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ABSTRACT
In real-world recommender systems, user engagement and subjec-

tive feedback play pivotal roles in shaping the content distribution

mechanism of the platform. When platforms reach a certain scale,

they often gather valuable questionnaire feedback data from users

to evaluate their satisfactionwith recommended items. Compared to

traditional user feedback such as likes, questionnaires explicitly cap-

ture both satisfaction and dissatisfaction and are unaffected by other

users’ questionnaires, thus better expressing users’ true preferences.

In this paper, we aim to leverage the questionnaire feedback to align

the recommendation model with users’ true preferences. However,

due to the platform distribution mechanism and divergent user

attitudes toward questionnaires, the questionnaire feedback data

frequently becomes sparse and exhibits selection biases, resulting in

challenges in feature integration and training process. To address

these issues, we introduce a novel user Satisfaction Alignment

framework that effectively leverages Questionnaire feedback to

enhance Recommendation, named SAQRec. SAQRec begins by
training an unbiased satisfaction model to impute satisfaction, ad-

dressing selection bias and data sparsity. Then, SAQRec aligns

features with users’ true preferences by disentangling satisfaction

and dissatisfaction from click history and categorizing clicked items

into multiple satisfaction levels through the imputed satisfactions.

Additionally, the imputed satisfactions from the pre-trained unbi-

ased satisfaction model serve as pseudo-labels to align the model’s

outputs with users’ true preferences. Extensive experiments on both
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public and commercial datasets demonstrate SAQRec’s superior

integration of questionnaire feedback in recommendation models.

Online A/B testing on a short video platform confirms its effective-

ness in boosting user watch time and positive-to-negative feedback

ratio, enhancing overall performance and user satisfaction.
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1 INTRODUCTION
Recommender systems have seen extensive utilization across a num-

ber of platforms such as e-commerce [4, 25], music [7, 8, 41], and

video [19, 23, 43]. Existing recommendation models primarily rely

on user click feedback to learn user preferences [5, 9, 13, 16, 20, 31].

Nevertheless, as identified in the previous work [2], various biases

influencing user clicks, the click feedback may fail to accurately

reflect users’ true preferences. In response to this limitation, online

platforms such as e-commerce and video-watching applications

have elected to use a more interactive approach. Specifically, they

incorporate questionnaires presented with the interacted items

during user browsing sessions, as shown in Figure 1(a).

Unlike user feedback such as likes and favorites, questionnaire

feedback explicitly conveys users’ true preferences [28, 30]. The

specific reasons are: (1) Existing user feedback is either positive

or negative, such as “like”, with no explicit negative option. Ques-

tionnaires, however, offer both positive and negative options, thus
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Questionnaire Feedback

Questionnaire

Recommendation

Are you satisfied with this video?

Yes No

…

…

Videos Pool

…

(a) Questionnaire pop-up (b) Questionnaire generation

Are you satisfied with this video?

Yes No

Figure 1: Questionnaire in the short-video scenario. (a) An
example of a video with a questionnaire pop-up. (b) The
generation process of the questionnaire feedback.

allowing users to express both positive and negative sentiments.

(2) Although likes and favorites can be considered as a form of

active feedback, this feedback is often built upon the choices of

others. For instance, users clicking “like” may be influenced by herd

mentality, as they add to existing likes. In contrast, when users fill

out questionnaires, because they do not know the opinions of other

users, their choices can better reflect their true thoughts. In real-

world recommender systems, the primary goal of recommendation

models is to boost user engagement, specifically by increasing user

clicks. Leveraging questionnaire feedback can significantly assist

recommendation models in aligning recommended results with

users’ true preferences and potentially increase user clicks.

However, aligning with users’ true preferences using question-

naire data faces two challenges: (1) Data sparsity and selection bias:
The questionnaire interactions, comprising about 1% of total in-

teractions (refer to Table 1), exhibit extreme sparsity. Figure 1(b)

illustrates the platform’s questionnaire exposure mechanism, lim-

iting questionnaires to a small subset of specific items. Users may

click on only a portion of the questionnaires for various reasons,

introducing notable selection bias during data collection. The data

sparsity and selection bias pose challenges in enhancing recom-

mendations using user questionnaire feedback. (2) Clicks despite
dissatisfaction: A user may click on an item that is not satisfactory.

For instance, as depicted in Figure 1, a user’s watch time exceeding

a certain threshold is considered a click, but the user may be dissat-

isfied with the video. Moreover, from the data statistics in Table 1,

it is evident that there are many instances of user dissatisfaction

within the click data. How to leverage questionnaire data to help dis-

entangle the information about user satisfaction and dissatisfaction

in clicks is crucial for aligning with users’ true preferences.

A natural way to leverage users’ questionnaire feedback is to for-

mulate the problem as multi-behavior recommendations since they

also utilize feedback beyond just clicks, such as likes and others.

