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ABSTRACT
Recent advancements in Large Language Models (LLMs) have at-
tracted considerable interest among researchers to leverage these
models to enhance Recommender Systems (RSs). Existing work
predominantly utilizes LLMs to generate knowledge-rich texts or
utilizes LLM-derived embeddings as features to improve RSs. Al-
though the extensive world knowledge embedded in LLMs gener-
ally benefits RSs, the application can only take limited number of
users and items as inputs, without adequately exploiting collab-
orative filtering information. Considering its crucial role in RSs,
one key challenge in enhancing RSs with LLMs lies in providing
better collaborative filtering information through LLMs. In this pa-
per, drawing inspiration from the in-context learning and chain of
thought reasoning in LLMs, we propose the Large LanguageModels
enhanced Collaborative Filtering (LLM-CF) framework, which dis-
tils the world knowledge and reasoning capabilities of LLMs into
collaborative filtering. We also explored a concise and efficient
instruction-tuning method, which improves the recommendation
capabilities of LLMs while preserving their general functionalities
(e.g., not decreasing on the LLM benchmark). Comprehensive ex-
periments on three real-world datasets demonstrate that LLM-CF
significantly enhances several backbone recommendation models
and consistently outperforms competitive baselines, showcasing
its effectiveness in distilling the world knowledge and reasoning
capabilities of LLM into collaborative filtering.

CCS CONCEPTS
• Information systems → Recommender systems.
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1 INTRODUCTION
Large Language Models (LLMs) [30, 40] have made rapid advance-
ments, showcasing remarkable capabilities [43] in context compre-
hension, reasoning, generalization, and modeling world knowledge,
and so on.With the advancement of Large LanguageModels (LLMs),
many researchers are focusing on how to utilize LLMs in recom-
mendation systems (RSs). Many studies have already applied LLMs
to various aspects of RSs, including ranking [51], Click-Through
Rate (CTR) prediction [2, 9, 49], sequential recommendation [14],
rating prediction [22], and data augmentation [29, 44]. Consider-
ing specific methods to utilize LLMs for RSs, current applications
can be classified into two categories. (1) LLMs as RSs: LLMs can
be directly prompted or be fine-tuned to function as specialized
RSs [2, 9, 37, 49, 51]. (2) LLM-enhanced RSs: Based on world
knowledge and reasoning abilities, LLM-derived embedding vec-
tors and LLM-generated texts can enhance RSs [7, 14, 47, 49, 52].

Despite their effectiveness, there are still several challenges to
be addressed. LLMs as RSs suffers from low efficiency due to
the resource-intensive nature of LLMs, making their practical ap-
plication challenging. LLM-enhanced RSs inadequately exploit
collaborative filtering information because the LLM can only take a
limited number of users and items as inputs. How to better leverage
LLMs to provide enhanced collaborative filtering information to
existing RSs becomes key in LLM-enhanced RSs.

Considering the challenges in deploying LLMs as RSs due to
their inherently extensive parameterization, we focus on LLM-
enhanced RSs, which are more applicable and flexible for ex-
isting RSs. In order to better guide collaborative filtering to en-
hance existing RSs with LLMs. Inspired by Chain-of-Thought (CoT)
and In-Context Learning [4, 11] in LLMs, we propose a novel
Large LanguageModels enhanced Collaborative Filtering (LLM-
CF) Framework, which distils the world knowledge and reasoning
capabilities of LLM into collaborative filtering in an in-context,
chain of thought methodology. As shown in Figure 1, LLM-CF can
be decoupled into two parts: (1) offline service part (§ 4): Fine-
tune LLM to enhance its recommendation capabilities, generate CoT
reasoning with collaborative filtering information, and construct
in-context CoT dataset. (2) online service part (§ 5): Retrieve the
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Figure 1: LLM-CF integrates LLM-based world knowledge
and reasoning with collaborative filtering to improve rec-
ommendation performance, using LLMs with recommender
capability and decoupled latency-free offline generation.

in-context CoT examples, learn the world knowledge and reasoning
guided Collaborative Filtering (CF) feature, and use this feature to
enhance existing RSs.

In the offline service, we perform instruction tuning on LLM to
obtain CF information about users and items in the recommenda-
tion data. However, our initial findings indicate that full parameter
tuning LLMs could result in substantial forgetting of their gen-
eral capabilities, as discussed in § 4.2. We leveraged a simple but
effective data mixing method to finetune LLaMA2 [40], and success-
fully trained a model RecGen-LLaMA, which achieves an optimal
balance between general and recommendation capabilities. Then,
we use RecGen-LLaMA to generate CoT reasoning for a subset of
examples in training data, forming the in-context CoT dataset.

In the online service, the retrieval module uses a query composed
of the textual features of the current recommendation features to
perform embedding-based retrieval on the in-context CoT dataset,
forming in-context CoT examples. These retrieved examples con-
tain similar recommendation features, as well as CoT reasoning
generated by RecGen-LLaMA. The in-context CoT examples are
concatenated with the current recommendation features and then
fed into the In-context Chain of Thought (ICT) module of LLM-CF
to learn world-knowledge and reasoning guided CF feature. Finally,
the enhanced CF feature is fed into the backbone recommendation
model for making the final prediction.

Advantage: LLM-CF not only leverages LLMs to provide en-
hanced collaborative filtering information to existing RSs but also
achieves exceptional deployment efficiency. (1) We teach collab-
orative filtering knowledge from recommendation data to LLMs,
ensuring that the generated texts include a comprehensive under-
standing of user behaviors and item features. (2) When integrating
the world knowledge and reasoning capabilities from LLMs into
RSs, We design ICT modules that embody both these capabilities
and collaborative filtering information. This information comes
from the explicit collaborative filtering information contained in
the retrieved similar user histories and the RecGen-LLaMA gener-
ated CoT reasoning. (3) The time cost of LLM-CF is manageable,
as we only require the offline serving of LLM without the need for
online inference alongside the RSs.

