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Multi-stakeholder recommender systems involve various roles, such as users and providers. Previous work
pointed out that max-min fairness (MMF) is a better metric to support weak providers. However, when
considering MMF, the features or parameters of these roles vary over time, and how to ensure long-term
provider MMF has become a significant challenge. We observed that recommendation feedback loops (RFL) will
influence the provider MMF greatly in the long term. RFL means that recommender systems can only receive
feedback on exposed items from users and update recommender models incrementally based on this feedback.
When utilizing the feedback, the recommender model will regard the unexposed items as negative. In this way,
the tail provider will not get the opportunity to be exposed, and its items will always be considered negative
samples. Such phenomena will become more and more serious in RFL. To alleviate the problem, this article
proposes an online ranking model named Long-Term Provider Max-min Fairness (LTP-MMF). Theoretical
analysis shows that the long-term regret of LTP-MMF enjoys a sub-linear bound. Experimental results on
three public recommendation benchmarks demonstrated that LTP-MMF can outperform the baselines in the
long term.
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1 Introduction
In multi-stakeholder recommender systems (RS), different roles are involved, including users,
providers, recommender models, etc. [2]. In recent years, provider fairness has received increasing
attention, including provider demographic parity fairness [4, 22, 39, 48], proportion fairness [40, 57]
andmax-min fairness (MMF) [19, 58]. MMF aims to support worst-off providers, and it is pro-
posed based on distributive justice concept [31, 58]. Worse-off providers, who occupy the majority
of the platform, cannot survive with the necessary support. Supporting the weak providers will
increase the stability of the recommender market and make a good ecosystem [20, 43]. In this article,
we focused on amortized MMF [5, 9, 19, 58], where fairness accumulated across a series of rankings.

In real scenarios, the components of RS are not static. When conducting provider fairness, how
to improve long-term performance under a time-changing environment is receiving increasing
attention [21, 22, 38]. Previous work [21, 22, 38] aimed to conduct long-term fairness under time-vary
content providers, item popularity, and provider features, respectively. Different from these studies,
we observed that recommendation feedback loops (RFL) [14] will influence the provider MMF
greatly in the long term. As shown in Figure 1(a), the users and the RS are in RFL, where the model
recommends a list of items to one user in each loop. Then, the user gives feedback, and the model
will be updated incrementally according to the feedback. When updating the recommendation
model, items without exposures are often viewed as negative samples (known as exposure/self-
selection bias [14]). Next, we will conduct an empirical study to describe how the RFL influences
MMF performance.

Figure 1(b) illustrates a simulation of how the unfairness increases in the repeated interactions
between RS and users. We simulated 100 interactions between 512 users and an optimal fairness
model, which can always obtain the optimal objective of the tradeoff between predicting user
preference and the MMF objective. The preference estimation is updated using the users’ feedback
at the end of each interaction. Every point in Figure 1(b) represents the long-term lowest exposures
among all providers (abbreviated as Lowest Exposures) during the entire interaction process, and
different lines represent the simulation performance under different exposure sizes (i.e., ranking size).
The larger the exposure size becomes, the smaller providers will get more exposure opportunities
[41]. From Figure 1(b), one can easily observe that the magnitude of the exposure size (i.e., the impact
of exposure bias) will significantly affect the long-term performance of the MMF performance.
The reason is that the provider who has the lowest exposures will not get the opportunity to be
exposed in such loop because his/her items will always be considered as negative samples. In RFL,
providers with few exposures will get fewer and fewer opportunities to be exposed, intensifying
the unfairness over time.
Although existing studies [27, 49, 50] propose to utilize reinforcement learning frameworks to

alleviate the exposure bias amplification, how to optimize the long-term objective under RFL subject
to fairness constraints is still a challenging problem. In this article, we propose an online ranking
model named Optimizing Long-Term Provider Max-Min Fairness (LTP-MMF) to address the
issue. Intuitively, LTP-MMF exploits the objective while exploring the feedback of unexposed items.
Specifically, LTP-MMF formulates the provider fair recommendation problem as a repeated

resource allocation problem under batched bandit settings. Each item is considered a bandit’s arm.
At each round, when a user comes to access the RS, LTP-MMF will choose : items (i.e., arms)
to generate a recommendation ranking list. For each arm, LTP-MMF first utilizes the Matrix
Factorization (MF) model [26] to generate the predicted accuracy rewards from the side of users.
Then, LTP-MMF will get provider exposures as the fairness reward in terms of the ranking list.
Finally, LTP-MMF adds an exploration term toward the accuracy and fairness rewards by utilizing
theUpper Confidence Bound (UCB) algorithm. Such exploration terms under fairness constraints
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Toward LTP-MMF under Recommendation Feedback Loops 11:3

Fig. 1. (a) The feedback loops of the interaction between the fairness model and users. (b) Simulations of the
long-term lowest exposures among all provider (abbreviated as Lowest Exposures).

help the model to access the feedback of unexposed items of small providers, improving the fairness
performance in the long term.
As for the parameters of predicting rewards on the user’s side, it has a serious problem of long

update time. Therefore, we first collect enough users’ feedback and then update them incrementally
in a batched style. Theoretical analysis shows that the regret of LTP-MMF enjoys a sub-linear
bound, and the batch size is a tradeoff coefficient between accuracy and fairness in the long term.

We summarize the major contributions of this article as follows:

(1) In this article, we analyze the importance of the LTP-MMF when considering the RFL.
(2) We formulate the long-term provider fair recommendation problem as a repeated resource

allocation problem under a batched bandit setting, and a ranking model called LTP-MMF is
proposed. Theoretical analysis shows that the regret of LTP-MMF can be bounded.

(3) Extensive experiments on three public datasets demonstrated that LTP-MMF steadily outper-
forms the baselines in the long term. Moreover, we verified that LTP-MMF is computationally
efficient in the online inference phase.

2 Related Work
The fairness problem in multi-stakeholder RS has become a hot research topic [2, 3]. According to
different stakeholders, the fairness problem can be divided into customer fairness (C-fairness) and
provider fairness (P-fairness) [13, 40]. In a recent publication, the stream of provider fairness is
defined as ensuring that the item exposures of each provider are relatively similar to each other
[18, 23, 29, 40, 43, 44, 57, 58, 60]. In generative RS, provider fairness can also entail generating
non-discriminatory item content for providers based on large language models [16, 34]. In this
article, our primary focus lies on mainstream provider fairness, which emphasizes maintaining as
much equality as possible in the item exposures across different providers.
When dealing with provider fairness, most methods are conducted under re-ranking scenarios

[19, 23, 29, 40, 43, 57, 58, 60]. For example, FairRec [43] and its extension FairRec+ [12] proposed an
offline recommender model to guarantee equal frequency for all items in a series of ranking lists.
Welf [19] proposed the Frank-Welf algorithm to solve the provider fair problem. Some work [7,
23, 29, 40, 57] proposed a Linear Programming (LP)-based method to ensure the group fairness.
P-MMF [58] and FairSync [60] proposed an online mirror gradient descent to improve the worst-off
provider’s exposures in the dual space. In this article, our main objective is to mitigate the influence
of feedback loops in mirror gradient descent approaches [58, 60], thereby achieving long-term
provider fairness.
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Another line of research proposed that the recommendation system is dynamic; the attributes,
features, and parameters can change as time goes on [14, 21, 22, 38]. Previous studies aimed to
improve the long-term performance of fairness. Ge et al. [22] focused on the time-vary recommen-
dation attributes and formulated the long-term problem as a Constrained Markov Decision Process.
Mladenov et al. [38] proposed that content providers may leave if they cannot obtain enough sup-
port and formulated the problem as a constrained matching problem. Akpinar et al. [4] studied the
provider population distributions that will change in the long term and proposed an intervention
adjustment method. There are also some models [10, 37] proposed to utilize reinforcement learning
techniques to optimize long-term fairness. However, these long-term-based fairness methods did
not consider the impact of RFL (i.e., exposure bias) in the long term.
In recent years, many debiasing approaches [35, 62] have been proposed to break the feedback

loop. For example, [62] proposed to utilize the influence function to remedy the bias from the loop,
and Liu et al. [35] proposed to utilize uniform data to debias from the loop. At the same time, there
are also some reinforcement learning methods to break the loop. Exploitation and exploration in
bandit settings were proposed to solve the problem. Li et al. [32] and Wang et al. [52, 55] all utilized
UCB to explore the unexposed items. Other models [54, 63] also utilized policy gradient methods to
break the feedback loop. However, they do not consider provider MMF constraints in the feedback
loop.

In the causal inference literature [24, 33, 47, 59], some methods try to alleviate exposure bias in
RS. For example, some work [33, 47] suggested utilizing user-social networks to mitigate exposure
bias, as users who are closely connected are more likely to share the same items with each other.
Some work [24] proposed to utilize propensity scores to mitigate exposure bias. DEPS [59] considers
the user-social network and item side propensity score together. However, these methods do not
account for feedback loop scenarios and cannot be applied to fairness-aware RS.