These methods can be mainly categorized into two types: (1) The

first type separately inputs different user behaviors into distinct

encoders for modeling, such as DMT [11] and DIPN [12]. (2) The

second type combines different behaviors into a single sequence af-

ter sorting them by time, aiming to model the relationships between

different behaviors, including DFN [38], FeedRec [36]. However,

these approaches cannot be directly applied to address the two chal-

lenges commonly facedwhen incorporating questionnaire feedback:

(1) These approaches typically depend on positive user feedback,

such as “like”, which is less sparse compared to questionnaire feed-

back, while treating unselected user feedback heuristically as nega-

tive feedback. (2) They model various user behaviors but do not pay

particular attention to that click sequences may carry information

about both user satisfaction and dissatisfaction. Therefore, further

research is needed to refine the recommendation model to better

align with users’ true preferences through questionnaire feedback.

To better leverage the questionnaire feedback to align with users’
true preferences, we propose a novel user Satisfaction Alignment

framework using users’ Questionnaire feedback for enhancing

Recommendation, called SAQRec. Overall, we employ user ques-

tionnaire feedback to pre-train a satisfaction model and leverage

its output to guide the feature representation and training process

of the recommendation model, ensuring alignment with users’ true

preferences. Specifically, SAQRec mainly consists of two stages:

(1) Unbiased satisfaction model pre-training aims to address the

first challenge. Specifically, we train a satisfaction model on data

with questionnaire feedback to provide imputed satisfactions for

user-item pairs without questionnaire feedback, thus mitigating the

issue of data sparsity. Meanwhile, given the selection bias in ques-

tionnaire feedback, we employ the IPS [29] method for the training

of the satisfaction model, making it unbiased to address this con-

cern. (2) Satisfaction feature alignment distinguishes satisfaction
and dissatisfaction information in user clicks from representation

perspectives. On one hand, we represent satisfaction and dissatis-

faction histories separately, using attention mechanisms to extract

them from the overall click history. On the other hand, we use

the trained unbiased satisfaction model to assign scores to these

items, group items based on their scores and perform a weighted

aggregation within each group.

In the training process, we employ a multi-task learning ap-

proach to predict click and satisfaction simultaneously. Imputed

satisfactions from the pre-trained satisfaction model serve as su-

pervision signals to align the model outputs with users’ true pref-

erences. In summary, we make the following contributions:

• Our work represents a pioneering effort in utilizing questionnaire

feedback to refine recommendation models, where the question-

naire feedback captures users’ true preferences but is sparse and

subject to selection bias.

• We introduce SAQRec, a novel framework that leverages ques-

tionnaire feedback to aligns recommendation models with users’

true preferences. SAQRec tackles data sparsity and selection bias

by pre-training an unbiased satisfaction model and aligns the

recommendation model with user true preferences in feature

representation and model training.

• Offline experiments on commercial and public datasets confirm

SAQRec’s superior performance over traditional sequential rec-

ommendation models and methods directly transferred from

multi-behavior recommendation models.

• Online A/B testing on Kuaishou APP across 7 consecutive days

shows that SAQRec consistently increases users’ watch time and
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the positive-to-negative feedback ratio, demonstrating enhanced

performance and user satisfaction.

2 RELATEDWORK
Sequential Recommendation is a pivotal domain within rec-

ommender systems, aiming to capture user interests from their

interaction history. Existing works leverage various neural net-

work architectures for sequential recommendation. GRU4Rec [14]

employs GRU units to capture the dynamic changes in user in-

terests through recurrent neural networks. Caser [32] combines

CNN by treating user interaction history as an "image" in the time-

latent space. It utilizes convolutional filters to capture sequential

patterns. SASRec [16] is based on the Transformer architecture,

utilizing self-attention mechanisms to capture global dependencies

within the sequences. There are also researches [1, 37] employ-

ing GNN to enhance sequential recommendation. FMLP-Rec [46]

employs learnable filters to reduce noise information and utilizes

MLP structures to encode sequential data. In addition, STAMP [22]

introduces memory network technology, while HGN [24] utilizes

hierarchical gating techniques to capture user interests. In contrast

to existing works, we utilize questionnaire feedback to align the

recommendation model with users’ true preferences.

Multi-Behavior Recommendation aims to effectively combine

and utilize diverse user behavior data to improve the performance

of recommendations. Existing works employ various approaches to

integrate data from different behavior sequences. DMT [11] utilizes

multiple Transformers to concurrently model different user behav-

ior sequences, capturing diverse aspects of user interests. DIPN [12]

leverages hierarchical attention mechanisms to model relationships

within and between different sequences in a layered manner. Nev-

ertheless, these two approaches lack explicit differentiation in the

significance of modeling the user interests across distinct behavior

sequences. In contrast to the methods mentioned above, DFN [38]

designs a feedback interaction mechanism for presenting explicit

and implicit feedback interactions. FeedRec [36] utilizes hetero-

geneous and homogeneous Transformers for sequence modeling.