We summarize the major contributions of this paper as follows:

(1) We represent pioneering work in using the LLMs-based world
knowledge and reasoning to guide collaborative filtering features,
thereby enhancing conventional recommendation models.

(2) The proposed LLM-CF is inspired by in-context learning and
chain of thought reasoning in LLMs, which effectively distills the
world knowledge and reasoning capabilities of LLMs into conven-
tional recommendation models in an in-context chain of thought
manner. Moreover, the LLM-CF is more efficient compared to ex-
isting LLM-enhanced RSs by decoupling LLM generation from the
recommendation system’s online services.

(3) We conducted extensive experiments on three public datasets.
The experimental results demonstrate that the LLM-CF could signif-
icantly improve the recommendation performance of conventional
recommendation models in both ranking and retrieval tasks, veri-
fying the effectiveness of the LLM-CF.

2 RELATEDWORK
2.1 LLM as RSs
LLMs as RSs involve directly prompting LLMs to make recommen-
dations using natural language-based queries or adapting LLMs
to serve as RSs after fine-tuning them with recommendation data.
P5 [12] transforms user interaction data into text prompts using
item indices for training language models. In contrast, TALLRec [2]
utilizes instructional designs to outline recommendation tasks and
adapts LLMs through fine-tuning to follow these guidelines, thereby
producing recommendations. Further, ReLLa [25] uses retrieved
user history to fine-tune LLMs, addressing the issue of LLMs’ weak
capability in processing long user sequences. LLaMARec [51] ini-
tially applies small-scale recommenders to select candidates from
user interaction history. Then, this history and the chosen items are
fed into the LLM as text using a specially crafted prompt template.
However, directly using LLMs as inference models for recommen-
dation tasks presents challenges, such as high computational costs
and slow inference times, causing challenges in meeting the re-
quirements for online services and deployment.

2.2 LLM-enhanced RSs
LLM-enhanced RSs leverage the world knowledge and reasoning
abilities of LLMs by utilizing them to generate knowledge-rich texts
or employ LLM-derived embeddings as features to enhance RSs.
GIRL [52] applies an LLM, fine-tuned with job datasets, to create
job descriptions from CVs, boosting traditional job RSs. KAR [47]
uses LLMs for generating user Preference Reasoning and item Fac-
tual Knowledge, enhancing RSs through hybrid-expert adaptors.
ONCE [26] explores both open and closed-source LLMs for RS
enhancement; open-source LLMs as feature encoders and closed-
source via prompt learning. HKF [49] employs LLMs to merge
diverse user behavior data, improving RSs by integrating these
semantic features. However, these models primarily focus on lim-
ited user-item information, neglecting collaborative filtering in-
formation, and suffer from efficiency issues due to real-time LLM
processing for new interactions or items. The proposed LLM-CF
addresses these by distilling LLMs’ knowledge and reasoning with
collaborative filtering into existing RSs, separating LLM generation
from online services to achieve efficient LLM-enhanced RSs.
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Figure 2: The overall architecture of the proposed model LLM-CF.

3 PRELIMINARIES
In this section, we define the recommendation task as a binary
classification problem usingmulti-field categorical data. The dataset
D = {(x𝑛, 𝑦𝑛)}𝑁𝑛=1 comprises pairs of recommendation features
x𝑖 and binary labels 𝑦𝑖 . Recommendation features include user
features (e.g., User ID, gender, age) and item features (e.g., item
ID, brand). The label 𝑦𝑖 indicates a click (1) or no click (0). The
goal is to learn a function 𝑓 (·) with parameters 𝜃 to predict click
probabilities, 𝑦𝑖 = 𝑓 (x𝑖 ;𝜃 ), for each x𝑖 .

To meet the requirements of large language models, we follow
the instruction prompt used in [2, 25], which involves extracting
textual format recommendation features x𝑡

𝑖
from recommendation

features x𝑖 and organizing it into a "Task Instruction". This instruc-
tion guides the LLM to determine whether a user is likely to be
interested in the target item based on the user’s historical inter-
actions and the other user features. The LLM generates a binary
response of "Yes" or "No", with "Yes" indicating a positive interaction
(click) and "No" indicating a negative interaction (no click).

To study the world knowledge and reasoning guided collabora-
tive filtering feature based on LLMs, we propose LLM-CF (Large
LanguageModels enhanced Collaborative Filtering). The overview
of LLM-CF is illustrated in Figure 2. The proposed LLM-CF can
be decoupled into the offline service part (§ 4) and the online
service part (§ 5).

4 OFFLINE SERVICE OF LLM-CF
In this section, we introduce the offline service of LLM-CF in detail.

4.1 Overview
The offline service part of LLM-CF includes the following process:

Training of RecGen-LLaMA: LLMs equipped with recommen-
dation capability can better comprehend the collaborative filtering
information within recommendation data, thereby generating im-
proved textual to enhance conventional recommendation models.
However, our experiments reveal that directly following the previ-
ous work [2] by using recommendation data to fine-tune LLMs leads
to catastrophic forgetting of general capabilities. This results in a
significant decline in the LLM benchmark to the extent that cannot
generate meaningful text. To solve this challenge, we conducted ex-
tensive experiments and found a concise and efficient full-parameter
instruction-tuning method. This method, which integrates recom-
mendation data with general instruction-tuning data, optimizes the
balance between the model’s general and recommendation abilities.
By applying this method to the widely-used LLaMA2 [40], we suc-
cessfully trained RecGen-LLaMA, achieving an optimal balance
between general and recommendation capabilities.

CoT Reasoning Generation: For the recommendation data
(xi, 𝑦𝑖 ) ∈ D, we designed a zero-shot CoT prompt that decom-
poses user-item interaction and then reconstructs them, thereafter
inducing RecGen-LLaMA to generate CoT reasoning 𝑐 based on
the textual representation of recommendation features x𝑡 . These
{𝑐1, . . . , 𝑐𝑚, . . . , 𝑐𝑀 } along with the original recommendation data
form the In-Context CoT Dataset C = {(x𝑚, 𝑐𝑚, 𝑦𝑚)}𝑀

𝑚=1.