3 Formulation
In this section, we first define the notations in multi-stakeholder RS. Then, we give the formal
definition of amortized MMF accordingly. Finally, we formulate the interactions between users and
the recommender model as a bandit problem.

3.1 Multi-Stakeholders RS
A multi-stakeholder recommender system consists of different participants, including users, item
providers, etc. Let U,I, and P be the set of users, items, and providers, respectively. Each item
8 ∈ I is associated with a unique provider ? ∈ P. The set of items associated with a specific provider
? is denoted by I? .

In the ranking phase, when a specific user D ∈ U accesses the recommender system, for each
user-item pair (D, 8), the click rate BD,8 = % (2D,8 = 1) of the userD on the item 8 is estimated through a
rankingmodel based on the user’s historical click feedback.We denote such feedback by 2D,8 ∈ {0, 1},
which represents whether or not the user clicked the item. The vector sD = [BD,1, BD,2, · · · , BD, | I | ]
is the click rates of D to all items. In the ranking phase, the items are ranked according to the
estimated click rates.
In provider-fair recommendation, we should consider the user-side utilities and provider-side

fairness together. Formally, we define the true user-side utility of exposing item list ! (D) to D
as the summation of the preference scores in the list, denoted by 6 (! (D)) =

∑
8∈! (D ) BD,8 , where

! (D) contains the  items exposed to D. Following the literature convention [40, 43, 58], we define
the fairness vector as e, for a specific provider ? , e? ∈ R+ denotes the exposure of provider ? . In
this article, we mainly focus on provider MMF [8, 19, 58], which aims to improve the exposure
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opportunities of worst-off providers. Formally, A (e) = min?∈ |P | (e/W), where $ is the weighting
vector of providers.

In this article, we aim to compute a fair list !�
 
(D) ∈ I , which well balances the user utilities

6(·) and provider fairness metric A (e) under RFL in the long-term.

3.2 Amortized Provider MMF
In real-world applications, the users arrive at the recommender system sequentially. Assume that
at time C user DC arrives. The recommender system needs to consider long-term provider exposure
during the entire time horizon from C = 0 to ) . Our task can be formulated as a resource allocation
problem with amortized fairness [5, 58]. Specifically, the optimal utility of the recommender system
can be defined as an amortized fairness function [5, 9, 58], which is the accumulated exposures over
periods from 0 to ) . In this case, e? can be seen as the total number of exposed items of provider ? ,
accumulated over the period 0 to ) .

Formally, when trading off the user utilities and provider fairness, we have the following mathe-
matical program:

'$%) = max
xC

1
)

)∑
C=1

6(xC ) + _A (e)

= max
xC

1
)

)∑
C=1

∑
8∈I

xC8BDC ,8 + _ min
?∈ |P |

(
)∑
C=1

eC/$
)

s.t.
∑
8∈I

xC8 =  , ∀C ∈ [1, 2, . . . ,) ]

eC,? =
∑
8∈I?

GC8 , ∀? ∈ P, ∀C ∈ [1, 2, . . . ,) ]

)∑
C=1

eC ≤ $ , ∀C ∈ [1, 2, . . . ,) ]

xC8 ∈ {0, 1}, ∀8 ∈ I, ∀C ∈ [1, 2, . . . ,) ]

, (1)

where $ ∈ R | P | denotes the weights of different providers, i.e., weighted MMF [8, 58]. In amortized
fairness, e ∈ R)×|P | is the exposure vector, i.e., eC,? denotes the utility of provider ? at time C .
xC ∈ {0, 1} | I | is the decision vector for user DC . Specifically, for each item 8 , xC8 = 1 if it is in the
fair ranking list !�

 
(DC ), otherwise, xC8 = 0. The MMF regularizer min(·) in the objective function

suggests that we should improve the exposure opportunities of worst-off providers. The first
constraint in Equation (1) ensures that the recommended lists are of size  . The second constraint
in Equation (1) suggests that the exposures of each provider ? are the accumulated exposures
of the corresponding items over all periods. In general, we think time-separable fairness would
be preferred under scenarios with weak timeliness. For example, recommending items with long
service life (e.g., games and clothes).

Although here we have already given an LP solution Equation (1) to the problem, it can only solve
small-scale problems in an offline way. In online recommendation systems, for each user DC access,
the model needs to generate a fair ranking list !�

 
(DC ) from large-scale item corpus immediately.

This means we have no idea about the information after C . Next, we will discuss how to use MMF
in the online recommendation problem.
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Fig. 2. Sequential item ranking process of LTP-MMF.

3.3 Bandit with Provider Fairness
We first define some notations for the problem. For any symmetric matrix G ∈ R"×" and vector
x ∈ R" , let x8 denote the 8th element of the vector and G8 denote the 8th column of the matrix G.
Define ‖x ‖G =

√
x>Gx . We also define the weighted ℓ2 norm to be ‖x ‖2

~2 =
∑"
8=1 x

2
8~

2
8 .

To help the fairness model break the feedback loop, we formulate the provider-fair problem as a
context bandit process [52]. As shown in Figure 2, at each iteration, a batch of users {DC })C=1 arrive
sequentially. For each user DC and each item 8 , the accuracy module c takes user features and item
context as input and predicts the accuracy reward B̂DC ,8 ,∀8 ∈ I. Then the fairness module c� takes
the accuracy reward as input and generates a predicted accuracy-fairness reward according to
the provider exposures. Finally, the exploration module gives the exploration term according to
previous recommendations to explore unexposed items.

After getting the reward of each bandit arm (i.e., item), LTP-MMF chooses itemswith the highest
rewards to generate an item list !�

 
(DC ). Then the user gives their feedback {2DC ,8 ,∀8 ∈ !� (DC )},

which is stored in the log. When a batch of users finishes their access, the recommendation results
and rewards are collected.
In this article, we propose to formulate such a process as a batched bandit which can be repre-

sented by a 7-tuple < S,L, c, c� , ', # ,) >:
Context space S: denotes a hidden context space that summarizes the embedding space of both

users and items.
Action space L: denotes a given action space, and each action corresponds to selecting  items

(arms): !�
 
(D) ∈ L.

Accuracy module c : takes user and item context as input and predicts the accuracy reward if the
user is recommended with this item, i.e., B̂D,8 = c (D, 8).
Fairness module c� : An online algorithm c� produces a real-time decision vector xC ∈ {0, 1} | I |

based on the current user DC and the history HC−1 = {DB , xB }C−1B=1 . c
� takes the estimated user-item

preference score and item-provider relations as input and outputs an accuracy-fairness reward if
the user is recommended with this item, i.e. 5̂D,8 = c� (D, B̂D,8 ,HC−1).
Reward ': is defined as a linear combination of the two types of feedback defined in Equation

(1): ' = 1
)
6(xC ) + _A (e).

Total data number # : the process of a batched fairness-aware bandit is partitioned into b# /) c
episodes. Within each episode, the platform first updates the ranking policy c using the collected
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user feedback and then applies the re-ranking policy c� with users for time horizon ) using the
updated ranking policy c .
Batch size ) : is the number of steps (time horizons) in each episode. That is, in each episode,

the platform makes recommendations for each user and collects log data B = {xC , 2DC ,8 , 8 ∈
!�
 
(DC )}, eC })C=1. Finally, a new accuracy predicted c is trained on B at the beginning of the next

episode.
Within each batch, the estimated reward is defined as '̂ = 1

)
6̂(xC ) + _A (e), where 6̂(·), A (·) are

based on the estimated user-item score B̂ . The long-term regret of the LTP-MMF is defined as the
expectation over all log data B:

Regret
(
c, c�

)
= EB

[
'$%) − '̂

]
. (2)

4 Our Approach: LTP-MMF
In this section, we propose a novel recommender model which we call LTP-MMF.The model aims to
optimize the long-term accuracy-fairness tradeoff in recommendation loops. The whole procedure
can be formulated as a batched bandit process in Figure 2.

4.1 Overall Architectures
In this section, we will introduce the overall relations between the bandit settings discussed in
Section 3.3. In the bandit problem, the overall reward ' will be divided into three parts. In the
following three sections, we employ three modules—the Accuracy Module, the Fairness Module,
and the UCB module—to compute three distinct parts of the reward, respectively.