It employs an attention mechanism to capture transition patterns

between different feedback types. However, in the two aforemen-

tioned works, explicit feedback is not as sparse as questionnaire

feedback, and unselected user feedback is heuristically treated as

negative. They did not take into account that user click sequences

may involve interactions with varying levels of satisfaction. In

this work, we employ a satisfaction model to handle data sparsity

through imputing satisfaction. By incorporating questionnaire feed-

back, we align the model’s features with users’ true preferences,

enhancing multi-task learning in the recommendation model for

better alignment during training.

3 PROBLEM FORMULATION
LetU and I denote the sets of users and items, respectively. The

recommendation dataset with questionnaire feedback is denoted

as D = {(𝑢, 𝑖,𝑇𝑟 ,𝑇𝑠+,𝑇𝑠−, 𝑦, 𝑜, 𝑠)𝑘 }
|D |
𝑘=1

, where 𝑢 ∈ U and 𝑖 ∈ I
denote a user and an item, respectively. 𝑇𝑟 = {𝑖1, 𝑖2, . . . , 𝑖𝑁𝑟

}, 𝑇𝑠+ =

{𝑖1, 𝑖2, . . . , 𝑖𝑁𝑠+ }, and 𝑇𝑠− = {𝑖1, 𝑖2, . . . , 𝑖𝑁𝑠− } represent the user 𝑢’s
clicked, satisfied, and dissatisfied histories, respectively. There are

𝑁𝑟 , 𝑁𝑠+, and 𝑁𝑠− interacted items corresponding to 𝑇𝑟 , 𝑇𝑠+ and

𝑇𝑠− . 𝑦 ∈ {0, 1} denotes whether user 𝑢 clicks on item 𝑖 , where 1

represents a click, and 0 represents no click. 𝑜 ∈ {0, 1} indicates
whether the platform exposed a questionnaire while user 𝑢 was

browsing item 𝑖 , where 1 represents exposure, and 0 represents

no exposure. 𝑠 ∈ {0, 1} represents whether user 𝑢 is satisfied with

item 𝑖 , where 1 indicates satisfaction, and 0 indicates dissatisfaction.

Then, given the contextual sequences 𝑇𝑟 , 𝑇𝑠+ and 𝑇𝑠− representing

the user 𝑢’s clicked, satisfied, and dissatisfied histories, our goal is

to improve the performance of the recommendation model.

4 SAQREC: THE PROPOSED FRAMEWORK
In this section, we introduce SAQRec, which is a user Satisfaction
Alignment framework that effectively leverages sparse and biased

Questionnaire feedback to enhance Recommendation.

4.1 Overall Framework
SAQRec initially pre-trains a satisfaction model to impute unknown

questionnaire feedback from users, as illustrated in Figure 2 (a). In

this process, a propensity model is utilized to mitigate selection

bias and an unbiased satisfaction model is obtained. Subsequently,

as shown in Figure 2 (b), SAQRec aligns the recommendation model

with users’ true preferences through the pre-trained satisfaction

model, guiding the feature representation and the training process

of the recommendation model. For a more detailed illustration, refer

to Figure 2 (c): (1) The satisfaction feature alignment includes a

Satisfaction Information Disentanglement (SID) module that uti-

lizes attention mechanisms to disentangle users’ satisfaction and

dissatisfaction information from the click history, and a Multi-level

Satisfaction Enhancement (MLSE) module that extracts multiple

satisfaction levels from the user’s clicked history using the satisfac-

tion model; (2) During training, SAQRec outputs predicted clicks

and satisfactions, with imputed satisfactions from the pre-trained

unbiased satisfaction model acting as pseudo-labels to align the

model’s outputs with users’ true preferences.

4.2 Unbiased Satisfaction Model Pre-training
In this section, we present an unbiased satisfaction model to pro-

vide imputations for the large amounts of samples lacking user

questionnaire feedback.

4.2.1 Ideal and Naive Learning Objectives for Satisfaction Model.
First, we define the satisfaction model 𝑔 with parameters 𝚯𝑔 , which

takes an (𝑢, 𝑖) pair as input and outputs the corresponding imputed

satisfaction 𝑠:

𝑠 = 𝑔(𝑢, 𝑖;𝚯𝑔). (1)

Ideally, the empirical loss for learning the satisfaction model can

be defined as follows:

L
ideal

(𝑠) = − 1

|D|
∑︁
D

𝑠log(𝑠) + (1 − 𝑠)log(1 − 𝑠), (2)

where the widely used cross-entropy loss [44, 45] is adopted.

