
Trajectory Similarity Join in Spatial Networks PVLDB, Vol.10(11), pages 1178–1189

Shuo Shang1, Lisi Chen2, Zhewei Wei3, Christian S. Jensen4, Kai Zheng5, and Panos Kalnis1
1CEMSE Division, King Abdullah University of Science and Technology, Saudi Arabia

2Department of Computer Science, Hong Kong Baptist University, Hong Kong
3School of Information, Renmin University, China

4Department of Computer Science, Aalborg University, Denmark
5University of Electronic Science and Technology of China, China

Motivation

Research Background and Application Scenarios
Trajectory similarity join (TS-Join) is fundamental functionality: given sets P and Q of trajectories and
a similarity threshold θ, the TS-Join returns all pairs of trajectories from P and Q with a similarity that
exceeds θ. The TS-Join may bring significant benefits to a range of applications, including trajectory
near-duplicate detection, data cleaning, ridesharing recommendation, friend recommendation, frequent
trajectory based routing, and traffic congestion prediction.

Comparison to Existing Studies
Studies Space Temporal matching Parallel Data
[1] Euclidean Sliding-window based No 50 K
[3] Euclidean Sliding-window based No 250 K
[2] Euclidean Time-threshold based No 150 K
[4] Euclidean Time-threshold based No 2 K
[5] Euclidean None (spatial join only) No 500 K
TS-Join Network Continuous matching Yes 10 M

An Example of the TS-Join

p1

: sample point in a trajectory

p3

p8

p10

: start point of a trajectory : destination point of a trajectory

τ2

p2

p7

p9

p14

p6

p4

p5

p11

p12 p13

p15

τ1τ3

τ1 = < p2 , 09:37 > , < p4 , 09:40 > , < p7 , 09:48 > , < p8 , 09:51 > , < p9 , 09:57 > , < p12 , 10:02 > , < p13 , 10:05 > , < p14 , 10:07 >

τ2 = < p3 , 08:35 > ,< p4 , 08:39> < p5 , 08:46 > , < p8 , 08:49 > , < p9 , 09:01 > , < p10 , 09:04 > , < p13 , 09:06 > , < p15 , 09:07 >

τ3 = < p1 , 09:32 > , < p6 , 09:43 > , < p7 , 09:48 > , < p8 , 09:51 > , < p9 , 09:59 > , < p10 , 10:03 > , < p11 , 10:13 >

Here, τ1, τ2, and τ3 are trajectories, and P = {τ1} and Q = {τ2, τ3}. In the example, p1, p2, ..., p15 are
timestamped sample points. Given a time interval (8:30, 10:30), existing sliding-window based trajectory
similarity joins (e.g., [1, 3]) return trajectory pairs (τ1, τ2), and (τ1, τ3) because they are spatially close
to each other. However, τ1 and τ2 have very different departure times, thus rendering a result such as this
of little use in ridesharing and traffic congestion prediction. The TS-Join returns trajectory pair (τ1, τ3)
without the need for a query time interval.

Similarity Functions and Problem Definition

Similarity Functions
The spatial similarity SimS, the temporal similarity SimT, and the spatiotemporal similarity SimST are
defined as follows.

SimS(τ1, τ2) =
1

|τ1|

∑
vi∈τ1

e−d(vi.p,τ2) +
1

|τ2|

∑
vj∈τ2

e−d(vj.p,τ1) (1)

SimT(τ1, τ2) =
1

|τ1|

∑
vi∈τ1

e−d(vi.t,τ2) +
1

|τ2|

∑
vj∈τ2

e−d(vj.t,τ1) (2)

SimST(τ1, τ2) = λ · SimS(τ1, τ2) + (1− λ) · SimT(τ1, τ2) (3)

Problem Definition
Given sets P andQ of trajectories and a threshold θ, the trajectory similarity join (TS-Join) finds a set A of
all trajectory pairs from the two sets whose spatiotemporal similarity exceeds θ, i.e., ∀(τi, τj) ∈ (P×Q)\A

(SimST(τi, τj) < θ).