4.2 Accuracy Module: MF
For each (D, 8), we can define their hidden embeddings as vD, v8 ∈ R3 , where 3 is the pre-defined
dimension. The MF model takes two embeddings to determine the estimated preference score B̂D,8 :

B̂D,8 = c (D, 8) = v>D v8 + n, (3)

where the random noise n is drawn from a zero-mean Gaussian distribution N(0, f2).
The MF [30] model uses a coordinate descent algorithm built upon the ridge regression to

estimate the unknown parameter vD for each user and the unknown hidden feature v8 for each
item. Specifically, the objective function of the ridge regression can be written as follows

min
vD ,v8

1
2
E8,D

[ (
v>D v8 − 2D,8

)2 + _D
2
‖vD ‖2 +

_8

2
‖v8 ‖2

]
, (4)

where _D and _8 are the tradeoff parameters for the ℓ2 regularization.
In real-world applications, the users arrive at the recommender system sequentially. Assume

that at time C user DC arrives, the recommender model recommendes list ! (DC ) to DC based on
estimated scores and receives the user click feedback {2DC ,8 , 8 ∈ !C (D)}. The closed-form estimation
of v8 , vD at time C can be derived as v̂D,C = (GD,C )−1bD,C and v̂8,C = (I8,C )−1d8,C , where

GD,C = _8 O +
C∑
9=1

v̂8, 9 (v̂8, 9 )>, bD,C =
C∑
9=1

v̂8, 92D,8 ;

I8,C = _D O +
C∑
9=1

v̂D,9 (v̂D,9 )>, d8,C =
C∑
9=1

v̂D,92D,8 .

(5)
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4.3 Fairness Module
In this section, we will take the most state-of-the-art dual gradient descent method P-MMF [58]
as our fairness module. It is important to note that our methods can be readily applied to various
score-based re-ranking methods [5, 40, 60], as our model LTP-MMF can easily substitute the fairness
reward of the fairness module with other fairness rewards. We aim to describe how to tradeoff
user accuracy and provider fairness in an online fashion. Given the ranking scores from accuracy
reward BD,8 , we can consider its dual problem:

Theorem 1 (Dual Problem). The dual problem of Equation (1) can be written as:

,$%) ≤,�D0; = min
-∈D

[6∗ (S-) + _A ∗ (−-)] , (6)

where S ∈ R | I |× |P | is the item-provider adjacency matrix with "8? = 1 indicating item 8 ∈ I? ,
6∗ (·), A ∗ (·) the conjugate functions:

6∗ (2) = max
xC ∈X

)∑
C=1

[
6(xC )/) − c>xC

]
, A ∗ (−-) = max

e≤$

[
A (e) + ->e/_

]
(7)

with X = {xC | xC ∈ {0, 1} ∧ ∑
8∈I xC8 =  }, and D = {- |A ∗ (−-) < ∞} is the feasible region of dual

variable -.
Moreover, the feasible region of the dual problem is

D- =

-
������∑?∈S$?-? ≥ −_,∀S ∈ PB

 , (8)

where PB is the power set of P, i.e., the set of all the subsets of P.

Lemma 1. The conjugate function A ∗ (·) has a closed form:

max
-≤$

A ∗ (−-) = $) -/_ + 1,

and the optimal dual variable is:

argmax
-≤$

A ∗ (−-) = $/_.

Remark 1. Following the practice in [58], we also try to optimize the integral LP from the dual
space. It involves a vast variable x’s space of size ) × |I| to dual variable `’s size |P | � ) × |I|,
and thanks to the sparsity ofM, the computation ofM- is highly efficient. Note that any other dual
transformation way [5, 60] can be also applied in LTP-MMF.

The proofs of Theorem 1 and Lemma 1 are provided in Appendix A.1. FromTheorem 1, we can
have a new non-integral decision variable - ∈ R | P | . In practice, we usually have |P | � |I|. Besides,
due to S ’s sparsity, it is very efficient to compute S-, which aims to project the variable - from
the provider space onto the item spaces. According to Theorem 1, the accuracy-fairness reward of a
user-item pair is obtained through the conjunction function 6∗ (S-): 5̂D,8 = B̂D,8 −S>

8 -.
For each time step C in a batch, we utilize the mirror momentum gradient descent [5, 45] to learn

the dual variable -C : first, we evaluate the conjugate function of the max-min regularizer A ∗ (−-C )
according to Lemma 1. Then, we can get the subgradient of the estimated dual function as

−M>xC + eC ∈ m (6∗ (S-C ) + _A ∗ (−-C )) .
Finally, we utilize gC = SxC + eC to update the dual variable by performing the online descent.
Therefore, the dual variable will move toward the directions of the providers with fewer exposures,
and the primal variable xC will move to a better solution.
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Note that the projection step can be efficiently solved using QP solvers [5] since D is coordinate-
wisely symmetric.

-C+1 = argmin
-

∑
?∈P

(-?$? − -̃C,?$? )2

s.t.
<∑
9=1

$ 9 -̃ 9 + _ ≥ 0,∀< = 1, 2, . . . , |P |, (9)

where -̃ satisfies:

$1-̃1 ≤ $2-̃2 ≤ · · · , ≤ $ | P | -̃ | P | .

4.4 UCB for Accuracy-Fairness Reward
UCB [52, 53] has proven to be an effective strategy to estimate the confidence of predicted rewards
during exploration. In fairness-aware recommendations, the system should not only exploit the
accuracy-fairness objective in the ranking process but also should explore less exposed items to
avoid giving too few exposures to some providers.

Next, we will bound the corresponding UCB of the predicted accuracy-fairness reward 5̂D,8 .

Theorem 2 (Confidence Radius of Ranking). The parameter vD, v8 is @-linear to the optimizer.
For any f > 0, with probability at least 1 − f , the confidence radius 45 CD,8 of user-item preference score
at time C satisfies:

5D,8 − 5̂DC ,8 ≤ 45 CD,8 = UC (‖v̂8,C ‖G−1
D,C

+�C/2) + VC (‖v̂D,C ‖I−1
8,C

+�C/2). (10)

We can decompose the confidence radius into three terms:

—vD and v8 bias terms ‖v̂D,C − E∗D ‖GD,C , ‖v̂8,C − E∗8 ‖I8,C and their upper bound at time C are denoted
by UC , V8,C , respectively.

—vD and v8 variance terms ‖v̂D,C ‖G−1
D,C
, ‖v̂8,C ‖I−1

8,C
.

—collaborative variance terms ‖v̂D,C − E∗D ‖G−1
D,C
, ‖v̂8,C − E∗8 ‖I−1

8,C
and their upper bound at time C are

defined as �C = (@ + n@)C , where for any n@ > 0 and vD , v8 are @−linear (0 < @ < 1 to the
optimizer.

The bias bound (i.e., exploration weight) UD, U8 are defined as

‖v̂D,C − v∗D ‖GD,C ≤ UC , ‖v̂8,C − v∗8 ‖I8,C ≤ VC,

UC =
√
_D +

2(@ + n@) (1 − (@ + n@)C )
1 − @ − n@

+

√
3 ln

_D3 + C
_D3f

,

VC =
√
_8 +

2(@ + n@) (1 − (@ + n@)C )
1 − @ − n@

+

√
3 ln

_83 + C
_83f

. (11)

The confidence radius can be bounded by $
( [

1−(@+nA )C
]√

ln(C )√
C

)
, which is a sub-linear decreasing

function of t when C becomes large. $ ((1 − (@ + nA )C )
√
ln(C)) is the bias growth rate and $ (1/

√
C) is

the variance converge rate .
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Remark 2. From Theorem 2, we can see the exploration term is 45 CD,8 = UC (‖v̂8,C ‖G−1
D,C

+�C/2) +
VC (‖v̂D,C ‖I−1

8,C
+�C/2). The exploration term has three parts:

—Bias terms ‖v̂D,C−E∗D ‖GD,C , ‖v̂8,C−E∗8 ‖I8,C is bounded by UC , VC , which captures the user preference
shift with fairness. Intuitively, the presence of more shifts indicates that previous estimations
may not be accurate, thus resulting in a larger degree of exploration.

—Variance terms ‖v̂D,C ‖G−1
D,C
, ‖v̂8,C ‖I−1

8,C
captures the variance of user and item embedding estima-

tion. Intuitively, the presence of more variance indicates that previous estimations may not
be accurate, thus resulting in a larger degree of exploration.

—Similarly, the collaborate variance term �C captures the variance of user-item interaction.
Intuitively, the presence of more variance indicates that previous estimations may not be
accurate, thus resulting in a larger degree of exploration.

Those three parts together form the exploration term to balance exploration in fairness constraints
with accuracy.

The proof of Theorem 2 is deferred to Appendix A.3. Equation (10) measures the estimation
uncertainty of parameter vD, v8 in ranking module. The exploration and exploitation tradeoff is
balanced by the prediction confidence bound of both the user side and the item side. FromTheorem 2,
we can also observe that the confidence radius is a tradeoff between the bias term and the variance
term. With more observations, the bias will increase but the variance will decrease more rapidly so
that the radius bound will become smaller (i.e., the bound is a sub-linear decreasing function of t
when C becomes large).

