized
Prompt & Predict Paradigm (P5). In Proceedings of the Sixteenth ACM Conference
on Recommender Systems.

[8] Ruining He and Julian McAuley. 2016. Ups and Downs: Modeling the Vi-
sual Evolution of Fashion Trends with One-Class Collaborative Filtering. In
Proceedings of the 25th International Conference on World Wide Web (Mon-
tréal, Québec, Canada) (WWW ’16). International World Wide Web Confer-
ences Steering Committee, Republic and Canton of Geneva, CHE, 507–517.
https://doi.org/10.1145/2872427.2883037

[9] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks. In 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, Yoshua Bengio and Yann LeCun
(Eds.). http://arxiv.org/abs/1511.06939

[10] Wenyue Hua, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang. 2023. How to
Index Item IDs for Recommendation Foundation Models. SIGIR-AP (2023).

[11] Wenyue Hua, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang. 2023. How to
Index Item IDs for Recommendation Foundation Models. arXiv:2305.06569 [cs.IR]

[12] Kalervo Järvelin and Jaana Kekäläinen. 2000. IR Evaluation Methods for Retriev-
ing Highly Relevant Documents. In Proceedings of the 23rd Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(Athens, Greece) (SIGIR ’00). Association for Computing Machinery, New York,
NY, USA, 41–48. https://doi.org/10.1145/345508.345545

[13] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
197–206.

[14] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980

[15] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Association for Computational
Linguistics, Online, 7871–7880. https://doi.org/10.18653/v1/2020.acl-main.703

[16] Chao Li, Zhiyuan Liu, Mengmeng Wu, Yuchi Xu, Huan Zhao, Pipei Huang,
Guoliang Kang, Qiwei Chen, Wei Li, and Dik Lun Lee. 2019. Multi-Interest
Network with Dynamic Routing for Recommendation at Tmall. In Proceedings of
the 28th ACM International Conference on Information and Knowledge Management
(Beijing, China) (CIKM ’19). Association for Computing Machinery, New York,
NY, USA, 2615–2623. https://doi.org/10.1145/3357384.3357814

[17] Yongqi Li, Nan Yang, Liang Wang, Furu Wei, and Wenjie Li. 2023. Learning to
Rank in Generative Retrieval. arXiv:2306.15222 [cs.CL]

[18] Fuyu Lv, Taiwei Jin, Changlong Yu, Fei Sun, Quan Lin, Keping Yang, and Wilfred
Ng. 2019. SDM: Sequential Deep Matching Model for Online Large-Scale Recom-
mender System (CIKM ’19). Association for Computing Machinery, New York,
NY, USA, 2635–2643. https://doi.org/10.1145/3357384.3357818

[19] Aleksandr V. Petrov and Craig Macdonald. 2023. Generative Sequential Recom-
mendation with GPTRec. arXiv:2306.11114 [cs.IR]

[20] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21, 140 (2020), 1–67. http://jmlr.org/papers/v21/20-074.html

[21] Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan H. Keshavan, Trung
Vu, Lukasz Heldt, Lichan Hong, Yi Tay, Vinh Q. Tran, Jonah Samost, Maciej Kula,
Ed H. Chi, and Maheswaran Sathiamoorthy. 2023. Recommender Systems with
Generative Retrieval. arXiv:2305.05065 [cs.IR]

[22] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Repre-
sentations from Transformer. In Proceedings of the 28th ACM International Con-
ference on Information and Knowledge Management (Beijing, China) (CIKM ’19).
ACM, New York, NY, USA, 1441–1450. https://doi.org/10.1145/3357384.3357895

[23] Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang Wang, Haichao Zhu,
Pengjie Ren, Zhumin Chen, Dawei Yin, Maarten Rijke, and Zhaochun
Ren. 2023. Learning to Tokenize for Generative Retrieval. In Advances
in Neural Information Processing Systems, A. Oh, T. Neumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates,
Inc., 46345–46361. https://proceedings.neurips.cc/paper_files/paper/2023/file/
91228b942a4528cdae031c1b68b127e8-Paper-Conference.pdf

[24] Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta,
Zhen Qin, Kai Hui, Zhe Zhao, Jai Prakash Gupta, Tal Schuster, William W.
Cohen, and Donald Metzler. 2022. Transformer Memory as a Differentiable
Search Index. In NeurIPS. http://papers.nips.cc/paper_files/paper/2022/hash/
892840a6123b5ec99ebaab8be1530fba-Abstract-Conference.html

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762 http://arxiv.org/abs/
1706.03762

[26] Yujing Wang, Yingyan Hou, Haonan Wang, Ziming Miao, Shibin Wu, Qi Chen,
Yuqing Xia, Chengmin Chi, Guoshuai Zhao, Zheng Liu, Xing Xie, Hao Sun,
Weiwei Deng, Qi Zhang, and Mao Yang. 2022. A Neural Corpus Indexer for Doc-
ument Retrieval. In Advances in Neural Information Processing Systems, S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran
Associates, Inc., 25600–25614. https://proceedings.neurips.cc/paper_files/paper/
2022/file/a46156bd3579c3b268108ea6aca71d13-Paper-Conference.pdf

