

Towards Maximum Independent Sets on Massive Graphs

Yu Liu¹, Jiaheng Lu², Hua Yang¹, Xiaokui Xiao³, Zhewei Wei¹ ¹ DEKE, MOE and School of Information, Renmin University of China ² Department of Computer Science, University of Helsinki, Finland ³ School of Computer Engineering, Nanyang Technological University, Singapore Contact: zhewei@ruc.edu.cn

luculous cutation Dataila	IS	ISN	State and Explanation		
Implementation Details	1	ISN1>0, ISN2>0	State=/S, has 1-k-swap candidates, head stored at ISN2		
Data Structure	1	ISN1=0, ISN2>0	State=/S, (after 2 nd scan)cannot do 1-k-swap, join 2-k-swap		
1 -2 u 2 u -2 -2 c	1	ISN1=0, ISN2=-1	State=/S, no 1-k-swap candidate, join 2-k-swap		
ISN 2 w v1 d	1	ISN1=-1	State=Protected->IS, by swap		
	0	ISN1=-1, ISN2=-1	State=NIS or Conflict can do no swap		
Memory Cost Hash map for 2-k-candidates	0	ISN1=-1, ISN2=0	State=/S->Retrograde, be swapped		
2IVI memory units for ISN & <ivi and="" araph<="" conflict="" for="" labels="" memory="" td="" units=""><td>0</td><td>ISN1=-1 or 0</td><td>State=Adjacent, cannot do 1-k-swap, join 2-k-swap</td></ivi>	0	ISN1=-1 or 0	State=Adjacent, cannot do 1-k-swap, join 2-k-swap		
	0	ISN1>0, ISN2>0	Case 1. State=/S->Retrograde, but 1-1-swapped		
	0	ISN1>0, ISN2>0	Case 2. State=Adjacent, 2-k-swap candidate		
	0	ISN1>0, ISN2>0 -1	Case 3. State=Adjacent, 1-k-swap candidate		
 Implementation Details: Example Q: How to verify if node v is a 1-k-swap candidate? IS(v)=0 \lapha ISN1(v)>0 \lapha (IS(ISN1(v))=1 \lapha ISN1(ISN1(v))>0) parent non-swapped v (IS(ISN1(v))=0) parent swapped 	∧ ed	<pre></pre>			

• Existing internal and external memory algorithms either don't scale well or have no theoretical guarantee.

•It's hopeful to use massive graph properties to make computing a near-optimal independent set much easier in practice.

Computation Models and Problem Statement

2 10⁴

• Power Law Random Graph Model -ACL Model[Aiello et al STOC00] •(Semi-)External Memory Model •Our Goals: -Memory budget: c|V|<=M << |G| -Low CPU time and I/O complexity -Find near-optimal independent set

Experiments and Conclusion

On Synthetic Graphs by ACL Model[Aiello et al STOC00]:

β	Edges	Estimation	Real	Accuracy
1.7	215M	8,102,389	8,147,721	99.4%
1.8	118M	7,896,164	7,953,889	99.3%
1.9	72M	7,650,663	7,721,332	99.1%
2.0	49M	7,394,070	7,474,477	98.9%
2.1	36M	7,147,342	7,235,191	98.8%
2.2	29M	6,922,329	7,012,683	98.7%
2.3	24M	6,723,585	6,813,139	98.7%
2.4	21M	6,550,682	6,635,854	98.7%
2.5	18M	6,400,913	6,478,349	98.8%
2.6	17M	6,270,900	6,341,388	98.9%
2.7	15M	6,157,404	6,220,084	99.0%

Accuracy of estimation for Greedy varying β

Real-world Datasets:

Data Set	V	E	Avg. Deg	Disk Size
Astroph	37K	396K	21.1	3.3MB
DBLP	425K	1.05M	4.92	11.2MB
Youtube	1.16M	2.99M	5.16	31.6MB
Patent	3.77M	16.52M	8.76	154MB
Blog	4.04M	34.68M	17.18	295MB
Citeseerx	6.54M	15.01M	4.6	164MB
Uniport	6.97M	15.98M	4.59	175MB
Facebook	59.22M	151.74M	5.12	1.57GB
Twitter	61.58M	2405M	78.12	9.41GB
Clueweb12	978.4M	42.57G	87.03	169GB

Observations

•Our greedy algorithm is simple and effective.

•One-K-Swap and Two-K-Swap improve independent set size to near-optimal, with limited memory cost and acceptable time cost.

-Have non-trivial theoretical bounds

Semi-external Memory Greedy Algorithm

•Though Greedy[Halldórsson et al STOC94] also gives near-optimal results for most power law graphs, it cannot scale well on large graphs.

•Our algorithms outperform previous external algorithms, both in theory and in practice.