4.5 Our Algorithm: LTP-MMF
In each iteration of the algorithm, we first conduct online recommendations of user accuracy and
provider MMF with fixed ranking model for a batch of users {DC })C=1. Then we will collect these
users’ feedback on the recommended items. Finally, the accuracy module parameters are updated
using the collected users’ feedback.

Algorithm 1 illustrates our main algorithm.
In lines 6–11, the algorithm describes the process of fair-aware RS model giving recommendation

results to users (fairness model->user edge in Figure 1). Specifically, when user D comes to the
recommender system, in line 6, LTP-MMF first estimates the accuracy score (accuracy Module).
Then in line 7, the LTP-MMF computes the UCB bound (UCB module) in line 10, we will also add
the final score with the fairness term (fairness module).

These three modules together form the total reward: (1) For the error from the ranking model, we
modify the ranking score according to its UCB. (2) For the MMF objective, we apply the primal-dual
theory to adjust the score with the dual variable -C . Intuitively, for -C , when the values of dual
variables are higher, the algorithm naturally recommends fewer items related to the corresponding
provider. (3) m ensures that the algorithm only recommends items from providers with remaining
resources. Note that in line 9, the formulation is linear with respect to xC . Therefore, it is efficient
to compute xC through a top- sort algorithm in constant time. Finally, in line 12, we will adapt
the top-K sorting operation to get the final output variable x according to the reward combined
with these three components.

In line 14, the algorithm outlines the procedure by which users generate data for model training,
specifically focusing on the user->data edge as depicted in Figure 1.

In lines 15–28, the algorithm outlines the process of model updating (data->fairness model edge
in Figure 1). In lines 17–21, we aim to update the parameters of the fairness module utilizing the
dual mirror descent algorithm. In lines 23–29, we utilize the user behavior data to update the
parameters of the accuracy module.
ACM Transactions on Information Systems, Vol. 43, No. 1, Article 11. Publication date: November 2024.
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Algorithm 1: Online Learning of LTP-MMF

Input: User arriving order {D8 }#8=1, batch size ) , ranking size  . Ranking parameters: User
embedding {vD ∈ R3 ,∀D ∈ U}, item embedding {v8 ∈ R3 ,∀8 ∈ I}. Confidence level f , and
semi-positive matrix GD = _D O , bD = 0, I8 = _8 O , d8 = 0.
Re-ranking parameters: Item-provider adjacent matrixM, maximum resources $ and the
coefficient _.

Output: The decision variables {x8 , 8 = 1, 2, . . . , # }.
1: for = = 1, · · · , b# /) c do
2: Initialize dual solution -1 = 0, remaining resources #1 = $ , and momentum gradient g0 = 0,

training buffer B = ∅.
3: for C = 1, · · · ,) do
4: User D=)+C arrives, we abbreviate D=)+C as D.
5: fairness model->users edge in Figure 1(a): lines 6-11.
6: Compute estimated score BD,8 = v>D v8 ,∀8 ∈ I.
7: Compute the UCB 4s following Equation (10): 45 =D,8 = U= (‖E8 ‖G−1

D
+�/2) + V= (‖ED ‖I−1

8
+�/2).

8: m? = (1 − O (#C? > 0) ∗ 1000.0)
9: //Rewards for exploit-explore trade-off:
10: AD,8 = B̂D,8/) −M>

8 (-C +m) + 45 =D,8
11: yields output variable x
12: xC = argmaxxC ∈X

[
r>D xC

]
13: users->data edge in Figure 1(a): lines 13-20.
14: B = B ∪ {(D, 8, 2D,8 ) //Receive user’s feedback:
15: //Update the remaining resources:
16: #C+1 = #C −S>xC , eC = argmaxet≤#C A

∗ (−-t)
17: g̃C = −M>xC + eC ,
18: gC = U g̃C + (1 − U)gC−1
19: //Update the dual variable by gradient descent
20: -C+1 = argmin-∈D

[
〈gC , -〉 + [‖- − -C ‖2$ 2

]
21: end for
22: data->fairness model edge in Figure 1(a) lines 22-27.
23: for (D, 8, 2D,8 ) ∈ B do
24: //Update accuracy module:
25: GD = GD + v8v>8 , I8 = I8 + vDv>D
26: vD = G−1

D bD , vD = vD/‖vD ‖2
27: bD = bD + v82D,8 , d8 = d8 + vD2D,8
28: v8 = I−1

8 d8 , v8 = v8/‖v8 ‖2
29: end for
30: end for

Theorem 3 (Regret Bound). Assume that the function ‖ · ‖2
$ 2 is f-strong convex and there exists

a constant �, ! ∈ R+ such that ‖6̃C ‖ < �, ‖-‖W ≤ !. Then, the regret can be bounded as follows:

Regret(c, c� ) ≤ Regret(c� ) + Regret(c)!, (12)

where the regret bound of fairness module Regret(c� ) is the regret of the dual fairness model, which
can be bounded as

Regret(c� ) ≤ #

)

[
 (1 + _Ā + Ā )

min? $?
+ !

2

[
+ �

2[ () − 1)
(1 − U)f + �2

2(1 − U)2f[

]
, (13)
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where Ā is the upper bound of MMF regularzier, and in practice, Ā ≤ 1. The regret bound of accuracy
module Regret(c) can be bounded as

Regret(c) ≤  ) [U b# /) c (dD + ^) + Vb# /) c (d8 + ^)], (14)

where

^ =
(@ + n@) (1 − (@ + n@) b# /) c)

1 − @ − n@
,

d; =

√
23
#

)
ln

(
1 + #

)_;3

)
, ; = D, 8 .

Remark 3 (Accuracy-Fairness Regret Trade-off). Setting the learning rate as [ = $ () −1/2), we can
obtain a fairness regret Regret(c� ) upper bound of order $ (# /

√
) ). The accuracy regret Regret(c )

is $ (
√
#) ln( #

)
)). The larger batch size ) , the less error raised of accuracy in the long term, but

the more bias caused by the fairness module c� .

Remark 4 (Sublinear Long-Term Regret). Overall, the long-term regret of LTP-MMF can be obtained
from order $ (# ln# ). Moreover, we can observe that the more we tend to consider fairness, the
larger ! will become, leading to larger regret in the long term.

4.6 Discussion
We will summarize the key contribution of our method as follows. Firstly, our chosen accuracy
module is the widely represented two-tower model of RS [61], which utilizes the dot product
between two learned user item embeddings. However, it can be readily replaced with any other
two-tower recommender system models [25, 46, 51] by simply substituting the learned embeddings
for the user-item embeddings E8 and ED . Secondly, as mentioned in the Fairness Module, the fairness
module can also be replaced by any score-based re-ranking methods [5, 40, 61]. Secondly, Our UCB
exploration term exhibits wide adaptability, and our theoretical analysis also provides guidance
for the application of other two-tower and score-based fairness models. Our method uniquely
integrates the UCB technique to effectively balance accuracy estimation and fairness optimization
within the feedback loop scenarios of RS, offering the literature a notable example of addressing
the accuracy-fairness tradeoff in such long-term contexts.

5 Experiment
We conducted experiments to show the effectiveness of the proposed LTP-MMF in the long term.
The source code and experiments have been shared at GitHub https://github.com/XuChen0427/LTP-
MMF.

5.1 Experimental Settings
5.1.1 Datasets. The experiments were conducted on four large-scale, publicly available recom-

mendation datasets, including:
Yelp:1 a large-scale businesses recommendation dataset. We only utilized the clicked data, which

is simulated as the 4–5 star rating samples.

1https://www.yelp.com/dataset
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Table 1. Statistics of the Datasets

Dataset #User #Item #Provider #Interaction Sparsity Provider Removing Ratio
Yelp 17,034 11,821 23 154,543 99.92% 0.0%
Amazon-Beauty 9,625 2,756 104 49,217 99.81% 50.55%
Amazon-Baby 11,680 2,687 112 59,836 99.80% 60.94%
Steam 5,902 591 81 29,530 99.15% 25.06%

Amazon-Beauty/Amazon-Baby: Two subsets (beauty and digital music domains) of Amazon
Product dataset.2 We only utilized the clicked data, which is simulated as the 4–5 star rating
samples. Also, the brands are considered as providers.

Steam3 [28]: We used the data for games played for more than 10 hours in our experiments. The
publishers of games are considered as providers.
As a pre-processing step, the users, items, and providers who interacted with less than five

items/users were removed from all datasets to avoid the extremely sparse cases. We removed
providers associated with fewer than five items, which also included providers lacking a brand
name, resulting in the removal of their associated items as well. We will give a more detailed
provider-removing ratio in Table 1. Table 1 lists some statistics of the four datasets.

5.1.2 Evaluation. We sorted all the interactions according to the time and used the first 80% of
the interactions as the training data to train the base model (i.e., BPR [46]). The remaining 20%
of interactions were used as the test data for evaluation. Based on the trained base model, we
can obtain a preference score BD,8 for each user-item pair (D, 8). The chronological interactions
in the test data were split into interaction sequences where the horizon length was set to ) . We
calculated the metrics separately for each sequence, and the averaged results are reported as the
final performances.