[27] Zihan Wang, Yujia Zhou, Yiteng Tu, and Zhicheng Dou. 2023. NOVO: Learnable
and Interpretable Document Identifiers for Model-Based IR. In Proceedings of the
32nd ACM International Conference on Information and Knowledge Management
(Birmingham, United Kingdom) (CIKM ’23). Association for Computing Machin-
ery, New York, NY, USA, 2656–2665. https://doi.org/10.1145/3583780.3614993

[28] Peitian Zhang, Zheng Liu, Yujia Zhou, Zhicheng Dou, and Zhao Cao. 2023. Term-
Sets Can Be Strong Document Identifiers For Auto-Regressive Search Engines.
arXiv:2305.13859 [cs.IR]

[29] Shengyu Zhang, Lingxiao Yang, Dong Yao, Yujie Lu, Fuli Feng, Zhou Zhao,
Tat-seng Chua, and Fei Wu. 2022. Re4: Learning to Re-Contrast, Re-Attend,
Re-Construct for Multi-Interest Recommendation. In Proceedings of the ACM
Web Conference 2022 (Virtual Event, Lyon, France) (WWW ’22). Association for
Computing Machinery, New York, NY, USA, 2216–2226. https://doi.org/10.1145/
3485447.3512094

[30] Yidan Zhang, Ting Zhang, Dong Chen, Yujing Wang, Qi Chen, Xing Xie, Hao Sun,
Weiwei Deng, Qi Zhang, Fan Yang, Mao Yang, Qingmin Liao, and Baining Guo.
2023. IRGen: Generative Modeling for Image Retrieval. arXiv:2303.10126 [cs.CV]

[31] Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Wu, Peitian Zhang, and Ji-Rong Wen.
2022. Ultron: An Ultimate Retriever on Corpus with a Model-based Indexer.
arXiv:2208.09257 [cs.IR]

[32] Han Zhu, Daqing Chang, Ziru Xu, Pengye Zhang, Xiang Li, Jie He, Han Li, Jian
Xu, and Kun Gai. 2019. Joint Optimization of Tree-Based Index and Deep Model
for Recommender Systems. Curran Associates Inc., Red Hook, NY, USA.

[33] Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai.
2018. Learning Tree-Based Deep Model for Recommender Systems. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (London, United Kingdom) (KDD ’18). Association for Computing
Machinery, New York, NY, USA, 1079–1088. https://doi.org/10.1145/3219819.
3219826

163

https://www.microsoft.com/en-us/research/publication/constrained-k-means-clustering/
https://www.microsoft.com/en-us/research/publication/constrained-k-means-clustering/
https://arxiv.org/abs/2204.10628
https://arxiv.org/abs/2204.10628
https://doi.org/10.1145/3477495.3532073
http://papers.nips.cc/paper_files/paper/2022/hash/fe2fe749d329627f161484876630c689-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/fe2fe749d329627f161484876630c689-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/fe2fe749d329627f161484876630c689-Abstract-Conference.html
https://doi.org/10.1145/2872427.2883037
http://arxiv.org/abs/1511.06939
https://arxiv.org/abs/2305.06569
https://doi.org/10.1145/345508.345545
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.1145/3357384.3357814
https://arxiv.org/abs/2306.15222
https://doi.org/10.1145/3357384.3357818
https://arxiv.org/abs/2306.11114
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2305.05065
https://doi.org/10.1145/3357384.3357895
https://proceedings.neurips.cc/paper_files/paper/2023/file/91228b942a4528cdae031c1b68b127e8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91228b942a4528cdae031c1b68b127e8-Paper-Conference.pdf
http://papers.nips.cc/paper_files/paper/2022/hash/892840a6123b5ec99ebaab8be1530fba-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/892840a6123b5ec99ebaab8be1530fba-Abstract-Conference.html
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://proceedings.neurips.cc/paper_files/paper/2022/file/a46156bd3579c3b268108ea6aca71d13-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a46156bd3579c3b268108ea6aca71d13-Paper-Conference.pdf
https://doi.org/10.1145/3583780.3614993
https://arxiv.org/abs/2305.13859
https://doi.org/10.1145/3485447.3512094
https://doi.org/10.1145/3485447.3512094
https://arxiv.org/abs/2303.10126
https://arxiv.org/abs/2208.09257
https://doi.org/10.1145/3219819.3219826
https://doi.org/10.1145/3219819.3219826

	Abstract
	1 Introduction
	2 RELATED WORK
	3 Method
	3.1 Overview
	3.2 Retrieval Model
	3.3 Training
	3.4 Inference

	4 Discussion
	4.1 Comparison with Existing Work
	4.2 Efficiency Analyses

	5 Experiment
	5.1 Experimental Setup
	5.2 Overall Performance
	5.3 Ablation Study
	5.4 Study on Item Identifiers
	5.5 Analysis on Parameter Count

	6 Conclusion
	Acknowledgments
	References

