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Motivation

Research Background and Application Scenarios
Trajectory similarity join (TS-Join) is fundamental functionality: given sets P and Q of trajectories and
a similarity threshold θ, the TS-Join returns all pairs of trajectories from P and Q with a similarity that
exceeds θ. The TS-Join may bring significant benefits to a range of applications, including trajectory
near-duplicate detection, data cleaning, ridesharing recommendation, friend recommendation, frequent
trajectory based routing, and traffic congestion prediction.

Comparison to Existing Studies
Studies Space Temporal matching Parallel Data
[1] Euclidean Sliding-window based No 50 K
[3] Euclidean Sliding-window based No 250 K
[2] Euclidean Time-threshold based No 150 K
[4] Euclidean Time-threshold based No 2 K
[5] Euclidean None (spatial join only) No 500 K
TS-Join Network Continuous matching Yes 10 M

An Example of the TS-Join
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τ1 =  < p2 , 09:37 > , < p4 , 09:40 > , < p7 , 09:48 > , < p8 , 09:51 > , < p9 , 09:57 > , < p12 , 10:02 > , < p13 , 10:05 > , < p14 , 10:07 >

τ2 =  < p3 , 08:35 > ,< p4 , 08:39> < p5 , 08:46 > , < p8 , 08:49 > ,  < p9 , 09:01 > , < p10 , 09:04 > , < p13 , 09:06 > , < p15 , 09:07 >

τ3 =  < p1 , 09:32 > , < p6 , 09:43 > , < p7 , 09:48 > , < p8 , 09:51 > , < p9 , 09:59 > , < p10 , 10:03 >  , < p11 , 10:13 >

Here, τ1, τ2, and τ3 are trajectories, and P = {τ1} and Q = {τ2, τ3}. In the example, p1, p2, ..., p15 are
timestamped sample points. Given a time interval (8:30, 10:30), existing sliding-window based trajectory
similarity joins (e.g., [1, 3]) return trajectory pairs (τ1, τ2), and (τ1, τ3) because they are spatially close
to each other. However, τ1 and τ2 have very different departure times, thus rendering a result such as this
of little use in ridesharing and traffic congestion prediction. The TS-Join returns trajectory pair (τ1, τ3)
without the need for a query time interval.

Similarity Functions and Problem Definition

Similarity Functions
The spatial similarity SimS, the temporal similarity SimT, and the spatiotemporal similarity SimST are
defined as follows.
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SimST(τ1, τ2) = λ · SimS(τ1, τ2) + (1− λ) · SimT(τ1, τ2) (3)

Problem Definition
Given sets P andQ of trajectories and a threshold θ, the trajectory similarity join (TS-Join) finds a set A of
all trajectory pairs from the two sets whose spatiotemporal similarity exceeds θ, i.e., ∀(τi, τj) ∈ (P×Q)\A

(SimST(τi, τj) < θ).

Two-phase Algorithm
To process the TS-Join more efficiently, we develop a two-phase algorithm based on a divide-and-conquer
strategy. (1) In the trajectory-search phase, for each trajectory τ ∈ P, we explore the spatial and temporal
domains concurrently and search for trajectories close to τ. In the spatial domain, network expansion
from each trajectory sample point is used to explore the spatial network, while in the temporal domain,
we expand the search from each timestamp of τ. An upper bound on the spatiotemporal similarity and
a heuristic scheduling strategy are defined to enable pruning of the search space. The search process of
different trajectories are independent, so the trajectory searches can be processed in parallel. (2) In the
merging phase, we combine the computation results of all trajectories and find the solution to the TS-Join.

An example of the two-phase algorithm
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(b) Trajectory search

Time Complexity
The time complexity of the trajectory search phase is O(|P||Pθ|). The time complexity for the merging
phase is O(|P||C|), where |C| is the cardinality of candidate set for each trajectory. Since C ⊆ Pθ ⊆ P,

the time complexity of the two-phase algorithm is O(|P||Pθ|)+O(|P||C|) = O(|P||Pθ|). If θ is sufficiently
large, the time complexity is close to O(|P|).

Experiments

We evaluate the performance of the two-phase algorithm on the New York Road Network (NRN) with
10,000,000 trajectories. For the non-self join, the two-phase algorithm is able to process 10 M × 2 M
trajectories with 120 threads in 255 seconds, while for the self join, the two-phase algorithm is able to
process 10 M × 10 M trajectories with 120 threads in 540 seconds.
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(c) Non-self join
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(d) Self join

Contributions

• We propose a novel network-based trajectory similarity join, called TS-Join, that takes into account
both spatial and temporal similarity in a continuous manner, thus targeting applications such as
trajectory near-duplicate detection, ridesharing recommendation, route planning, and traffic
congestion prediction.

• The TS-Join uses new metrics to evaluate trajectory similarity in the spatial and temporal domains.
• We develop a two-phase algorithm with effective pruning and scheduling techniques that enables

parallel TS-Join processing.
• We conduct extensive experiments on large trajectory sets to study the performance of the

developed algorithms.
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