As mentioned above, we only have limited data O with ques-

tionnaire feedback from a small number of users and items, i.e.,

O = {(𝑢, 𝑖)𝑘 |𝑜𝑘 = 1} |D |
𝑘=1

. Thus, it is impossible to directly train the

satisfaction model with the ideal loss in practice.
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(a) Unbiased Satisfaction Model Pre-training

(b) The Simplified Illustration of SAQRec (c) The Detailed Illustration of SAQRec

Imputed
Satisfaction

True
Click

Figure 2: The architecture of SAQRec framework. (a) The structure of the unbiased satisfaction model pre-training in the
first stage; (b) A simplified illustration depicting the SAQRec framework in the second stage and its relationship with the
satisfaction model outputs; (c) A detailed illustration of the second stage of the SAQRec framework; (d) The structure of
Multi-level Satisfaction Enhancement (MLSE); (e) The structure of Satisfaction Information Disentanglement (SID).

A naive method is to optimize directly on the dataset O:

Lnaive (𝑠) = − 1

|O|
∑︁
O

𝑠log(𝑠) + (1 − 𝑠)log(1 − 𝑠) . (3)

However, due to the platform selectively distributing question-

naires to specific users and items, and users may choose not to

click when receiving a questionnaire for various reasons, there

exists a challenge of selection bias in the observed questionnaire

feedback dataset O. Consequently, the naive loss in Eq. (3) is biased

against the ideal loss Eq. (2), i.e., EO [Lnaive (𝑠)] ≠ L
ideal

(𝑠). The
experiment using the naive loss to train a satisfaction model for the

recommendation model in Sec. 5.3 also shows that this bias leads

to a decline in performance.

4.2.2 Unbiased LearningObjective for SatisfactionModel. To achieve
an unbiased learning objective on the observed questionnaire feed-

back data, we adopt the Inverse Propensity Score (IPS) [29, 42]

method. The propensity is represented as Pr(𝑜 = 1), which is the

probability of observing questionnaire feedback from user 𝑢 for

item 𝑖 . Then, the proposed unbiased learning objective for the sat-

isfaction model can be defined as

L
unbias

(𝑠) = − 1

|O|
∑︁

(𝑢,𝑖 ) ∈O

𝑠log(𝑠) + (1 − 𝑠)log(1 − 𝑠)
Pr(𝑜 = 1) . (4)

The unbiasedness of the above loss is shown in the following theo-

rem. Proofs are provided in the Appendix.

Theorem 4.1 (Unbiased Satisfaction Estimation). The pro-
posed loss in Eq. (4) is unbiased in terms of the ideal loss in Eq. (2):

EO [L
unbias

(𝑠)] = L
ideal

(𝑠) .

To estimate the propensity 𝑜 = Pr(𝑜 = 1), we train a propensity

model 𝜌 with parameters Θ𝜌 using the following learning objective

on the full dataset D:

Lpropensity (𝑜) = − 1

|D|
∑︁
D

𝑜log(𝑜) + (1 − 𝑜)log(1 − 𝑜) . (5)

Following the common practice [3, 27, 35], we adopt propensity

clipping techniques in experiments to reduce the high variance

of unbiased estimates. Therefore, the final loss for training the

satisfaction model is as follows:

L
final

(𝑠) = − 1

|O|
∑︁
O

𝑠log(𝑠) + (1 − 𝑠)log(1 − 𝑠)
max(𝑜,𝑀) , (6)

where𝑀 ∈ [0, 1] is a hyper-parameter to control the clip value.

During the training of the satisfaction model, we utilize the

user and item embeddings from a pre-trained recommendation

model as initialization. We keep the embedding parameters frozen

during training. This approach allows us to train on data with

questionnaire feedback and generalize the model to interactions

without questionnaires.

Motivated by RLHF [15, 26], questionnaire feedback can be re-

garded as genuine human feedback that reveals users’ true pref-

erences in recommender systems. The satisfaction model, trained

based on questionnaire feedback, serves as a reward model, guiding

the recommendation model to align with users’ true preferences.

Specifically, leveraging the imputed satisfactions provided by the

satisfaction model, we introduce the Satisfaction Feature Alignment

module in Section 4.3.3 to better model users’ true preferences at

the feature level. Additionally, in Section 4.4.2, we use the imputed

satisfactions as supervision signals for the multi-task learning of
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the recommendation model, enhancing alignment with users’ true

preferences during training.

4.3 Satisfaction Feature Alignment
In this section, we use questionnaire feedback and the pre-trained

satisfaction model to align feature representations with users’ true

preferences. In Section 4.3.2, we disentangle user satisfaction and

dissatisfaction preferences from the click history using question-

naire feedback. In Section 4.3.3, using the trained satisfaction model,

we assign scores to clicked items, creating muti-level satisfaction

groups to enhance the model’s alignment with user preferences.