4.2 RecGen-LLaMA
In this section, we explore how to fine-tune an LLM that balances
recommendation capability with general capabilities by conducting
extensive experimental analysis.

Analysis Setup: For the empirical study, we selected the Ama-
zon [15] Beauty and Sports datasets to evaluate the recommenda-
tion capability, with detailed statistical data provided in § 6.1.1. For
evaluating the general capability of LLMs, we employed the MMLU
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Figure 3: The recommendation and general capabilities of
LLaMA2 after fine-tuning on different recommendation data
using various methods.

benchmark [16], which is widely utilized in evaluating LLM general
capabilities [30, 39, 40]. The evaluation metrics include the AUC
(Area Under the Curve) for recommendation capability and ACC
(Accuracy) for general capability. Regarding the LLM, we chose the
currently wildly used LLaMA2-7B-chat [40] as our base model.

We systematically explore diverse methodologies to optimize
LLaMA’s recommendation performance while retaining its general
capabilities. Our investigation encompasses Continual Learning,
Robust Representation Fine-tuning, and Parameter-efficient Fine-
tuning approaches: (1) Base: Utilize LLaMA2 directly without any
fine-tuning. (2) Half: Fine-tune LLaMA2 directly using half the
amount of the recommendation data. (3) Full: Fine-tune LLaMA2
directly using all the recommendation data. (4) LoRA: Given that
parameter-efficient fine-tuning methods can preserve most of the
model parameters and thus retain the model’s general capabilities,
we adopted Low-Rank Adaptation [19] on the Query and Value
matrices of LLaMA2, adding parameters with a rank of 8. (5) NeFT:
Adding noise during fine-tuning can prevent overfitting or represen-
tation collapse of the pre-trained model [20, 50]. We incorporated
noise in the embedding layer of the input when fine-tuning LLaMA2
with recommendation data. (6) R3F: Aghajanyan et al. [1] proposed
a Fine-tuningmethod rooted in an approximation to the trust region,
which ensures that the pre-trained models do not forget the original
pre-trained representations when they are fine-tuned for new tasks.
(7) Wise-FT: Wortsman et al. [45] leveraged the weighted ensem-
ble of the pre-trained model and the fine-tuned model to enhance
various capabilities of the visual models, with the ensemble weight
defined as𝑊ensemble = 𝛼 ·𝑊fine-tuned + (1−𝛼) ·𝑊pre-trained. We en-
sembled the original LLaMA2 and LLaMA2 fine-tuned with recom-
mendation data, setting 𝛼 to 0.3, 0.6, and 0.9 to obtainWise-FT(0.3),
Wise-FT(0.6), andWise-FT(0.9) respectively. (8) RecGen: Dong

et al. [10] found that the coding and mathematical abilities of LLMs,
along with their general capabilities, can be better balanced through
a mixed-data fine-tuning approach. We adopt to utilize a mix of
recommendation data and high-quality general data (i.e. LIMA [53]
and alpaca-gpt4 [31]) for fine-tuning LLaMA2.

Results and Findings: We presented the results in Figure 3. As
shown in the figure, using the off-the-shelf LLaMA2 model (Base)
for recommendation tasks has poor performance. However, fine-
tuning LLaMA2 with recommendation data (Full) leads to optimal
recommendation performance on both Amazon Sports and Amazon
Beauty, but it diminishes LLaMA2’s general capabilities. We also
found that RecGen and Wise-FT(0.6) achieve a good balance be-
tween general capabilities and recommendation performance, with
RecGen showing superior results. Based on RecGen, we devel-
oped RecGen-LLaMA to enhance conventional recommendation
models.

4.3 CoT Reasoning Generation
To enable RecGen-LLaMA to generate CoT reasoning with world
knowledge and collaborative filtering information, we design the
Chain of Thought prompt P. As shown in Figure 2, this prompt can
decompose user-item interactions and then reconstruct them to
analyse the relation between them, aiming to analyze user data by
simulating the step-by-step reasoning process of humans. Taking
product recommendation as an example: Firstly, we had RecGen-
LLaMA systematically analyze the user’s interaction history and
feedback comments to establish a detailed user profile. Next, RecGen-
LLaMA introduced the target new product and its related features
in detail to better understand the target product. Finally, RecGen-
LLaMA further analyses the alignment between the user profile
and the target product features, reflecting on the user’s potential
needs for shopping diversity. For the training recommendation data
(xi, 𝑦𝑖 ) ∈ D, this generation process can be represented as:

𝑐𝑖 = RecGen-LLaMA(xi, 𝑦𝑖 ,P) . (1)

Considering the resource constraints in real recommendation
scenarios, we can sample 𝑀 training examples from D for CoT
reasoning generation. The sampling process can be random sam-
pling or select representative user interaction histories. In this
paper, we adopted the uniform random sampling, resulting in
{𝑐1, ..., 𝑐𝑚, ..., 𝑐𝑀 } combined with the original recommendation ex-
amples to form the In-context CoT dataset C = {(x𝑚, 𝑐𝑚, 𝑦𝑚)}𝑀𝑚=1.

4.4 Efficiency Analysis of Offline Service
When deployed, LLM-CF shows high efficiency compared to pre-
vious LLM-enhanced RSs work. It avoids real-time generation by
LLMs, requiring only periodic updates on the history dataset and
successfully decoupling LLM generation from the recommendation
system’s online services. Next, we will analyze the time efficiency
from the Training and Generation of RecGen-LLaMA.

Training: Based on the experiment results in Figure 3, we dis-
covered that training with half the amount of recommendation
data (i.e., Half) as compared to using the full dataset (i.e., Full)
achieved better general capabilities and nearly the same recom-
mendation performance. This phenomenon was also observed in
the case of RecGen-LLaMA trained with half the recommendation
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Table 1: Comparing LLM-CF with KAR in terms of the effi-
ciency of using LLMs to generate data for dynamic scenarios.
" indicates that it does not require the real-time generation
of new data;% indicates the opposite.