As for the evaluation metrics, the performances of the models were evaluated from three aspects:
user-side preference, provider-side fairness, and the tradeoff between them. As for the user-side
accuracy, following the practices in [57], we utilized the CTR@K, which measures the averaged
click rate in the long term:

CTR@K =
1
#

#∑
C=1

∑
8∈L�

 
(DC )

BDC ,8/ . (15)

As for provider fairness, we directly utilized the definition of MMF in Section 3 as the metric:

MMF@ =
)

#

b# /) c∑
8=1

min
?∈P


)∑
C=1

∑
8∈L�

 
(DC )

I(8 ∈ I? )/$?
 , (16)

where I(·) is the indicator function.
As for the tradeoff performance, we used the online objective tradeoff to measure the fairness:

A_@ = CTR@K + _ ·MMF@ , (17)

where _ ≥ 0 is the tradeoff coefficient.

2http://jmcauley.ucsd.edu/data/amazon/
3http://cseweb.ucsd.edu/wckang/Steam_games.json.gz
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5.1.3 Baselines. The following representative provider fair re-ranking models were chosen as the
baselines: FairRec [43] and FairRec+ [12] aimed to guarantee at least Maximin Share of the provider
exposures. CPFair [40] formulated the tradeoff problem as a knapsack problem and proposed a
greedy solution.

We also chose the following MMF models: Welf [19] use the Frank-Wolfe algorithm to maximize
the Welfare functions of worst-off items. However, it is developed under off-line settings; RAOP [5]
is a state-of-the-art online resource allocation method. We applied it to the recommendation by
regarding the items as the resources and users as the demanders. Fairco [39]: added a regularizer
that measures the exposure gaps between the target provider and the worst providers.
We also compared the proposed with one heuristic MMF baseline:  -neighbor: at each time

step C , only the items associated to the top- providers with the least cumulative exposure are
recommended. At the same time, we also compared three bandit baselines, which aim to remedy the
bias from the feedback loops of RS. Note that, to make a fair comparison, all the bandit algorithms
are updated based on the batched log. hLinUCB [52]: it utilized UCB for learning hidden features
for both users and items. EXP3 [11] aimed to choose actions according to a distribution constructed
by the exponential weights. BLTS [17] will sample a reward based on a normal distribution with
the estimated reward variance. However, these bandit baselines did not consider provider fairness
in the long term.

Meanwhile, we also compare the baseline Dyn [4] of optimizing long-term fairness in feedback
loops. However, Dyn addresses long-term fairness concerns by considering the dynamic nature of
user social networks, where changes in social connections may lead users to belong to different
social groups over time. Therefore, we apply their re-ranking methods to our framework by treating
specific user groups as providers and users within those groups as items belonging to the respective
provider. To ensure a fair comparison, we substitute their dynamic environment, which involved
changing social networks, with dynamic user-item score estimation.

5.1.4 Implementation Details. As for the hyper-parameters in all models, the learning rate was
tuned among [14 − 2, 14 − 3]/) 1/2, and the momentum coefficient U was tuned among [0.2, 0.5].
For the maximum resources (i.e., the weights) $ , following the practices in [57, 58], we set $ based
on the number of items provided by the providers:

$? =  )[ |I? |
/
|I |, (18)

where[ is the factor controlling the richness of resources. In all the experiments, we set[ = 1+1/|P|.
We implemented LTP-MMF with PyTorch [42]. The experiments were conducted with a single
NVIDIA GeForce RTX 3090.

5.2 Main Experiments
In this section, we conducted the experiments on four large-scale datasets with the LTP-MMF and
other baselines.
Due to variations in dataset characteristics, we will provide a comprehensive list of critical

parameters related to fairness performance ranges for our model LTP-MMF and other baselines in
Table 2. To make a fair comparison, the other important variables such as W for evaluation and the
learning rate are all listed in Section 5.1.4 in the revised version.

5.2.1 Overall Performance. Table 3 reports the experimental results of LTP-MMF and the base-
lines on all three datasets to investigate the long-term performance. Underlined numbers mean
the best-performed baseline and ∗ means the improvements over the best baseline are statistically
significant (C-test, ?-value< 0.05). To make fair comparisons, all the baselines were tuned and used
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Table 2. List of Critical Parameters Related to
Fairness Is in Table 3

Models Fairness-aware Parameters
:-neighbor : ∈ [1, 5]
P-MMF _ = 0.5
CPFair _ = 0.5
Fairco _ = 0.5

FairRec/FairRec+ U ∈ [0.5, 1]
Welf _ = 0.5
Dyn _ = 0.5

LTP-MMF (ours) _ = 0.5, @ = 0.8, _D = _8 = 1

To ensure a fair comparison, if the baseline includes a
linear tradeoff coefficient, we uniformly set _ = 0.5. For
other parameters, we tuned them within the following
ranges for each dataset.

A@ as the evaluation metric. Note that similar experiment phenomena have also been observed
on other _ values.
From the reported results, we found that LTP-MMF outperformed all of the bandit baselines,

including hLinUCB, EXP3, and BLTS, which verified that LTP-MMF can serve the provider fairness
well in the long term. We also observed that LTP-MMF outperformed all the MMF-based baselines,
indicating that LTP-MMF can better remedy the bias in the RFL compared to other provider-fair
baselines. The reason is that LTP-MMF can explore the feedback of unexposed items, avoiding
always treating unexposed items as negative ones.
Due to exposure bias, larger exposure sizes tend to decrease bias, as they offer more items to

be exposed to users. However, in modern RS, such as YouTube [15], the ranking size exposed to
users is typically limited to single-digit items. Moreover, in the example depicted in Figure 1, we
can observe that as the ranking size increases, the severity of exposure bias diminishes. From the
empirical studies presented in Table 2, we can observe that the average improvements over the best
baselines are 5.5%, 2.7%, and 1.8% for ranking sizes of 5, 10, and 20, respectively. This means that
the smaller the magnitude of the exposure size (i.e., the larger the exposure bias in RFL), the more
improvements LTP-MMF increases. It indicates the effectiveness of LTP-MMF especially when the
ranking size is small.

Finally, it is evident that our model LTP-MMF significantly outperforms the long-term fairness
baseline Dyn, underscoring the effectiveness of our methods in optimizing long-term fairness
amidst the changing user preference estimations influenced by the feedback loops of RS.

5.2.2 Pareto Frontier. Figure 3 shows the Pareto frontiers [36] of CTR@K and MMF@K. The
Pareto frontiers were drawn by tuning the accuracy-fairness tradeoff coefficient _ ∈ [14 − 3, 1] with
best (CTR@K, MMF@K) long-term performances. In the experiment, we selected the baselines of
P-MMF, CPFair, fairco, Welf, FairRec+, and BLTS, which achieved relatively good performances
among fairness baselines and bandit baselines.
From the Pareto frontiers, we can see that the proposed LTP-MMF Pareto dominated all the

baselines (i.e., the LTP-MMF curves are at the upper right corner) expect P-MMF [58] on the
Amazon-Baby and Amazon-Beauty, indicating that LTP-MMF can achieve better user accuracy (i.e.,
CTR@K) with the same provider fairness (MMF@K) level. The results demonstrate that LTP-MMF
can better tradeoff accuracy and fairness in the long term.
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Table 3. Performance Comparisons between LTP-MMF and the Baselines

Model User Accuracy(CTR@K) Provider Fairness(MMF@K) Tradeoff Performance(r@K)∗

�)'@5 �)'@10 �)'@20 ""�@5 ""�@10 ""�@20 A@5 A@10 A@20
Yelp

hLinUCB 0.685 0.654 0.661 0.000 0.000 0.000 0.685 0.654 0.661
EXP3 0.463 0.465 0.466 0.014 0.022 0.028 0.470 0.466 0.480
BLTS 0.703 0.751 0.770 0.002 0.005 0.005 0.703 0.753 0.773
FairRec 0.710 0.687 0.762 0.000 0.000 0.000 0.710 0.687 0.762
FairRec+ 0.717 0.802 0.762 0.000 0.000 0.000 0.717 0.802 0.762
CPFair 0.625 0.659 0.709 0.071 0.070 0.109 0.661 0.694 0.764
k-neighbor 0.441 0.444 0.465 0.145 0.145 0.143 0.514 0.517 0.537
Welf 0.556 0.577 0.607 0.158 0.160 0.182 0.635 0.657 0.698
Fairco 0.569 0.587 0.606 0.271 0.278 0.283 0.705 0.726 0.748
P-MMF 0.581 0.611 0.648 0.225 0.314 0.390 0.694 0.768 0.843
Dyn 0.507 0.504 0.464 0.252 0.134 0.001 0.663 0.571 0.4645
LTP-MMF (Ours) 0.621 0.665 0.704 0.386 0.363 0.327 0.814∗ 0.847∗ 0.868∗
Improv. 13.5% 5.6% 3.0%