4.3.1 Embedding Layer. Wemaintain separate lookup tables for the

IDs and attributes of users and items. The user (item) embeddings,

denoted as v𝑢 and v𝑖 , are obtained by concatenating the ID and at-

tribute embeddings: v𝑢 = vID𝑢
⊕v𝑎1⊕· · ·⊕v𝑎𝑛 (v𝑖 = vID𝑖

⊕v𝑏1⊕· · ·⊕
v𝑏𝑚 ), where ⊕ denotes concatenation, 𝑎1, . . . , 𝑎𝑛 and 𝑏1, . . . , 𝑏𝑚 are

the attributes of users and items, respectively. For convenience, both

v𝑢 and v𝑖 are set to be 𝑑-dimensional, i.e., v𝑢 , v𝑖 ∈ R𝑑 . Given the

user𝑢’s histories𝑇𝑟 ,𝑇𝑠+ and𝑇𝑠− , we can get their embeddings: V𝑟 =

[v𝑖
1
, v𝑖

2
, . . . , v𝑖

𝑁𝑟
]⊺ ∈ R𝑁𝑟 ×𝑑

, V𝑠+ = [v𝑖
1
, v𝑖

2
, . . . , v𝑖

𝑁𝑠+
]⊺ ∈ R𝑁𝑠+×𝑑

and V𝑠− = [v𝑖
1
, v𝑖

2
, . . . , v𝑖

𝑁𝑠−
]⊺ ∈ R𝑁𝑠−×𝑑

through the look-up op-

eration. We further incorporate positional embeddings P𝑟 ∈ R𝑁𝑟 ×𝑑
,

P𝑠+ ∈ R𝑁𝑠+×𝑑
, and P𝑠− ∈ R𝑁𝑠−×𝑑

for the three histories:

V̂𝑟 = V𝑟 + P𝑟 , V̂𝑠+ = V𝑠+ + P𝑠+, V̂𝑠− = V𝑠− + P𝑠− . (7)

To model the dependencies between user histories, we feed each of

the three histories into three transformers [34]:

H𝑟 = Trm𝑟 (V̂𝑟 ), H𝑠+ = Trm𝑠+ (V̂𝑠+), H𝑠− = Trm𝑠− (V̂𝑠−),
(8)

where H𝑟 ∈ R𝑁𝑟 ×𝑑
, H𝑠+ ∈ R𝑁𝑠+×𝑑

and H𝑠− ∈ R𝑁𝑠−×𝑑
. “Trm”

denotes the transformer encoder.

4.3.2 Satisfaction Information Disentanglement. Users may not al-

ways be satisfied with clicked items, as clicks can result from ac-

cidental touches or other biases. The click history includes both

satisfied and dissatisfied information. Our goal is to disentangle the

satisfied and dissatisfied information from the click history using

historical questionnaire feedback data.

Firstly, we use the representations of the last positions: h𝑟 , h𝑠+,
and h𝑠− , from H𝑟 , H𝑠+, and H𝑠− , as the representations of the over-
all click information, satisfaction information, and dissatisfaction

information for the user, respectively. Then, we use an attention

mechanism, treating satisfied and dissatisfied histories as queries,

to disentangle satisfied and dissatisfied information from the click

history. The detailed process is as follows:

u𝑠+𝑟 = H⊺
𝑟 Softmax(H𝑟h𝑠+), u𝑠−𝑟 = H⊺

𝑟 Softmax(H𝑟h𝑠−), (9)

where u𝑠+𝑟 ∈ R𝑑 and u𝑠−𝑟 ∈ R𝑑 are the disentangled satisfaction

and dissatisfaction information from click history. The attention

mechanism computes the similarity between each item in the click

history and the satisfied (dissatisfied) representation, allowing us

to identify the items that users are more likely to be satisfied (dis-

satisfied) with. In this way, we can use the similarity as the weight

to disentangle satisfied (dissatisfied) information from the click

history, instead of treating all items equally.

After disentangling satisfied (dissatisfied) information from the

click history, we fuse it with the information expressed in the user’s

satisfied (dissatisfied) history using MLPs (Multi-layer Perceptrons)

to obtain the final user satisfaction (dissatisfaction) information:

u𝑠+ =
[
h𝑠+, u𝑠+𝑟

]
·MLP𝑠+ (h𝑠+ ⊕ u𝑠+𝑟 ),

u𝑠− =
[
h𝑠−, u𝑠−𝑟

]
·MLP𝑠− (h𝑠− ⊕ u𝑠−𝑟 ),

(10)

whereMLP𝑠+ (MLP𝑠−) : R2𝑑 → R2
computes the weight of h𝑠+ and

u𝑠+𝑟 (h𝑠− and u𝑠−𝑟 ). u𝑠+ ∈ R𝑑 and u𝑠− ∈ R𝑑 are the disentangled

user satisfaction and dissatisfaction information, which will be

utilized along with h𝑟 for subsequent predictions.