Scenario KAR LLM-CF
New users % "

New items % "

New interaction (no new items/users) " "

data (i.e., Rec(Half)Gen). This further proves that in real-world
Recommender Systems scenarios, we can use a small amount of rec-
ommendation data to fine-tune LLMs to enhance recommendation
capability, thereby significantly reducing the training overhead of
RecGen-LLaMA in real-world Recommender Systems.

Generation: In the generation phase, we compared LLM-CF
with the currently most efficient LLM-enhanced RSs approach
KAR [47], which achieves a certain speed-up with prestore genera-
tion when user features and item features are relatively fixed. In
our efficiency analysis, we have more thoroughly considered three
scenarios (i.e., new interactions, new users, new items). Our model’s
decoupling of generation and online recommendation effectiveness
is evident from Table 1. In all three scenarios, our model does not
require real-time generation to meet online recommendation needs.
This is particularly significant for scenarios like short-video recom-
mendations, where many new items appear daily, further reducing
the time delay in system online services.

5 ONLINE SERVICE OF LLM-CF
In this section, we introduce the online service of LLM-CF in detail.

5.1 Overview
The online service part of LLM-CF includes the following compo-
nents:

In-context CoT Examples Retrieval: The Retrieval process
involves finding the top-𝐾 historical recommendation examples
similar to the current recommendation data in order to provide
explicit collaborative filtering information. This involves identify-
ing I𝑖 = {(x𝑘 , 𝑐𝑘 , 𝑦𝑘 )}𝐾𝑘=1 from C, which includes recommendation
data similar to the current recommendation data, as well as CoT rea-
soning 𝑐𝑘 containing world-knowledge and collaborative filtering
information.

In-context Chain of Thought (ICT) Module: Inspired by
the success of in-context learning and chain of thought in LLMs,
we use I𝑖 as in-context CoT examples and x𝑖 as the query. By
employing a transformer decoder layer for In-context Chain of
Thought learning, we learnt the world-knowledge and reasoning
guided collaborative filtering feature w𝑖 , which can be used to
enhance underlying recommendation models in a model-agnostic
manner.

Training: During the training phase, we designed a reconstruc-
tion loss for the CoT reasoning in the in-context examples, to fur-
ther strengthen the world-knowledge and reasoning capabilities
contained in the collaborative filtering features generated by ICT
module.

5.2 In-context CoT Examples Retrieval
The Retrieval module is responsible for retrieving similar In-context
CoT examples for the current recommendation data (x𝑖 , 𝑦𝑖 ). Re-
cent studies in retrieval-augmented recommendation have shown
the potential of using current recommendation features (i.e., user
features and target item features) for history retrieval to enhance
collaborative filtering capabilities [3, 32, 33]. Our approach extends
this concept by not only leveraging the collaborative filtering infor-
mation but also incorporating the world knowledge and reasoning
abilities of RecGen-LLaMA.

We use the text format features x𝑡
𝑖
of x𝑖 as the query to retrieve

similar In-context CoT examples from the In-context CoT dataset
C, where the key for the examples in C is composed of the text
format features: K = [x𝑡1, . . . , x

𝑡
𝑚, . . . , x𝑡𝑀 ].

We employed embedding-based retrieval, including the encoding
and ranking processes. To implement this process efficiently, the
retrieval process is based on the Approximate Nearest Neighbor
search [28]. In the Encoding phase, we used the BGE embedding [48]
as the text encoder to convert the query x𝑡

𝑖
and the candidate keys

of the In-context CoT dataset K into embedding formats:

e(x𝑡𝑖 ), e(K) = encoder(x𝑡𝑖 ), encoder(K),

where e(K) = [e(x𝑡1), . . . , e(x
𝑡
𝑚), . . . , e(x𝑡

𝑀
)].

In the ranking phase, the cosine similarity between the query
embedding e(x𝑡

𝑖
) and each candidate key’s embedding in e(K) is

computed. Specifically, for each embedding e(x𝑡𝑚) in e(K), the
cosine similarity with e(x𝑡

𝑖
) is calculated as follows:

sim(e(x𝑡𝑖 ), e(x
𝑡
𝑚)) =

e(x𝑡
𝑖
) · e(x𝑡𝑚)

∥e(x𝑡
𝑖
)∥∥e(x𝑡𝑚)∥

where · denotes the dot product and ∥ · ∥ denotes the norm of a
vector. Subsequently, the indices of the top-𝐾 most similar candidate
keys are identified based on their cosine similarity scores. These
indices correspond to the examples in the In-context CoT dataset
C. The In-context CoT examples associated with these indices are
extracted from C, forming:

I𝑖 = {E1, . . . , E𝑘 , . . . , E𝐾 } ,

where E𝑘 = (x𝑘 , 𝑐𝑘 , 𝑦𝑘 ). The I𝑖 contains the world-knowledge and
reasoning enhanced explicitly collaborative filtering information
of x𝑖 .

Remark. (1) To prevent data leakage, we ensure that I𝑖 will def-
initely not contain interaction information from future time steps
of x𝑖 . (2) To ensure that the proportion of positive and negative
labels in I𝑖 does not affect the prediction results of downstream
recommendation tasks, we constrain the ratio of positive and neg-
ative labels in I𝑖 to remain equal, thereby blocking shortcuts and
highlighting the effectiveness of our model.

