

Motivation

Research Background and Application Scenarios

Trajectory similarity join (TS-Join) is fundamental functionality: given sets P and Q of trajectories and a similarity threshold θ , the TS-Join returns all pairs of trajectories from P and Q with a similarity that exceeds θ . The TS-Join may bring significant benefits to a range of applications, including trajectory near-duplicate detection, data cleaning, ridesharing recommendation, friend recommendation, frequent trajectory based routing, and traffic congestion prediction.

companson to Existing Statics				
Studies	Space	Temporal matching	Parallel	D
[1]	Euclidean	Sliding-window based	No	5
[3]	Euclidean	Sliding-window based	No	2
[2]	Euclidean	Time-threshold based	No	1
[4]	Euclidean	Time-threshold based	No	2
[5]	Euclidean	None (spatial join only)	No	5
TS-Join	Network	Continuous matching	Yes	1

Comparison to Existing Studies

An Example of the TS-Join

Here, τ_1 , τ_2 , and τ_3 are trajectories, and $P = \{\tau_1\}$ and $Q = \{\tau_2, \tau_3\}$. In the example, p_1 , p_2 , ..., p_{15} are timestamped sample points. Given a time interval (8:30, 10:30), existing sliding-window based trajectory similarity joins (e.g., [1, 3]) return trajectory pairs (τ_1, τ_2) , and (τ_1, τ_3) because they are spatially close to each other. However, τ_1 and τ_2 have very different departure times, thus rendering a result such as this of little use in ridesharing and traffic congestion prediction. The TS-Join returns trajectory pair (τ_1, τ_3) without the need for a query time interval.

Similarity Functions and Problem Definition

Similarity Functions

The spatial similarity Sim_S , the temporal similarity Sim_T , and the spatiotemporal similarity Sim_{ST} are defined as follows.

$$\begin{split} \operatorname{Sim}_{\mathrm{S}}(\tau_{1},\tau_{2}) &= \frac{1}{|\tau_{1}|} \sum_{\nu_{i} \in \tau_{1}} e^{-d(\nu_{i}.p,\tau_{2})} + \frac{1}{|\tau_{2}|} \sum_{\nu_{j} \in \tau_{2}} e^{-d(\nu_{j}.p,\tau_{1})} \\ \operatorname{Sim}_{\mathrm{T}}(\tau_{1},\tau_{2}) &= \frac{1}{|\tau_{1}|} \sum_{\nu_{i} \in \tau_{1}} e^{-d(\nu_{i}.t,\tau_{2})} + \frac{1}{|\tau_{2}|} \sum_{\nu_{j} \in \tau_{2}} e^{-d(\nu_{j}.t,\tau_{1})} \\ \operatorname{Sim}_{\mathrm{ST}}(\tau_{1},\tau_{2}) &= \lambda \cdot \operatorname{Sim}_{\mathrm{S}}(\tau_{1},\tau_{2}) + (1-\lambda) \cdot \operatorname{Sim}_{\mathrm{T}}(\tau_{1},\tau_{2}) \end{split}$$

Trajectory Similarity Join in Spatial Networks PVLDB, Vol.10(11), pages 1178–1189

Shuo Shang¹, Lisi Chen², Zhewei Wei³, Christian S. Jensen⁴, Kai Zheng⁵, and Panos Kalnis¹

¹CEMSE Division, King Abdullah University of Science and Technology, Saudi Arabia ²Department of Computer Science, Hong Kong Baptist University, Hong Kong ³School of Information, Renmin University, China ⁴Department of Computer Science, Aalborg University, Denmark ⁵University of Electronic Science and Technology of China, China

Problem Definition

Given sets P and Q of trajectories and a threshold θ , the trajectory similarity join (TS-Join) finds a set A of all trajectory pairs from the two sets whose spatiotemporal similarity exceeds θ , i.e., $\forall (\tau_i, \tau_j) \in (P \times Q) \setminus A$ $(\operatorname{Sim}_{\operatorname{ST}}(\tau_i, \tau_j) < \theta).$

Two-phase Algorithm

To process the TS-Join more efficiently, we develop a two-phase algorithm based on a divide-and-conquer strategy. (1) In the trajectory-search phase, for each trajectory $au\in\mathsf{P}$, we explore the spatial and temporal domains concurrently and search for trajectories close to τ . In the spatial domain, network expansion from each trajectory sample point is used to explore the spatial network, while in the temporal domain, we expand the search from each timestamp of τ . An upper bound on the spatiotemporal similarity and a heuristic scheduling strategy are defined to enable pruning of the search space. The search process of different trajectories are independent, so the trajectory searches can be processed in parallel. (2) In the merging phase, we combine the computation results of all trajectories and find the solution to the TS-Join.

Time Complexity

The time complexity of the trajectory search phase is $O(|P||P_{\theta}|)$. The time complexity for the merging (3) phase is O(|P||C|), where |C| is the cardinality of candidate set for each trajectory. Since $C \subseteq P_{\theta} \subseteq P$,

- (1)
- (2)

An example of the two-phase algorithm

the time complexity of the two-phase algorithm is $O(|P||P_{\theta}|) + O(|P||C|) = O(|P||P_{\theta}|)$. If θ is sufficiently large, the time complexity is close to O(|P|).

Experiments

We evaluate the performance of the two-phase algorithm on the New York Road Network (NRN) with 10,000,000 trajectories. For the non-self join, the two-phase algorithm is able to process 10 M imes 2 M trajectories with 120 threads in 255 seconds, while for the self join, the two-phase algorithm is able to process 10 M \times 10 M trajectories with 120 threads in 540 seconds.

- congestion prediction.
- parallel TS-Join processing.
- developed algorithms.
- [1] P. Bakalov, M. Hadjieleftheriou, E. J. Keogh, and V. J. Tsotras. Efficient trajectory joins using symbolic representations. In *MDM*, pages 86–93, 2005.
- [2] P. Bakalov and V. J. Tsotras. Continuous spatiotemporal trajectory joins In GSN, pages 109–128, 2006.
- [3] Y. Chen and J. M. Patel. Design and evaluation of trajectory join algorithms. In ACM-GIS, pages 266–275, 2009.
- [4] H. Ding, G. Trajcevski, and P. Scheuermann. Efficient similarity join of large sets of moving object trajectories. In TIME, pages 79-87, 2008.
- [5] N. Ta, G. Li, and J. Feng. Signature-based trajectory similarity join. IEEE Trans. Knowl. Data Eng., online first:1-14, 2017.

Contributions

• We propose a novel network-based trajectory similarity join, called TS-Join, that takes into account both spatial and temporal similarity in a continuous manner, thus targeting applications such as trajectory near-duplicate detection, ridesharing recommendation, route planning, and traffic

• The TS-Join uses new metrics to evaluate trajectory similarity in the spatial and temporal domains. • We develop a two-phase algorithm with effective pruning and scheduling techniques that enables

• We conduct extensive experiments on large trajectory sets to study the performance of the