4.3.3 Multi-level Satisfaction Enhancement. User interests natu-
rally manifest at multiple levels [33, 40]. Satisfaction levels for

clicked items may vary. For instance, using a short video platform

as an example, a user may frequently browse videos in certain

categories, indicating stronger interest and elevated satisfaction.

However, there might also be videos the user clicked without true

interest due to misleading titles, thumbnails, positional bias, or

other reasons, resulting in dissatisfaction. For other videos, the

user might only occasionally browse, representing a middle ground

between satisfaction and dissatisfaction, which implies various lev-

els of satisfaction. This suggests that exploring different levels of

user satisfaction with clicked items can help us model users’ true

preferences better. As depicted in Figure 2 (d), we employ the pre-

trained satisfaction model to assign scores to clicked items, thereby

modeling users’ multi-level satisfaction.

Specifically, we input the user and the clicked history into the

satisfaction model 𝑔, obtaining satisfaction scores {𝑠1, 𝑠2, . . . , 𝑠𝑁𝑟
}

for each item in the history. We divide the user’s click history into

𝑁𝐼 groups according to the satisfaction scores, with each group

containing about 𝑘 = 𝑁𝑟 /𝑁𝐼 items. 𝑁𝐼 is a hyper-parameter. To do

this, we sort the satisfaction scores of clicked items in descending

order, making it easier for us to group items with close satisfaction

scores together. The top 𝑘 items form the first group, the items from

𝑘 + 1 to 2𝑘 with the next highest scores form the second group, and

so on. After this partitioning, we obtain 𝑁𝐼 groups.𝑀𝑖 = {h𝑟
𝑖, 𝑗
}𝑁𝑖

𝑗=1

represents the 𝑖-th group, comprising 𝑁𝑖 items with corresponding

satisfaction scores 𝑆𝑖 = {𝑠𝑖, 𝑗 }𝑁𝑖

𝑗=1
.

Then, within each group, we aggregate the items with weights

based on the their satisfaction scores. This helps us to obtain the

representation of the current satisfaction level:

I𝑖 =
𝑁𝑖∑︁
𝑗=1

exp(𝑠𝑖, 𝑗 )∑𝑁𝑖

𝑚=1
exp(𝑠𝑖,𝑚)

h𝑟𝑖, 𝑗 , (11)

where I𝑖 ∈ R𝑑 is the representation of the 𝑖-th level satisfaction.

Next, we perform a weighted aggregation of all groups:

uMLSE =
[
I1, I2, . . . , I𝑁𝐼

]
·MLPMLSE

(
I1 ⊕ I2 ⊕ · · · ⊕ I𝑁𝐼

)
, (12)

where MLPMLSE : R𝑑𝐼 → R𝑁𝐼
calculates the weights for each

satisfaction level, and uMLSE ∈ R𝑑 is the aggregation of all the

multi-level satisfaction groups of the user. Here 𝑑𝐼 = 𝑁𝐼 × 𝑑 .

4.4 Prediction and Training
4.4.1 Prediction. We obtain the final aggregated user representa-

tion by computing a weighted sum of the outputs u𝑠+, u𝑠− , and h𝑟

 

3169



CIKM ’24, October 21–25, 2024, Boise, ID, USA Kepu Zhang et al.

Algorithm 1 The Optimization Process of SAQRec

Input: Recommendation dataset with questionnaire feedback D;

Output: Propensity model 𝜌 , satisfaction model 𝑔, main model 𝑓 .

1: Initialization the parameters of the propensity model Θ𝜌 , the

satisfaction model 𝚯𝑔 , the main model 𝚯𝑓 .

2: while Θ𝜌 not converged do ⊲ Propensity Model Training

3: Update Θ𝜌 based on Eq. (5)

4: end while
5: while 𝚯𝑔 not converged do ⊲ Satisfaction Model Training

6: Update 𝚯𝑔 based on Eq. (6)

7: end while
8: while 𝚯𝑓 not converged do ⊲ Main Model Training

9: Update 𝚯𝑓 based on Eq. (19)

10: end while

from Section 4.3.2, along with uMLSE obtained from Section 4.3.3,

and the user embedding v𝑢 :

u𝑓 = {[u𝑠+, u𝑠−, h𝑟 , uMLSE, v𝑢 ] ·
MLP𝑓 (u𝑠+ ⊕ u𝑠− ⊕ h𝑟 ⊕ uMLSE ⊕ v𝑢 )

}
,

(13)

where MLP𝑓 : R5𝑑 → R5
computes the weight of each vector.

u𝑓 ∈ R𝑑 is the final aggregated user representation.