5.3 In-context Chain of Thought Module
Inspired by the success of in-context learning and chain of thought
in LLMs, the In-context Chain of Thought (ICT) Module learns
world knowledge and reasoning-guided Collaborative Filtering fea-
tures through an in-context chain of thought methodology.
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The ICT module utilizes I𝑖 as in-context examples and x𝑖 as the
query, forming the ICT tokens:

T = [x1, 𝑐1, 𝑦1, ...., x𝐾 , 𝑐𝐾 , 𝑦𝐾 , x𝑖 ] . (2)

The ICT module first encodes the recommendation features (i.e.,
user features and target item features), CoT reasoning, and label of
T into corresponding tokens embedding E:

E = [r1, c1, l1, ...., r𝐾 , c𝐾 , l𝐾 , r𝑖 ] . (3)

The high-dimensional sparse one-hot recommendation features in x
are mapped into low-dimensional dense space via an ID Embedding
layer with an embedding lookup operation, and the text features of
x are encoded by the text encoder (the same as the In-context CoT
examples Retrieval), then the underlying recommendation model’s
feature encoding module encodes them into the token r. The CoT
reasoning 𝑐 is also mapped into low-dimensional dense space via
the text encoder and MLP projection, forming the token c. The label
𝑙 is the binary one-hot vector, which can also be mapped into a
low-dimensional dense space via the ID embedding layer to obtain
l.

Considering existing research indicating a correlation between
the in-context learning capability and the structural attributes of
transformer decoders [8, 36], we use transformer decoder layers
to encode E. The ICT token embedding E is then fed through 𝐿
Transformer Decoder blocks, generating hidden representations H
of ICT tokens:

H = [h(r1), h(c1), h(l1), · · · , h(r𝑖 ))] = Decoder(E) . (4)

The world knowledge and reasoning guided collaborative filtering
featurew is the next token of T (i.e., the last hidden representations
of H ):

w = h(r𝑖 ) .
Please note that the length of decoder input is not long in our
experiments. This ensures that the ICT module does not impose
much time overhead on the recommendation models. We leave
details in Section 5.6.

5.4 Model-Agnostic Application
The primary goal of recommendation models is to learn a function
𝑓 (·) characterized by parameters 𝜃 , which can skillfully predict the
click probability 𝑃 (𝑦𝑖 = 1|x𝑖 ) for each sample x𝑖 , formalized as 𝑦𝑖 =
𝑓 (x𝑖 ;𝜃 ). The world-knowledge and reasoning guided collaborative
filtering feature w𝑖 can be directly utilized in enhanced underlying
recommendation models:

𝑦𝑖 = 𝑓 ( [x𝑖 ,w𝑖 ];𝜃 ) . (5)

For ranking models, there is a greater need for interactions between
recommendation features; here, [·, ·] can be a concatenation opera-
tion, followed by the use of a feature interaction module to learn
deep interactions. In contrast, retrieval models emphasize efficiency
more, and [·, ·] can be an addition operation.

5.5 Model Training
In the model training phase, for each data (x𝑖 , 𝑦𝑖 ) ∈ D, in addition
to the original loss of the underlying recommendationmodelL𝑖𝑜 , we
also designed a reconstruction loss for the CoT reasoning in the In-
context CoT Examples to further strengthen the world-knowledge

and reasoning capabilities contained in the collaborative filtering
features w𝑖 . The reconstruction loss is to minimize the distance
between the predicted embedding and the ground-truth embedding
of CoT reasoning:

L𝑖𝑟 =
1
𝐾

𝐾∑︁
𝑖=1

(1 − c𝑖 · h(r𝑖 )
∥c𝑖 ∥∥h(r𝑖 )∥

),

where 𝐾 is the number of In-context CoT Examples.
Finally, the total loss L is computed as:

L =
1
𝑁

𝑁∑︁
𝑖=1

(𝛼L𝑖𝑟 + L𝑖𝑜 ), (6)

where 𝛼 are hyperparameters that control the importance of the
two parts of the loss, and 𝑁 is the number of recommendation data.

5.6 Efficiency Analysis of Online Service
In the online service of LLM-CF, as shown in Figure 2, only the
blue fire module requires online computation. The ICT module’s
inputs are short sequences that need minimal computational over-
head. Experiments (§ 6.5) show that the number of ICT examples
only needs 𝐾 = 4, meaning the sequence length of ICT tokens T is
only a dozen or so. Furthermore, it can utilize other acceleration
techniques for transformer decoders, which are currently being
widely studied [23]. The computation time of the recommenda-
tion model is essentially the same as that of underlying models,
and the inputs ICT token embedding for the ICT module r and
the final underlying model are only needed to compute once, re-
quiring no additional computational overhead. Given the reduced
necessity for maintaining an extensive In-Context CoT Dataset, the
retrieval process for In-Context CoT Examples can be efficiently
accelerated through the utilization of precomputed embedding vec-
tors in conjunction with Approximate Nearest Neighbor search
algorithms [28, 35].

The analysis of online service efficiency for LLM-CF, combined
with the offline efficiency analysis in § 4.4, demonstrates the feasi-
bility of our framework for deployment.

6 EXPERIMENT
In this section, we empirically verify the effectiveness of LLM-CF by
extensive experiments. The experimental details and source codes
can be found at (https://github.com/Jeryi-Sun/LLM-CF).

6.1 Experimental Setup
6.1.1 Datasets. We conducted experiments on three widely used
datasets with varying domains, following existing work [5, 12, 27,
55, 56]. The Amazon1 review datasets [15] are one of the most
widely used benchmarks for recommendation. We adopt three sub-
sets of them: Sports & Outdoors, Beauty, and Toys & Games. Fol-
lowing the common practices [12, 27, 55, 56], we use the reviews
between January 1, 2019, to December 31, 2019 and treat all the
recorded reviews as positive samples.

1http://jmcauley.ucsd.edu/data/amazon/
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6.1.2 Baselines. To validate the versatility of LLM-CF on the rank-
ing phase, we selected representative CTR models as backbone
models. CTR prediction is commonly applied in the ranking phase
of recommendation systems, focusing on modeling the probability
of users clicking on items through feature interactions. The selected
six backbonemodels are as follows:DeepFM [13]. xDeepFM [24],
AutoInt [38], DCNv1 [41], DCNv2 [42], and DIN [54].

