

Persistent Data Sketching

Zhewei Wei¹, Ge Luo², Ke Yi², Xiaoyong Du², Ji-Rong Wen¹ ¹ DEKE and School of Information, Renmin University of China ² Department of Computer Science and Engineering, The Hong Kong University of Science and Technology Contact: zhewei@ruc.edu.cn

Motivation and Problem Statement

Persistent Database:

- Microsoft Immortal DB, SNAP, Ganymed, Skippy and LIVE
- Allow queries on past version of the database
- Linear space: store all updates

(Ephemeral) Sketches:

- Count-Min sketch, AMS sketch
- Allow queries on current data
- Answer queries approximately with sub-linear space
- Query for time t: return the value of the PLA function at t
- Error: εn (ephemeral error) + Δ (persistent error)
- Space: proportional to $(1/\epsilon + m/\Delta^2)$ in random stream model
 - Random walk along the piece-wise linear function
 - Expected time to escape the linear function by $\Delta : \Delta^2$

Sampling-based AMS Persistent Sketch

Persistent Sketches:

- Allow queries on historical data
- Sub-linear space

Historical query (0, *t*] Historical window query (s, t]

An Illustrating Example

URL	actual count	estimation
/	1138896	1138970
/images/space.gif	1117634	1120050
/images/dot.gif	880322	880765
/images/hm_nbg.jpg	818126	818586
/images/home_intro.anim.gif	799697	800323

Tracking top-k items

• 1998 World Cup web site access log:

(timestamp, IP address of the request, requested URL; size of the response, method).

• Ephemeral sketch Track top-k URLs at the end of the

stream

Persistent sketch

Track how top-k frequencies change

over time

- Estimating (self) join size: $\Sigma_i \in [n]$ ($C[i] + error of \Delta)^2$
- Bias will amplify error significantly

- Given a query time t
 - Set C[i] to be $C[i, t_k] + \Delta 1$ if $C[i, t_k]$ is the last sampled counts precedes t, and 0 if there is no sample preceding t.
 - Unbiased estimator for C[i] at time t
- Error: εF_2 (ephemeral error) + $(\Delta/\varepsilon)^2$ (persistent error)
- Space: proportional to $(1/\varepsilon + m/\Delta)$

Baseline Solution

- Query for time t: find counter with timestamp closest to t
- Error: εn (ephemeral error) + Δ (persistent error)
- Space: proportional to $(1/\epsilon + m/\Delta)$

PLA-based Count-Min Persistent Sketch

Experimental Results

- 7,000,000 requests from the 1998 World Cup web site access log
- Built sketches on two attributes

- Each counter is a discrete function according to timestamp
- (Count, time) points can be approximated with a line segment
- Approximate ratio: at most Δ