Our model consists of two outputs, 𝑦 and 𝑠𝑓 , which denote the

predicted click and satisfaction, respectively. Following previous

works [36], 𝑦 and 𝑠𝑓 are computed as follows:

𝑦 = u𝑓 · v𝑖 , 𝑠𝑓 = u𝑓 ·MLP𝑠 (v𝑖 ), (14)

where MLP𝑠 : R𝑑 → R𝑑 maps v𝑖 to the space where the satisfaction
is calculated.

4.4.2 Training. In the training process, the imputed satisfactions

provided by the satisfaction model act as pseudo-labels for multi-

task learning. These pseudo-labels assist the recommendationmodel

in better understanding and capturing users’ satisfaction with items,

thereby improving its ability to align with users’ true preferences.

For the predicted click, we utilize the widely used binary cross-

entropy loss [44, 45] as the optimization objective function:

L𝐶 = − 1

|D|
∑︁
D

𝑦log(𝑦) + (1 − 𝑦)log(1 − 𝑦). (15)

For the predicted satisfaction, as large amounts of interactions

lack questionnaire feedback, we use imputed satisfaction provided

by the pre-trained satisfaction model 𝑔 as the pseudo-label to su-

pervise the training process:

L𝑆 = − 1

|D|
∑︁
D

𝑠log(𝑠𝑓 ) + (1 − 𝑠)log(1 − 𝑠𝑓 ). (16)

Furthermore, considering that SAQRec takes into account user

historical information, as the model trains, the SAQRec’s output 𝑠𝑓
may become more accurate than the satisfaction model’s output

𝑠 . Inspired by previous works [6, 21, 39], we employ the adaptive

label correction technique, mixing 𝑠𝑓 and 𝑠 with a weighted sum

to form a new satisfaction label 𝑠mix that is more accurate at this

Table 1: Statistics of datasets used in this paper.

Dataset #Users #Items #Interactions

#Questionnaires

Positive Negative

Commercial 9,756 381,150 6,483,498 44,172 17,854

KuaiRand 7,270 142,255 1,795,008 53,343 10,064

point during the training process:

𝑠mix = 𝜆𝑠 + (1 − 𝜆)𝑠𝑓 , 𝜆 = Beta(L𝑆 ),

Lmix

𝑆 = − 1

|D|
∑︁
D

𝑠mixlog(𝑠𝑓 ) + (1 − 𝑠mix)log(1 − 𝑠𝑓 ),
(17)

where Beta(·) represents the beta function. When L𝑆 is smaller,

indicating better satisfaction prediction by SAQRec, 𝜆 becomes

smaller, and the weight of SAQRec’s output 𝑠𝑓 is larger. In the early

training stages of SAQRec, we useL𝑆 , and after a certain number of

epochs, we switch to Lmix

𝑆
. The final loss Lfinal

𝑆
for the satisfaction

output is:

Lfinal

𝑆 =

{
L𝑆 , if 𝑡 < 𝑁mix,

Lmix

𝑆
, if 𝑡 ≥ 𝑁mix,

(18)

where 𝑁mix is a hyper-parameter and 𝑡 represents the current

epoch step.

Considering the click loss in Eq. (15) and the satisfaction loss in

Eq. (18), we employ multi-task learning to train our model end-to-

end. The total loss for training our model is:

L = L𝐶 + 𝛽Lfinal

𝑆
+ 𝛾 ∥𝚯𝑓 ∥2, (19)

where 𝛽 and 𝛾 are two hyper-parameters to control the weights

of the satisfaction loss and the regularization term, respectively.

And 𝚯𝑓 denotes all of the parameters of SAQRec. The optimization

process of SAQRec is summarized in Algorithm 1.

5 EXPERIMENT
5.1 Experimental Setup
5.1.1 Dataset. We conduct experiments on the following two datasets:

one is collected from a popular short video platform, and the other is

based on the publicly available KuaiRand [10] dataset. The statistics

of these datasets are shown in Table 1.

Commercial: The dataset is constructed based on behavior logs

of 9,756 users who have questionnaire interactions on a popular

short video platform over one week in 2023. It includes user histor-

ical clicks and questionnaire interactions. For data pre-processing,

following common practices [16, 31], we group interaction records

by the user, sorting them in ascending order based on timestamps,

and filter out unpopular items and users with limited interactions

using a 5-core approach.

KuaiRand1 [10]: Due to the absence of a publicly available rec-

ommendation dataset containing both user clicks and questionnaire

feedback, we modify the KuaiRand dataset to serve as a dataset with

questionnaire feedback. We treat "is_like" and "is_hate" feedback

in the KuaiRand dataset, which is user-selected, as questionnaire

positive and negative feedback, respectively. We pre-process this

dataset according to the method used for the Commercial dataset.

1
https://kuairand.com/
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Table 2: Performance comparisons between SAQRec and the baselines on two datasets. The best and second-best performance
methods are denoted in bold and underlined fonts, respectively. * represents improvements over the second-best methods that
are significant (p-value < 0.05 with t-test).