To validate the effectiveness of LLM-CF, we chose representative
methods that leverage LLMs to enhance recommendation models
as the competitive framework. Considering that our framework
initially fine-tunes LLaMA2, and LLaMA2 performs well on CTR
tasks, a natural idea is to employ knowledge distillation using fine-
tuned LLaMA2 to enhance CTR models. Following the previous
methods [18, 57], we implemented the KD framework, which uti-
lizes the logits of fine-tuned LLaMA2 as soft labels for CTR models
during training. We also compared our framework with a recent
work,KAR [47], which utilizes the open-world knowledge of LLMs
to enhance recommendations. For a fair comparison, we used the
same LLM (i.e., LLaMA2-7B-chat) as other models in KAR.

6.1.3 Evaluation Metrics & Protocal. Following the common prac-
tices [12, 27, 55, 56], we use the leave-one-out strategy to partition
the training, validation, and test datasets. We consider all recorded
interactions in the datasets as positive samples and randomly sam-
ple a negative sample for each positive sample. For the evaluation
metrics, we employ widely used AUC (Area under the ROC curve),
LogLoss (binary cross-entropy loss), and RelaImpr (the relative im-
provement of AUC) [54] for the CTR prediction task.

6.1.4 Implementation Details. As for the LLM, we utilized the
widely used LLaMA2-7B-chat [40]. To finetune LLaMA2, we em-
ployed the previously mentioned strategy of mixing recommenda-
tion data and general data (i.e., RecGen in § 4.2). We use 8 Nvidia
A800 GPUs to perform full-parameter SFT on the LLM. We adopt
the DeepSpeed zero-2 strategy [34], where each GPU has a batch
size of 16, resulting in a total batch size of 128 without gradient accu-
mulation. We used the Adam optimizer and set the initial learning
rate as 1e-5 with the cosine learning rate schedule.

For the application of LLM-CF to backbone models, we trained
them using the Adam optimizer with a learning rate of 0.001 and a
batch size of 128. Additionally, we adopted early-stopped training
to avoid over-fitting. The dimension of all feature embeddings
is set to 32 for all methods. The number of layers and heads in
the ICT module’s transformer decoder is set to 2. The number
of In-context CoT Dataset 𝑀 is 1

10 of the Training Dataset. The
number of In-context CoT examples 𝐾 is set to 4. The 𝛼 is tuned
among (0, 1] in the step of 0.1. Given the fact that LLM-CF and
competitive framework are applied over backbone models, for a
fair comparison, we maintain consistency of the backbone models
across all frameworks. For instance, the backbone parts of LLM-CF
(xDeepFM), KD(xDeepFM), and KAR(xDeepFM) share the same
model architectures and basic hyper-parameters as xDeepFM.

6.2 Experimental Results
Table 2 reports the overall performance of LLM-CF over 6 backbone
models on three real-world datasets. Based on the results presented
in Table 2, we found that LLM-CF outperformed the corresponding

backbone models in terms of all evaluation metrics on real-world
datasets, with statistical significance. The results verified the ef-
fectiveness of the LLM-CF, which can effectively integrate world-
knowledge and reasoning-guided collaborative filtering features
into the underlying recommendation models using the in-context
chain of thought manner.

We also observed that LLM-CF achieved better results than other
frameworks that leverage LLMs to enhance recommendation mod-
els (i.e., KAR and KD). Compared with LLM-CF, KAR overlooks
the importance of collaborative filtering information, only consid-
ering current user and item features to enhance recommendation
models, and does not use an LLM fine-tuned with recommenda-
tion data, leading to a significant performance drop in real-world
in-domain datasets used in our experiments. The suboptimal per-
formance of KD is mainly because the training objective of LLMs
is Cross-Entropy for all tokens, while the underlying recommenda-
tion training mainly involves Binary Cross-Entropy loss, resulting
in a misalignment of optimization goals. Moreover, LLM-CF is or-
thogonal to KD and could potentially be used in conjunction to
improve recommendation performance further. The results verify
that LLM-CF can better leverage LLMs to provide enhanced collabo-
rative filtering information to underlying recommendation models.

6.3 Ablation Study
LLM-CF consists of several key operations, and to understand the ef-
fects of each operation, we conducted several ablation experiments
for LLM-CF. They are: (a) w/o text: Remove the text features in
recommendation features. (b) w/o CoT: Remove the CoT reasoning
along with reconstruction loss in in-context CoT examples. (c) w/o
RecGen-LLaMA: Replace the RecGen-LLaMA with the original
LLaMA2-7B-chat to generate CoT reasoning. (d) w/o TF decoder:
Replace the transformer decoder layers with mean pooling in the
ICT module.

Table 4 presents the performance of various model variants over
6 backbone models on three real-world datasets. The results reveal
several insights: (1) After removing CoT reasoning, there is a signif-
icant decline in recommendation performance, demonstrating the
effectiveness of CoT reasoning in providing world knowledge and
reasoning for collaborative filtering features. (2) Replacing RecGen-
LLaMA with the original LLaMA2-7B-chat to generate CoT rea-
soning shows a downward trend in recommendation performance,
highlighting the necessity of enhancing the recommendation capa-
bilities of LLM when used to augment conventional recommenda-
tion models. (3) After replacing the transformer decoder layers with
mean pooling in the ICT module, there is a noticeable decline in rec-
ommendation performance, underscoring the importance of using
transformer decoder layers for learning in-context CoT examples.
(4) Removing text features leads to a slight decline in performance,
but the change is not significant, suggesting that text features have
a limited role in the framework.

6.4 Application of Retrieval Tasks
LLM-CF is versatile, applicable not only to models in the ranking
stage but also tomodels in the retrieval stage. In the preceding exper-
iments, we validated the efficacy of LLM-CF in the CTR prediction
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Table 2: Overall performance comparisons. The best and the second-best performance methods are denoted in bold and
underlined fonts, respectively. * means improvements over the second-best methods are significant (p-value < 0.05). The
RelaImpr is calculated over backbone models, i.e., ‘None’ framework. KD, KAR, and LLM-CF are all based on the LLaMA2-7B.

