Mergeable Summaries

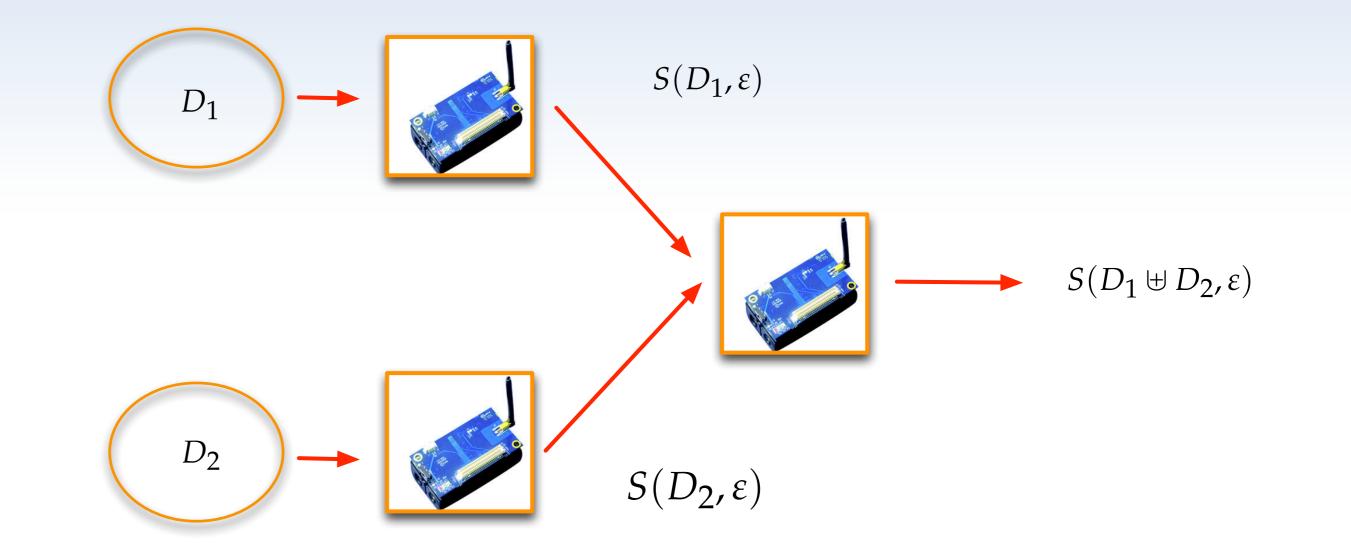
Pankaj K. Agarwal Duke University pankaj@cs.duke.edu Graham Cormode AT&T Labs–Research pankaj@cs.duke.edu

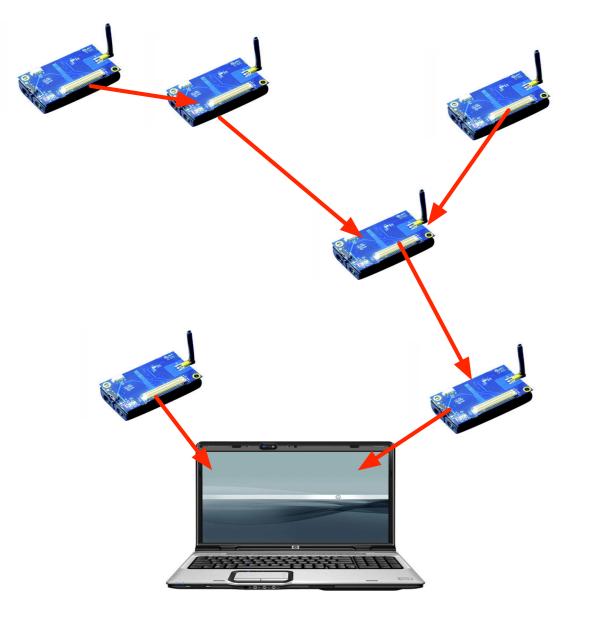
Zengfeng Haung HKUST huangzf@cse.ust.hk Jeff M. Phillips Zł University of Utah jeffp@cs.utah.edu wzxa

Zhewei Wei Ke Yi HKUST HKUST wzxac@cse.ust.hk yike@cse.ust.hk

Motivation

Data summarization Compute a compact summary *S* of the data *D* that preserves its important properties, and to use the summary for answering queries. **Streaming Model** *S* can be updated to reflect the new arrival without recourse to the underlying *D*.





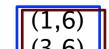
Sensor networks When a node receives the summaries from its children it merges these with its own summary, and forwards the result to its parent.

Distributed Computation Each machine receives a share of the input and builds a summary of its share. We need to merge the summaries to form a summary on the whole input.

We say that S() is *mergeable* if there exists an algorithm \mathcal{A} that produces a summary $S(D_1 \uplus D_2, \varepsilon)$ from any two input summaries $S(D_1, \varepsilon)$ and $S(D_2, \varepsilon)$. Note that, by definition, the size of the merged summary produced by \mathcal{A} is at most $k(|D_1| + |D_2|, \varepsilon)$.