Two-phase Algorithm
To process the TS-Join more efficiently, we develop a two-phase algorithm based on a divide-and-conquer
strategy. (1) In the trajectory-search phase, for each trajectory τ ∈ P, we explore the spatial and temporal
domains concurrently and search for trajectories close to τ. In the spatial domain, network expansion
from each trajectory sample point is used to explore the spatial network, while in the temporal domain,
we expand the search from each timestamp of τ. An upper bound on the spatiotemporal similarity and
a heuristic scheduling strategy are defined to enable pruning of the search space. The search process of
different trajectories are independent, so the trajectory searches can be processed in parallel. (2) In the
merging phase, we combine the computation results of all trajectories and find the solution to the TS-Join.

An example of the two-phase algorithm

Trajectories

… … ...

Search for close
trajectories

Merging Join results

(a) Parallel mechanism

τ3

τ1

Spatial Domain

0 x

2rt1

y

τ4

Temporal Domain

0

time

v1.t

v2.t 2rt2

v3.t

v4.t

v5.t

2rt3

2rt4

2rt5

v5.p

rs5v4.p

rs4

rs3
v3.p

v2.prs2
v1.prs1

v8.p

v9.p

v10.p
v11.p v12.p

τ2

v6.p v7.p

(b) Trajectory search

Time Complexity
The time complexity of the trajectory search phase is O(|P||Pθ|). The time complexity for the merging
phase is O(|P||C|), where |C| is the cardinality of candidate set for each trajectory. Since C ⊆ Pθ ⊆ P,

the time complexity of the two-phase algorithm is O(|P||Pθ|)+O(|P||C|) = O(|P||Pθ|). If θ is sufficiently
large, the time complexity is close to O(|P|).

Experiments

We evaluate the performance of the two-phase algorithm on the New York Road Network (NRN) with
10,000,000 trajectories. For the non-self join, the two-phase algorithm is able to process 10 M × 2 M
trajectories with 120 threads in 255 seconds, while for the self join, the two-phase algorithm is able to
process 10 M × 10 M trajectories with 120 threads in 540 seconds.

1000

2000

3000

4000

5000

6000

48 72 96 120

R
u
n
ti

m
e

(s
)

Number of Threads

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(c) Non-self join

1

10

100

1000

10000

48 72 96 120

R
u
n
ti

m
e

(s
)

Number of Threads

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(d) Self join

Contributions

• We propose a novel network-based trajectory similarity join, called TS-Join, that takes into account
both spatial and temporal similarity in a continuous manner, thus targeting applications such as
trajectory near-duplicate detection, ridesharing recommendation, route planning, and traffic
congestion prediction.

• The TS-Join uses new metrics to evaluate trajectory similarity in the spatial and temporal domains.
• We develop a two-phase algorithm with effective pruning and scheduling techniques that enables

parallel TS-Join processing.
• We conduct extensive experiments on large trajectory sets to study the performance of the

developed algorithms.

[1] P. Bakalov, M. Hadjieleftheriou, E. J. Keogh, and V. J. Tsotras.
Efficient trajectory joins using symbolic representations.
In MDM, pages 86–93, 2005.

[2] P. Bakalov and V. J. Tsotras.
Continuous spatiotemporal trajectory joins.
In GSN, pages 109–128, 2006.

[3] Y. Chen and J. M. Patel.
Design and evaluation of trajectory join algorithms.
In ACM-GIS, pages 266–275, 2009.

[4] H. Ding, G. Trajcevski, and P. Scheuermann.
Efficient similarity join of large sets of moving object trajectories.
In TIME, pages 79–87, 2008.

[5] N. Ta, G. Li, and J. Feng.
Signature-based trajectory similarity join.
IEEE Trans. Knowl. Data Eng., online first:1–14, 2017.

43rd International Conference on Very Large Data Base, August 28–September 1, 2017