Backbone Framework Sports Beauty Toys

AUC↑ Logloss↓ RelaImpr↑ AUC↑ Logloss↓ RelaImpr↑ AUC↑ Logloss↓ RelaImpr↑

DeepFM

None 0.7990 0.5471 0.000% 0.7853 0.5545 0.000% 0.7681 0.5770 0.000%
KD 0.8043 0.5404 1.773% 0.7959 0.5442 3.715% 0.7713 0.5716 1.194%
KAR 0.7991 0.5469 0.033% 0.7870 0.5546 0.596% 0.7698 0.5718 0.634%
LLM-CF 0.8137∗ 0.5306∗ 4.916% 0.8044∗ 0.5366∗ 6.695% 0.7881∗ 0.5581∗ 7.460%

xDeepFM

None 0.8158 0.5318 0.000% 0.8065 0.5359 0.000% 0.7836 0.5589 0.000%
KD 0.8169 0.5298 0.348% 0.8104 0.5345 1.272% 0.7865 0.5553 1.023%
KAR 0.8161 0.5279 0.094% 0.8101 0.5315 1.175% 0.7898 0.5529 2.186%
LLM-CF 0.8196∗ 0.5248∗ 1.203% 0.8113 0.5311 1.566% 0.7947∗ 0.5473∗ 3.914%

AutoInt

None 0.8003 0.5444 0.000% 0.7949 0.5469 0.000% 0.7630 0.5770 0.000%
KD 0.8012 0.5439 0.300% 0.7961 0.5444 0.407% 0.7635 0.5770 0.190%
KAR 0.8039 0.5390 1.199% 0.7939 0.5476 -0.339% 0.7683 0.5741 2.015%
LLM-CF 0.8088∗ 0.5391 2.831% 0.8090∗ 0.5321∗ 4.781% 0.7754∗ 0.5685∗ 4.714%

DCNv1

None 0.8023 0.5442 0.000% 0.8146 0.5255 0.000% 0.7621 0.5831 0.000%
KD 0.8040 0.5441 0.562% 0.8147 0.5286 0.031% 0.7652 0.5847 1.183%
KAR 0.8024 0.5469 0.033% 0.8165 0.5229 0.604% 0.7651 0.5821 1.144%
LLM-CF 0.8092∗ 0.5368∗ 2.282% 0.8182∗ 0.5216∗ 1.144% 0.7702∗ 0.5745∗ 3.090%

DCNv2

None 0.8110 0.5331 0.000% 0.8028 0.5378 0.000% 0.7774 0.5650 0.000%
KD 0.8112 0.5320 0.064% 0.8057 0.5343 0.958% 0.7827 0.5609 1.911%
KAR 0.8087 0.5363 -0.739% 0.8003 0.5404 -0.825% 0.7759 0.5662 -0.541%
LLM-CF 0.8131∗ 0.5307∗ 0.675% 0.8033 0.5372 0.165% 0.7812 0.5619 1.370%

DIN

None 0.7986 0.5519 0.000% 0.7861 0.5613 0.000% 0.7586 0.5885 0.000%
KD 0.8023 0.5422 1.239% 0.7934 0.5518 2.551% 0.7652 0.5847 2.552%
KAR 0.7971 0.5525 -0.502% 0.7861 0.5604 0.000% 0.7620 0.5874 1.315%
LLM-CF 0.8089∗ 0.5374∗ 3.449% 0.7967∗ 0.5492∗ 3.705% 0.7783∗ 0.5699∗ 7.618%

Table 3: Overall performance of LLM-CF on retrieval tasks. The best performance methods are denoted in bold.

Models Beauty Sports Toys

HIT@5 HIT@10 NDCG@5 NDCG@10 HIT@5 HIT@10 NDCG@5 NDCG@10 HIT@5 HIT@10 NDCG@5 NDCG@10
SASREC 0.0379 0.0648 0.0206 0.0293 0.0161 0.0203 0.0088 0.0101 0.0329 0.0646 0.0143 0.0251
+LLM-CF 0.0395 0.0652 0.0210 0.0293 0.0205 0.0349 0.0107 0.0154 0.0466 0.0723 0.0238 0.0321
YoutubeDNN 0.0150 0.0272 0.0089 0.0128 0.0109 0.0177 0.0069 0.0091 0.0127 0.0229 0.0077 0.0110
+LLM-CF 0.0160 0.0291 0.0099 0.0139 0.0112 0.0191 0.0069 0.0094 0.0165 0.0285 0.0099 0.0138
GRU4REC 0.0279 0.0470 0.0180 0.0241 0.0165 0.0268 0.0102 0.0135 0.0257 0.0411 0.0152 0.0202
+LLM-CF 0.0303 0.0504 0.0186 0.0250 0.0203 0.0317 0.0127 0.0164 0.0220 0.0380 0.0139 0.0192
SRGNN 0.0199 0.0341 0.0123 0.0169 0.0085 0.0146 0.0054 0.0073 0.0158 0.0284 0.0096 0.0137
+LLM-CF 0.0214 0.0359 0.0128 0.0174 0.0118 0.0210 0.0072 0.0101 0.0177 0.0302 0.0104 0.0144

task. In this section, we employed LLM-CF over retrieval models
(SASREC [21], YoutubeDNN [6], GRU4REC [17] and SRGNN [46])
and experimentally validated its effectiveness on four ranking met-
rics. We trained the models using the sampled softmax loss, with
128 randomly sampled negatives for each interaction. Since these
models use inner product to estimate probabilities, when applying
LLM-CF, we fused the vectors obtained from LLM-CF with the user
vector in the backbone model by element-wise addition. To prevent
data leakage, for the retrieval task, we mask the information of
the target item in the current interaction in the in-context chain of
thought learning. Table 3 reports the overall performance of LLM-
CF over 4 backbone models on three real-world datasets. LLM-CF

enhances the performance of backbone retrieval models, further
validating the versatility of the collaborative filtering features en-
hanced by world knowledge and reasoning.