Heavy Hitters

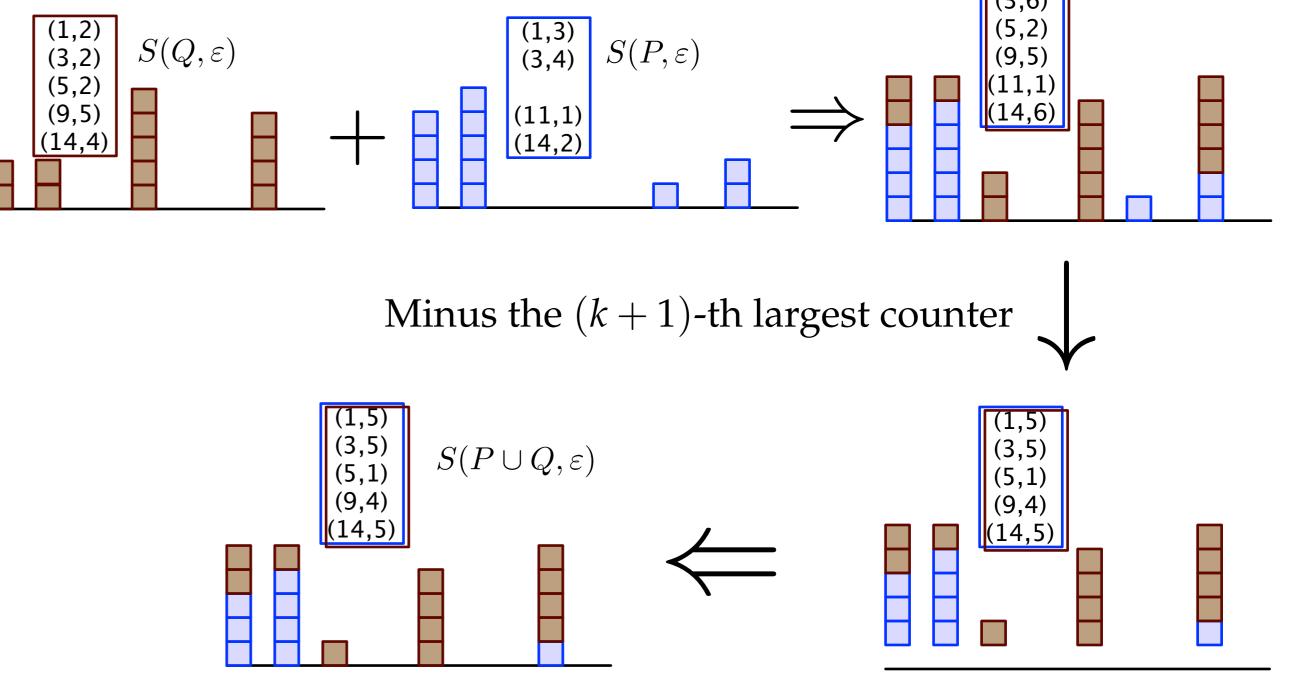
Merging Algorithm for MG Sketch We first combine the two summaries by adding up the corresponding counters. This could result in up to 2k counters. We then perform a prune operation: Take the (k + 1)-th largest counter, say C_{k+1} , and subtract it from all counters, and then remove all nonpositive ones.



Question: Can we *merge* the ε -summaries of two (separate) data sets to obtain an ε -summary of the union of the two data sets, without increasing the size of the summary or its approximation error?

Problem Statement

Let S() denote a summarization method. Given D and an error parameter ε , We use $S(D, \varepsilon)$ to denote any valid summary for data set D with error ε produced by this method, and use $k(n, \varepsilon)$ to denote the maximum size of any $S(D, \varepsilon)$ for any D of n items.



Theorem 1*The MG summaries are mergeable with the above merging algorithm.*

problem	offline	streaming	mergeable
heavy hitters	1/ <i>ɛ</i>	1/ε (MG82, SpacSaving06)	1/ε
quantiles (deterministic)	1/ε	$(1/\varepsilon)\log(\varepsilon n)$ (GK01)	$(1/\varepsilon)\log u$ (Q-digest04)
			$(1/\varepsilon)\log(\varepsilon n)$ (restricted merging)
quantiles (randomized)	$1/\varepsilon$	$1/\varepsilon \cdot \log$	
ϵ -approximations (rectangles)	$(1/\varepsilon)\log^{2d}(1/\varepsilon)$	$(1/\varepsilon)\log^{2d+1}(1/\varepsilon)$ (Suri et. al. 04)	$(1/\varepsilon)\log^{2d+3/2}(1/\varepsilon)$
ε -approximations (VC-dim ν)	$1/\varepsilon^{\frac{2\nu}{\nu+1}}$	$1/\varepsilon^{\frac{2\nu}{\nu+1}}\log^{\nu+1}(1/\varepsilon)$ (Suri et. al. 04)	$1/\varepsilon^{\frac{2\nu}{\nu+1}}\log^{3/2}(1/\varepsilon)$
<i>ɛ</i> -kernels	$1/\varepsilon^{\frac{d-1}{2}}$	$1/\varepsilon^{\frac{d-1}{2}}\log(1/\varepsilon)$ (Zarrabi-Zadeh08)	$1/\varepsilon^{\frac{d-1}{2}}$ (w/assumptions on data)

Table 1: Best constructive summary size upper bounds under different models. The bounds in red are from this paper.