Dataset	Greedy[94]	Zeh[02]	Zeh[02] + One-K- Swap	Zeh[02] + Two-K- Swap	Semi- Greedy	S-Greedy + One-K- Swap	S-Greedy + Two-K- Swap	ОРТ
Astroph	17110	15275	1 <mark>6</mark> 625	1 <mark>6</mark> 814	15019	1 <mark>6</mark> 054	1 <mark>6</mark> 572	=19106
DBLP	26 <mark>0</mark> 992	242521	26 <mark>0</mark> 715	26 <mark>0</mark> 961	26 <mark>0</mark> 886	261003	261007	=261008
Youtube	880873	8 <mark>2</mark> 3821	879078	880455	878459	880 <mark>6</mark> 42	880835	=880882
Patent	207 <mark>3</mark> 214	1711789	2018537	2047497	20 <mark>3</mark> 2599	207 <mark>0</mark> 806	2078989	<2320446
Blog	2116668	1855824	2 <mark>0</mark> 94057	21 <mark>0</mark> 9767	2096910	2117377	2121133	<2216727
Citeseerx	5750799	5 <mark>3</mark> 07498	5719705	57 <mark>3</mark> 7953	57 <mark>3</mark> 1026	5747431	5749396	<5765563
Uniprot	6948528	69 <mark>3</mark> 8348	6947851	6948149	694 <mark>2</mark> 879	694 7 397	6948 <mark>0</mark> 48	<6949108
Facebook	N/A	18893989	57269875	5 7 986375	582 <mark>2</mark> 6290	582322 <mark>5</mark> 6	58232269	<58232354
Twitter	N/A	<mark>3</mark> 6072163	4 <mark>6</mark> 978395	48 <mark>0</mark> 59663	48121173	48742 <mark>3</mark> 56	48742573	<52335929
ClueWeb12	N/A	4 99444213	7 0 3485927	725810643	6 06465512	723673169	729594728	<816673210

Independent Set Size by Various Algorithms

Dataset	Time				Dataset			Memory Cost			
	Greedy[94]	Zeh[02]	SemiGreedy	One-K-Swap	Two-K-Swap		Greedy[94]	Zeh[02]	SemiGreedy	One-K-Swap	Two-K-Swap
Astroph	129ms	73.6ms	57ms	347ms	237ms	Astroph	4.43MB	25KB	4.5KB	149.1KB	329.7KB
DBLP	0.75s	1.40s	0.56s	1.36s	1.39s	DBLP	128.3MB	0.25MB	51.9KB	1.65MB	3.55MB
Youtube	1.93s	2.67s	1.15s	3.78s	4.76s	Youtube	239.1MB	1MB	141.6KB	4.59MB	9.69MB
Patent	21.3s	22.0s	4.6s	27.8s	36.7s	Patent	692.2MB	2MB	460.2MB	14.9MB	31.7MB
Blog	28.8s	30.0s	6.2s	35.7s	45.3s	Blog	841.9MB	2MB	493.2KB	15.9MB	34.4MB
Citeseerx	22.0s	16.0s	6.4s	25.7s	20.8s	Citeseerx	1258.4MB	2MB	798.3KB	25.7MB	52.4MB
Uniport	18.6s	20.9s	2.2s	19.9s	18.5s	Uniport	1242.7MB	2MB	850.8KB	27.5MB	55.4MB
Facebook	N/A	187.2s	47.9s	153.0s	160.8s	Facebook	N/A	25MB	7.06MB	234.2MB	468.9MB
Twitter	N/A	18min	8min	39min	55min	Twitter	N/A	25MB	7.34MB	242.2MB	524.1MB

Complexity Analysis

scan the file and do 0-1-swaps.

- I/O complexity: if alg. have k rounds, 2k sequential scans;
- In practice, k<3 is sufficient. Scan(|V|+|E|)</p>

Actually 1st scan and 3rd scan can be merged

- Time complexity: each op can be done O(1);
- 2k(|V|+|E|) -> O(|V|+|E|) In practice really fast!

Two-K-Swap Algorithm

Intuition

- Two difficulties need to be handled in 2-k-swap
- Q1: How to find 3 independent candidates by sequential scan? A: 1)Labeling: label(b), label(c) contains a

2)a, b and c should be stored together(additional storage?) Q2: How to avoid conflicts between 2-k-swap candidates?

A: Store the "conflict graph" in memory.


```
Performance Analysis
SG(\alpha, \beta) = \sum (T(i, i, i) + \sum T(j, i) 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \sum T(p,q,i)
                                                                                                                                                                                                                                                                                                                                                                       i=i+1
              where T(x, y, i) is the number of new vertices added to the IS set
              by exchanging vertices with degree i to those with degrees x and y.
```

Clueweb12 N/A 1.95h Clueweb12 N/A 200MB 116.6MB 3.75GB 5.73GB 1.65h 8.8h 10.4h

Time and Memory Cost by Various Algorithms

Conclusions

•We develop three semi-external algorithms to find near-optimal independent set on massive graphs, all satisfying

-Low memory cost

- -Low time and I/O complexity
- -Near-optimal in theory and in practice
- -Easy to implement

•We give non-trivial theoretical guarantees for our proposed algorithms, which proves to be near-optimal.

• Experiments show that our algorithms have better performance and bounds than existing external algorithms.

Complexity Analysis

- I/O complexity: if alg. have k rounds, 3k sequential scans;
- In practice, k<3 is sufficient. Scan(|V|+|E|)</p>
- Time complexity: each round is O(|V|+|E|)
- $2kO(|V|+|E|) \rightarrow O(|V|+|E|)$
- Performance Analysis(Intuition)
- Cover all 1-k-swaps
- In expectation (and in practice), better than One-K-Swap