Amazon-Beauty
hLinUCB 0.588 0.601 0.565 0.000 0.000 0.000 0.588 0.601 0.565
EXP3 0.455 0.455 0.456 0.004 0.076 0.135 0.457 0.493 0.524
BLTS 0.559 0.566 0.580 0.000 0.010 0.026 0.559 0.571 0.593
FairRec 0.556 0.575 0.557 0.000 0.000 0.110 0.556 0.575 0.612
FairRec+ 0.556 0.575 0.559 0.000 0.000 0.111 0.556 0.575 0.615
CPFair 0.541 0.549 0.558 0.006 0.013 0.095 0.544 0.556 0.606
k-neighbor 0.453 0.469 0.499 0.125 0.133 0.156 0.516 0.536 0.577
Welf 0.536 0.554 0.556 0.000 0.000 0.167 0.536 0.554 0.640
Fairco 0.502 0.507 0.518 0.227 0.218 0.229 0.616 0.616 0.633
P-MMF 0.505 0.526 0.543 0.452 0.535 0.583 0.731 0.794 0.835
Dyn 0.439 0.442 0.444 0.003 0.002 0.001 0.4405 0.443 0.4445
LTP-MMF (Ours) 0.505 0.531 0.553 0.468 0.545 0.572 0.739∗ 0.804∗ 0.840∗
Improv. 1.1% 1.3% 0.6%

Amazon-Baby
hLinUCB 0.570 0.511 0.514 0.000 0.000 0.000 0.570 0.511 0.514
EXP3 0.463 0.463 0.463 0.040 0.094 0.138 0.483 0.510 0.532
BLTS 0.546 0.549 0.551 0.006 0.024 0.055 0.549 0.561 0.578
FairRec 0.519 0.531 0.546 0.000 0.000 0.087 0.519 0.531 0.590
FairRec+ 0.519 0.531 0.549 0.000 0.000 0.086 0.519 0.531 0.592
CPFair 0.524 0.536 0.536 0.017 0.046 0.104 0.533 0.559 0.588
k-neighbor 0.464 0.472 0.487 0.144 0.150 0.173 0.536 0.547 0.574
Welf 0.514 0.525 0.529 0.199 0.271 0.246 0.614 0.661 0.652
Fairco 0.496 0.504 0.507 0.253 0.252 0.250 0.623 0.630 0.632
P-MMF 0.493 0.512 0.521 0.533 0.560 0.580 0.760 0.792 0.811
Dyn 0.455 0.452 0.451 0.032 0.016 0.006 0.471 0.46 0.454
LTP-MMF (Ours) 0.498 0.515 0.526 0.534∗ 0.571∗ 0.595∗ 0.765∗ 0.801∗ 0.824∗
Improv. 0.7% 1.1% 1.6%

Steam
hLinUCB 0.820 0.574 0.707 0.000 0.000 0.000 0.820 0.574 0.707
EXP3 0.313 0.313 0.315 0.158 0.205 0.224 0.392 0.415 0.427
BLTS 0.829 0.849 0.018 0.011 0.017 0.835 0.834 0.857 0.844
FairRec 0.573 0.603 0.612 0.141 0.140 0.138 0.644 0.673 0.681
FairRec+ 0.583 0.604 0.614 0.153 0.148 0.139 0.660 0.678 0.684
CPFair 0.713 0.734 0.756 0.013 0.016 0.046 0.720 0.742 0.779
k-neighbor 0.364 0.408 0.597 0.127 0.179 0.220 0.428 0.498 0.707
Welf 0.680 0.672 0.702 0.000 0.162 0.177 0.680 0.753 0.791
Fairco 0.538 0.534 0.547 0.264 0.265 0.254 0.670 0.676 0.674
P-MMF 0.573 0.593 0.624 0.547 0.602 0.608 0.847 0.894 0.928
Dyn 0.442 0.258 0.198 0.159 0.039 0.015 0.521 0.277 0.211
LTP-MMF (Ours) 0.602 0.611 0.633 0.603 0.617 0.628 0.904∗ 0.920∗ 0.947∗
Improv. 6.7% 2.9% 2.0%

The experimental settings are listed in Table 2. The bold numbers denote the performance of our models, and the
underlined numbers denote the best-performing baselines. Improv., improvements.
∗: Improvements over the best baseline are statistically significant (t-test, p-value < 0.05).
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Fig. 3. Pareto frontier in four dataset.

Moreover, we can observe the changes in user accuracy and provider fairness with tradeoff
co-efficient _ = [0.001, 0.01]. From Figure 3(d), we can observe that when _ increases from 0.001 to
0.01, the user accuracy (i.e., CTR@K) only decreases by 0.09%, but provider fairness (i.e., MMF@K)
increases 220%. The result indicated that we can achieve better MMF in the long term while
sacrificing little accuracy in LTP-MMF.

5.3 Experiment Analysis
We also conducted experiments to analyze LTP-MMF on the Steam dataset under top-10 settings.

5.3.1 Ablation Study on Exploration Term. To investigate the impact of exploration term (i.e., the
upper-confidence-bound 45D,8 in Equation (10)), we conduct an ablation study shown in Figure 5.
Specifically, we showed the CTR@10 and MMF@10 of two LTP-MMF variations, including the
variations without exploration term (denoted as “LTP-MMF w/o exploration term”), and the com-
plete LTP-MMF. From Figure 5, we found that in the first 25 interactions, the exploration term of
LTP-MMF is dominant, leading to relatively poor performance. However, in the rest of the periods,
LTP-MMF explores more trustful feedback of items, leading to better estimation of user preference.
Therefore, LTP-MMF has better performance in terms of both user accuracy and provider fairness
in the long term compared to “LTP-MMF w/o exploration term”. The experiment also verified the
importance of giving the exposures fairly to the providers in the feedback loop.
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Fig. 4. Exploration weight.

Fig. 5. Ablation study for the exploration of LTP-MMF.

At the same time, we also conduct the experiment to investigate the long-term impact of different
exploration weights (i.e.

√
_8 ,

√
_D in Equation (11)) shown in Figure 4. From the curve, we find

that the performance improved when
√
_8 ,

√
_D ∈ [0.01, 1] and then they dropped between [1, 100],

respectively. The reason is that the more exploration, the less bias will be in the long term. However,
too much exploration will inevitably hurt the exploit reward, hurting the long-term performance.
The opposite also holds. Therefore, we need to balance the exploration-exploit in the long term.

5.3.2 Ablation Study of Different Fair-Aware Modules. To investigate the impact of different
fair-aware modules (fairness module and UCB module), we conduct an ablation study shown in
Figure 9. Specifically, we showed the r@K of two LTP-MMF variations, including the variations
without fairness module (denoted as “w/o fairness module”), without UCB module (denoted as “w/o
UCB module”), and the complete LTP-MMF (denoted as “full modules”).
From Figure 9, We can observe that when dropping out of the fairness and UCB modules, the

overall performance decreases under different ranking sizes, indicating the effectiveness of the
different fairness-aware modules.

5.3.3 Impact of the Batch Size) . According to Theorem 3, the batch size) balances the regret of
user accuracy and provider fairness. In this experiment, Figure 6(a) studied how CTR@K, MMF@K,
and r@K changed when the batch size ) was set to different values from [64, 1024]. Figure 6(b)
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Fig. 6. (a) The long-term performance. (b) The long-term regret w.r.t. batch size ) .

studied how regret of accuracy (Regret(c )), regret of fairness (Regret(c� )) and regret of LTP-MMF
(Regret(c, c� )) changed when the batch size ) was set from [64, 1024].

From the curves shown in Figure 6(a), we found the accuracy performance CTR@K improved
while the fairness performance MMF@K dropped when the batch size became smaller. Similarly,
in Figure 6(b), the regret of accuracy Regret(c ) dropped while the regret of fairness Regret(c� )
dropped when the batch size became smaller. The results verified the theoretical analysis that small
) (e.g., ) = 64) results in more bias in fairness estimation while large ) (e.g., ) = 1024) results in
large bias in accuracy estimation in the long term.
Moreover, The overall performance A@ improved and regret of LTP-MMF (Regret(c, c� ))

dropped when ) ∈ [64, 512] and then A@ , Regret(c, c� ) dropped and improved between
[512, 1024], respectively. Therefore, it is important to balance the accuracy and fairness in real
applications through batch size ) .