6.5 Effects of In-context CoT Examples
Considering the length of In-context CoT (ICT) examples and the
ratio of positive to negative examples has an important impact on
the final prediction results. We examine the influence of the length
of ICT examples and the effect of relaxing positive/negative (P/N)
example ratio constraints on the performance of the LLM-CF across
three real-world datasets and six backbone models.
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Figure 4: The recommendation performance of LLM-CF on 6 backbone models across three real-world datasets as it varies
with the change in In-context CoT examples length and positive/negative example constraints. The red dots indicate the
best-performing setting for the current backbone model and dataset.

Table 4: Ablation Study of LLM-CF. Boldface indicates best.

Backbone Framework Sports Beauty Toys

AUC↑ Logloss↓ AUC↑ Logloss↓ AUC↑ Logloss↓

DeepFM

None 0.7990 0.5471 0.7853 0.5545 0.7681 0.5770
w/o text 0.8137 0.5308 0.8030 0.5382 0.7880 0.5583
w/o CoT 0.8009 0.5448 0.7980 0.5423 0.7766 0.5662
w/o RecGen-LLaMA 0.8132 0.5301 0.7973 0.5452 0.7806 0.5640
w/o TF decoder 0.8071 0.5378 0.7986 0.5411 0.7739 0.5682
LLM-CF 0.8137 0.5306 0.8044 0.5366 0.7881 0.5581

xDeepFM

None 0.8158 0.5318 0.8065 0.5356 0.7836 0.5589
w/o text 0.8200 0.5248 0.8088 0.5308 0.7898 0.5547
w/o CoT 0.8177 0.5290 0.8081 0.5349 0.7915 0.5561
w/o RecGen-LLaMA 0.8191 0.5246 0.8111 0.5311 0.7936 0.5490
w/o TF decoder 0.8192 0.5246 0.8092 0.5349 0.7912 0.5571
LLM-CF 0.8196 0.5248 0.8113 0.5311 0.7947 0.5473

AutoInt

None 0.8003 0.5444 0.7949 0.5468 0.7630 0.5770
w/o text 0.8071 0.5380 0.8043 0.5385 0.7710 0.5725
w/o CoT 0.7992 0.5468 0.7940 0.5490 0.7581 0.5812
w/o RecGen-LLaMA 0.8041 0.5398 0.7993 0.5412 0.7706 0.5702
w/o TF decoder 0.8017 0.5420 0.7942 0.5474 0.7592 0.5816
LLM-CF 0.8088 0.5391 0.8090 0.5321 0.7754 0.5685

DCNv1

None 0.8023 0.5442 0.8146 0.5255 0.7621 0.5831
w/o text 0.8099 0.5408 0.8155 0.5338 0.7692 0.5751
w/o CoT 0.8017 0.5441 0.7622 0.5802 0.7622 0.5802
w/o RecGen-LLaMA 0.8036 0.5432 0.7891 0.5617 0.7720 0.5733
w/o TF decoder 0.8006 0.5465 0.8118 0.5294 0.7598 0.5858
LLM-CF 0.8092 0.5368 0.8182 0.5216 0.7702 0.5745

DCNv2

None 0.8110 0.5331 0.8028 0.5378 0.7774 0.5650
w/o text 0.8130 0.5297 0.7971 0.5447 0.7790 0.5628
w/o CoT 0.8081 0.5365 0.7968 0.5457 0.7753 0.5681
w/o RecGen-LLaMA 0.8117 0.5313 0.8023 0.5381 0.7826 0.5602
w/o TF decoder 0.8113 0.5314 0.7978 0.5437 0.7810 0.5612
LLM-CF 0.8131 0.5307 0.8033 0.5372 0.7812 0.5619

DIN

None 0.7986 0.5519 0.7861 0.5613 0.7586 0.5885
w/o text 0.8053 0.5415 0.7938 0.5509 0.7742 0.5731
w/o CoT 0.8025 0.5445 0.7907 0.5557 0.7718 0.5735
w/o RecGen-LLaMA 0.8057 0.5410 0.7953 0.5571 0.7783 0.5737
w/o TF decoder 0.8004 0.5484 0.7850 0.5602 0.7666 0.5794
LLM-CF 0.8089 0.5374 0.7967 0.5492 0.7783 0.5699

As shown in Figure 4, ICT lengths were varied across 0 (n0), 2
(n2), 4 (n4), 6 (n6), and 8 (n8) with a consistent P/N sample ratio.
Our empirical results reveal that n4 consistently outperforms n2,
while lengths of n6 and n8 show variable performance, occasionally
surpassing but generally not exceeding n4. A notable performance
decline for most datasets and models at n8 suggests a diminishing

return with longer ICT, positing n4 as an effective balance between
performance gains and computational efficiency.

Furthermore, the removal of P/N ratio constraints (denoted as
𝑛4_noc) shown in Figure 4 did not significantly deviate from the
performance of the constrained scenarios. While some datasets
showed marginal improvements without P/N constraints, others
exhibited a decrease. Maintaining an equal P/N sample ratio ef-
fectively validated the superiority of LLM-CF, reducing potential
biases arising from disproportionate label distributions.

7 CONCLUSION
In this paper, we proposed the Large Language Model enhanced
Collaborative Filtering (LLM-CF) Framework, which integrates
the world knowledge and reasoning capabilities of Large Lan-
guageModels into Recommender Systems. LLM-CF leverages LLMs’
world knowledge and reasoning, particularly through the In-context
Chain of Thought module, to enhance collaborative filtering in RSs.
The key contribution of LLM-CF is its effective distillation of LLM
capabilities into RSs, balancing recommendation accuracy with
operational efficiency. Our experiments across various datasets
demonstrate that LLM-CF significantly outperforms conventional
recommendation models in both ranking and retrieval tasks, con-
firming the benefits of integrating LLMs into RSs using LLM-CF.
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