5.3.4 Periodical Performance. Figure 7 reports the experimental results of LTP-MMF and per-
forming baselines to investigate how the LTP-MMF performs for each period. Note that similar
experiment phenomena have also been observed on other _ and top-: values. To make fair compar-
isons, all the baselines were tuned _ = 1 as the evaluation metric.
From the A@10 curve, we found that although the performance gaps between LTP-MMF and

other baselines are not obvious in the beginning (interaction 0), the LTP-MMF can well explore the
feedback of unexposed items, leading to a huge improvement over other baselines in the long term
(interaction 200). Moreover, in most periods, LTP-MMF can steadily outperform other baselines,
verifying the effectiveness of LTP-MMF.

5.3.5 Online Inference Time. We experimented with investigating the online inference time of
LTP-MMF. Figure 8 reports the curves of inference time (ms) of the accuracy module, fairness
module, and exploration term computation per user access w.r.t. item size. We can see that LTP-
MMF with GPU versions needs only within 6ms to calculate user-item scores BD,8 and exploration
term 45D,8 . The reason is that this operation only needs matrix multiplication, and the inverse of
the matrix can be stored in the training (offline) phase, leading to low latency in the online phase.
Moreover, the inference time for the fairness module can also be maintained as 14–16 ms even
when the item size becomes larger. We conclude that LTP-MMF can be adapted to online scenarios
efficiently because of its low latency, even when the item size grows rapidly.
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Fig. 7. The periodical performance of LTP-MMF and other top baselines.

Fig. 8. The online inference time per user w.r.t. the number of total items.

Fig. 9. Ablation studies of the individual impact of each component. We report the overall performance A@ 
on Steam datasets under different ranking sizes  .

6 Conclusion
We proposed a novel ranking model called LTP-MMF that aims to consider provider MMF in
the long term. Firstly, we formulated the provider fair recommendation as a repeated resource
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allocation problem under a batched bandit setting. LTP-MMF applies the exploration term to break
the loop while exploiting the fairness-aware rewards. Our theoretical analysis showed that the
regret of LTP-MMF can be bounded. Experiments on four available datasets demonstrated that
LTP-MMF can conduct ranking in an effective and efficient way.
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A Appendix
A.1 Proof of Theorem 1

Proof. For max-min fairness, we have the regularizer as A (e) = min?∈P
(
e?/$?

)
, we can easily

proof that the exposure vector e can be represented as the dot-product between decision varible xC
and the item-provider adjacent matrix A: e =

∑)
C=1 (A>xC ) .Then, we treat the e as the auxiliary

variable, and the ideal objective can be written as:

,$%) = max
xC ∈X,e≤$

[
)∑
C=1

6(xC )/) + _A (e)
]

B .C . e =
)∑
C=1

(
A>xC

)
,
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where X = {xC |xC ∈ 0, 1 ∧ ∑
8∈I xC8 =  }. Then, we move the constraints to the objective using a

vector of Lagrange multipliers - ∈ R | P |:

,$%) = max
xC ∈X,e≤$

min
-∈D

[
)∑
C=1

6(xC )/) + _A (e) − ->

(
−e +

)∑
C=1

A>xC

)]
≤ min

-∈D

[
max
xC ∈X

[
)∑
C=1

6(xC )/) − ->
)∑
C=1

A>xC

]
+max

e≤$

(
_A (e) − ->e

) ]
= min

-∈D
[5 ∗ (A-) + _A ∗ (−-)] =,�D0; ,

where D = - |A ∗ (−-) < ∞} is the feasible region of dual variable -. According to the Lemma 1 in
the Balseiro et al. [5], we have D is convex and positive orthant is inside the recession cone of D.

We let the variable z? = (e?/$? − 1), we have:

A ∗ (-) = max
e≤$

[
min

(
e?/$?

)
+ ->e/_

]
= ->$/_ + 1 +max

z?≤0

min(z? ) + 1/_
∑
?∈P

-?$?z?


Let B (z) = min? z? and v = (- � $ )/_, � is the hadamard product. Then we define B∗ (v) =

maxz≤0
(
B (z) + z) v

)
. We firstly show that if

∑
?∈S v? ≥ −1,∀S ∈ PB , then B∗ (v) = 0 and z = 0 is

the optimal solution, otherwise B∗ (v) = ∞.
We can equivalently write D = {v|∑?∈S v? ≥ −1,∀S ∈ PB }. We firstly show that B∗ (v) = ∞

for v ∉ D. Suppose that there exists a subset S ∈ PB such that
∑
?∈S v? < −1. For any 1 > 1, we

can get a feasible solution:

v? =

{
−1, ? ∈ S
0, >Cℎ4AF8B4.

Then, because such solution is feasible and B (z) = −1, we obtain that

B∗ (v) ≥ B (z) − 1 ©«
∑
?∈S

v?
ª®¬ = −1 ©«

∑
?∈S

v? + 1
ª®¬ .

Let 1 → ∞, we have B∗ (v) → ∞.
Then, we show that B∗ (-) = 0 for v ∈ D. Note that z = 0 is feasible. Therefore, we have

B∗ (v) ≥ B∗ (0) = 0.

Then we have z ≤ 0 and without loss of generality, that the vector z is sorted in increasing order,
i.e., z1 ≤ z2, · · · , ≤ z | P | . The objective value is

B∗ (v) = z1 +
∑
9∈ |P |

z9v9

=

| P |∑
9=1

(
z9 − z9+1

) (
1 +

9∑
8=1

v9

)
≤ 0.

�
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A.2 Proof of Lemma 1
Proof. From the proof of Theorem 1, we have

B∗ (-) = max
-≤0

(min
?

z? + z>-),

and B∗ (-) = 0 for v ∈ D. Therefore, we have

A ∗ (−-) = ->$/_ + 1.

�

A.3 Proof of Theorem 2
Proof. Our proof will take the following four steps:
Bias Term Bound. Firstly, we will bound the bias term ‖v̂D,C − v∗D ‖GD,C , ‖v̂8,C − v∗8 ‖I8,C :
We define the bias term upper bound as UC , VC respectively. We will bound the bias term as

follows: by taking the gradient of the objective function respect to ED, E8 , we have,

GD,C (v̂D,C − v∗D) =
C∑
9=1

v̂8, 9 (v∗8 − v̂8, 9 )>v∗D +
C∑
9=1

(v̂8, 9 )n 9 − _Dv∗D, (A1)

where n 9 is the Gaussian noise at time 9 . Without loss of generality, in ranking task, we can always
scale the user-item score BD,8 , so that the l2-norm of ED, E8 can be bounded by a constant factor:

‖ED ‖2 ≤ 1, ‖E8 ‖2 ≤ 1

Therefore, we can bound the function norm of the above equation as

‖v̂D,C − E∗D ‖GD,C = ‖
C∑
9=1

v̂8, 9 (E∗8 − v̂8, 9 )>v∗D +
C∑
9=1

(v̂8, 9 )n 9 − _Dv∗D ‖GD,C

≤ ‖
C∑
9=1

v̂8, 9n 9 ‖GD,C +
1

√
_D

C∑
9=1

‖v∗8 − v̂8, 9 ‖2 +
√
_D (A2)

Since the @-linearly convergent to the optimizer of parameter vD, v8 in [52], we have for every
n@ > 0 and 0 < @ < 1, we have

‖v∗8 − v̂8,C+1‖2 ≤ (@ + n@)‖v∗8 − v̂8,C ‖2 (A3)

Therefore, by applying the self-normalized vector-valued martingales [1], we have for any f > 0,
with probability at least 1 − f ,

‖v̂D,C − E∗D ‖GD,C ≤ UC ,

UC =
√
_D +

2(@ + n@) (1 − (@ + n@)C )
1 − @ − n@

+

√
3 ln

_D3 + C
_D3f

.

Similarly, we have

‖v̂8,C − E∗8 ‖I8,C ≤ VC ,

VC =
√
_8 +

2(@ + n@) (1 − (@ + n@)C )
1 − @ − n@

+

√
3 ln

_83 + C
_83f

.

Therefore, the bias term UC , VC are comparable with $ ((1 − (@ + nA )C )
√
ln C) for every nA > 0.
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Variance Term Bound. Next, we will bound the variance term. Then we prove the converge rate
of variance term: ‖v̂D,C ‖2GD,C , ‖v̂8,C ‖

2
I8,C

as follows:

‖v̂D,C ‖2GD,C = v̂>D,CGD,C v̂D,C

= v̂>D,C

(
_D O +

C∑
9=1

v̂8,C v̂
>
8,C

)
v̂D,C

≤ ‖û8,C ‖22 +
)∑
9=1

‖v̂>8, 9 v̂D,C ‖22 ≤ (C + 1) ∼ $ (C), (A4)

since we can always scale the l2-norm of ED, E8 by any rate in ranking tasks (we only care the
relative score). Thus we can easily obtain that

‖v̂D,C ‖G−1
D,C

∼ (1/
√
C).

Collaborative Variance Term Bound. Next, we will bound the variance term of collaborative term
‖v̂D,C − v∗D ‖2G−1

D,C

, ‖v̂8,C − v∗8 ‖2I−1
8,C

as follows:

‖v̂D,C − v∗D ‖G−1
D,C

≤ ‖v̂D,C − v∗D ‖2 ≤ (@ + n@)C ,

where @, n@ follows Equation (A3). Similarly, we have

‖v̂8,C − v∗8 ‖I−1
8,C

≤ ‖v̂8,C − v∗8 ‖2 ≤ (@ + n@)C .

Let’s abbreviate the upper bound of collaborative error term (@ + n@)C as �
UCB. Finally, the UCB of user-item score can have easily by putting the aforementioned term

together:

B∗D,8 − B̂DC ,8 = (v∗D)>v∗8 − Ê>D,C Ê8,C
= 1/2

[
(v∗D + ÊD,C )> (v∗8 − Ê8,C ) + (v∗D − ÊD,C )> (v∗8 + Ê8,C )

]
≤ UC (�/2 + ‖Ê8,C ‖�−1

D,C
) + VC (�/2 + ‖ÊD,C ‖�−1

8,C
). (A5)

We can easily have the upper bound of user-item score have the converge term

$

(
(1 − (@ + n@)C )

√
ln C

√
C

)
, (A6)

which is a decrease function of C when the C becomes large. �

A.4 Proof of Theorem 3
Proof. Firstly, in practice, we normalize the user-item preference score BD,8 to [0, 1]. Therefore,∑)
C=1 6(xC )/) ≤  . In max-min regularizer A (e). Let’s abbreviate its upper bound to Ā . In practice,

Ā ≤ 1We have

,$%) ≤  + _Ā . (A7)

We consider the stopping time g of Algorithm 1 as the first time the provider will have the
maximum exposures, i.e.

g∑
C=1

M>xC ≥ $ .

Note that is g a random variable.
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Similarly, following the proven idea of Balseiro et al. [5], first, we analyze the primal performance
of the objective function. Second, we bound the complementary slackness term by the momentum
gradient descent. Finally, We conclude by putting it to achieve the final regret bound.
Primal Performance Proof : Consider a time C < g , the recommender action will not violate the

resource constraint. Therefore, we have:

6(xC )/) = 6∗ (S-C ) + _-C)S>xC ,

and we have eC = argmaxe≤$ {A (e) + ->e/_}

A (eC ) = A ∗ (−-) − -t
) eC/_.

We make the expectations for the current time step C for the primal functions:

E [6(xC )/) + _A (eC )] = E
[
6∗ (S-C ) + -t

)S>xC + _A ∗ (−-) − -t
) eC

]
=,�D0; (-C ) − E

[
-)C (−S>xC + eC )

]
.

Consider the process /C =
∑)
9=1 -

C
9 (−S>xC + eC ) − E

[
-)C (−S>xC + eC )

]
is a martingale process.

The Optional Stopping Theorem in martingale process [56] implies that E [/g ] = 0. Consider the
variableFC (-C ) = -)C (−A>xC + eC ), we have

E

[
g∑
C=1

FC (-C )
]
= E

[
g∑
C=1

E [FC (-C )]
]

Moreover, in MMF, the dual function,�D0; is convex proofed in Theorem 1, we have

E

[
g∑
C=1

6(xC )/) + _A (eC )
]
= E

[
g∑
C=1

,�D0; (-C )
]
− E

[
g∑
C=1

FC (-C )
]

≤ E [g,�D0; (-̃g )] − E

[
g∑
C=1

FC (-C )
]
, (A8)

where -̃g =
∑g
C=1 -C/g .

Next, we will bound the bias of the primal performance due to the estimation error of the ranking
model.
From the proof of Theorem 1, we can bound the,�D0; (-C ) as follows: at iteration =, for any

f > 0, with probability at least 1 − f ,
,�D0; (-C ) − ,̂�D0; (-C ) = 6∗ (S-C ) + _A ∗ (−`) − 6̂∗ (S-C ) − _A ∗ (−`)

= B>D xC − (S-t )>xC − s>D xC − (S-t )>xC ≤
∑
8,xC8=1

45 =DC ,8 ,

Complementary Slackness Proof.Thenwe aim to proof the complementary slackness
∑)
C=1FC (-C )−

FC (-) is bounded. Suppose there exists �, B.C . the gradient norm is bounded ‖g̃C ‖ ≤ � . Then we
have:

g∑
C=1

FC (-C ) −FC (-) ≤
!2

[
+ �2

(1 − U)f [ (g − 1) + �2

2(1 − U)2f[ , (A9)

where the project function ‖- − -C ‖2$ is f−strongly convex.
Next, we prove the inequality in Equation. According to the Theorem 1 in [6], we have

‖gC ‖22 = ‖(1 − U)
C∑
B=1

UC−B (g̃B )‖22 ≤ �2,
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and
g∑
C=1

FC (-C ) −FC (-) ≤
‖-C − -0‖2$ 2

[
+ �2

(1 − U)f [ (g − 1) + �2

2(1 − U)2f[ ,∀- .

We have ‖-C − -0‖2$ 2 ≤ !2 according to the Cauchy-Schwarz’ inequality. The results follows. Let

" = !2

[
+ �2

(1−U )f[ () − 1) + �2

2(1−U )2f[ . We now choose a proper -, s.t. the complementary stackness
can be further bounded.
For - = -̂ + \ , where \ ∈ R |% | is non-negative to be determined later and -̂ = argmax- −

-> (∑)
8=1 A

>xC )/_. According to the constraint e =
∑)
8=1 A

>xC , we have that
)∑
C=1

(A (eC ) + ->eC_) ≤ A ∗ (−-̂) = A
(
)∑
8=1

A>xC

)
+ -̂)

(
)∑
8=1

A>xC

)
/_.

Note that in proof of Theorem 1, the feasible region D is recession cone, therefore, - ∈ D.
Therefore, we have

g∑
C=1

FC (-C ) =
)∑
C=1

FC (-̂) −
)∑

C=g+1
FC (-̂) +

g∑
C=1

FC (\ ) +". (A10)

For each iteration =, we have

FC-C − F̂C-C = -t ((S −S)>xC ) ≤
∑
8,xC8=1

45 =DC ,8!

Put Them Together : For each batch ) at iteration =, we obtain that

,$%) =
g

)
,$%) + ) − g

)
,$%)

≤ g,�D0; (-̃g ) + () − g) ( + _Ā )

≤ g,̂�D0; (-̃g ) +
g∑
C=1

∑
8,xC8

45 =DC ,8 + () − g) ( + _Ā ) (A11)

Let’s abbreviate 4A (=) = ∑g
C=1

∑
8,xC8 45 =DC ,8!. Therefore, combining Equations (10), (12), and (13)

the regret Regret(=) of iteration =, can be bounded as:

Regret(=) = E
[
,$%) − ,̂

]
≤ E

[
,$%) −

g∑
C=1

(
6̂(xC )/) − _A (S>xC/$ )

) ]
≤ E

[
,$%) − g,̂�D0; (-̃C ) +

g∑
C=1

F̂C (-C ) +
)∑
C=1

(eC −S>xC )
]

≤ E

[
() − g) ( + _Ā ) +

)∑
C=1

FC (-̂) +
g∑
C=1

FC (\ )
]
+" + 4A (=)

≤ () − g) ( + _Ā + _ ) +
g∑
C=1

FC (\ ) +" + 4A (=)

= )Regret(c� )/# + 4A (=) (A12)
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Let � =  + _Ā + _ , then setting the \ = �min? $?u? , where u? is the pth unit vector. We have
g∑
C=1

FC (\ ) = �/(min
?

$? ) −� () − g).

Then the Regret(=) ≤ " +�/(min? $? ), when we set [ = $ () −1/2), the Regret(c� ) is comparable
with $ () −1/2).

According to our algorithm in Algorithm of LTP-MMF, the user will interact with the system in
# /) iterations. Following the Lemma 11 in Abbasi-Yadkori et al. [1], the error Regret(c) raised of
accuracy module is bounded as

Regret(c) =
# /)∑
==1

4A (=) ≤  ) [U# /) (dD + ^) + V# /) (d8 + ^)],

where

^ =
(@ + n@) (1 − (@ + n@)# /) )

1 − @ − n@
,

and

dD =

√
23
#

)
ln

(
1 + #

)_D3

)
, d8 =

√
23
#

)
ln

(
1 + #

)_83

)
.

From the conclusion, we can see that the regret of accuracymodule is comparablewith$ (
√
#) ln #

)
).

Finally, the total regret can be bounded as

Regret(c, c� ) =
# /)∑
==1

Regret(=) = Regret(c� ) + Regret(c)! (A13)

Setting the learning rate as [ = $ () −1/2), we can obtain a fairness regret Regret(c� ) upper bound
of order$ ( #√

)
). Overall, the long-term regret of LTP-MMF can be obtained of order$ (# ln# ). �
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