Dataset Commercial KuaiRand

Category Model NDCG@5 NDCG@10 HR@1 HR@5 HR@10 MRR NDCG@5 NDCG@10 HR@1 HR@5 HR@10 MRR

Sequential

STAMP 0.3386 0.3881 0.2045 0.4637 0.6168 0.3348 0.6122 0.6374 0.4330 0.7655 0.8422 0.5776

Caser 0.4584 0.5015 0.2882 0.6126 0.7456 0.4371 0.6351 0.6570 0.4326 0.8072 0.8730 0.5919

HGN 0.4048 0.4532 0.2453 0.5514 0.7011 0.3903 0.6164 0.6415 0.4186 0.7836 0.8604 0.5767

NARM 0.4564 0.5027 0.2758 0.6196 0.7622 0.4334 0.6706 0.6897 0.4923 0.8175 0.8758 0.6342

GRU4Rec 0.4743 0.5192 0.2944 0.6364 0.7746 0.4502 0.6665 0.6862 0.4868 0.8143 0.8740 0.6302

SASRec 0.4895 0.5309 0.3205 0.6428 0.7706 0.4667 0.6837 0.7023 0.5171 0.8223 0.8791 0.6495

FMLP-Rec 0.4560 0.5009 0.2790 0.6159 0.7544 0.4331 0.6726 0.6905 0.4890 0.8257 0.8802 0.6334

Muti-behavior

(Questionnaire-aware)

DIPN 0.4166 0.4631 0.2624 0.5575 0.7012 0.4035 0.5811 0.6137 0.3956 0.7447 0.8436 0.5471

DMT 0.4213 0.4654 0.2676 0.5616 0.6985 0.4072 0.6455 0.6756 0.4809 0.7919 0.8832 0.6145

DFN 0.4209 0.4650 0.2669 0.5606 0.6969 0.4074 0.6449 0.6720 0.4637 0.8010 0.8834 0.6094

FeedRec 0.4914 0.5327 0.3191 0.6449 0.7717 0.4685 0.6404 0.6592 0.4717 0.7806 0.8377 0.6067

GRU4Rec𝑀 0.4800 0.5248 0.3047 0.6372 0.7745 0.4576 0.6615 0.6809 0.4751 0.8166 0.8763 0.6224

SASRec𝑀 0.4960 0.5374 0.3198 0.6540 0.7813 0.4712 0.6860 0.7043 0.5147 0.8286 0.8842 0.6504

FMLP-Rec𝑀 0.5114 0.5532 0.3368 0.6665 0.7951 0.4870 0.6866 0.7026 0.5066 0.8340 0.8828 0.6481

SAQRec (Ours) 0.5334∗ 0.5718∗ 0.3638∗ 0.6839∗ 0.8015∗ 0.5091∗ 0.7071∗ 0.7221∗ 0.5396∗ 0.8444∗ 0.8902∗ 0.6714∗

Following [16, 31], we utilize the leave-one-out strategy to parti-

tion both datasets for training the main model. For each user, we

reserve the most recent click behavior for testing, the second most

recent click behavior for validation, and all the remaining click

behaviors for training.

Dataset for training the satisfaction model: We pre-train the

unbiased satisfaction model in Section 4.2 using interactions with

users who have both positive and negative questionnaire feedback.

5.1.2 EvaluationMetrics. We adopt several widely usedmetrics [16,

31], including Hit Ratio (HR), Normalized Discounted Cumulative

Gain (NDCG), and Mean Reciprocal Rank(MRR). We report results

using HR@ {1, 5, 10}, NDCG@{5, 10}, and MRR metrics. We pair the

ground-truth items with 99 randomly sampled negative items that

the user has not interacted with for evaluation. When calculating

all metrics, we conduct statistics based on item rankings and report

average results.

5.1.3 Baselines. To demonstrate the effectiveness of SAQRec, we

compare it with two types of baselines as follows:

Sequential Recommendation Models: (1) STAMP [22]: It

introduces short-term attention and long-term memory priority

mechanisms for recommendation. (2) Caser [32]: It embeds the

sequence of items recently interacted with by the user into an im-

age, which is subsequently unfolded in both temporal and latent

space. (3) HGN [24]: It utilizes a hierarchical gated network, in-

corporating feature gating and instance gating modules to capture

both long-term and short-term user interests. (4) NARM [18]: It

combines global and local encoders along with attention mecha-

nisms to simultaneously capture the sequential behavior of users.

(5)GRU4Rec [14]: It utilizes Recurrent Neural Networks to process
user interaction sequences for recommendation. (6) SASRec [16]:
It proposes a sequential recommendation model based on a self-

attention mechanism. (7) FMLP-Rec [46]: It is an all-MLP model

that enhances the performance of sequential recommendation by

integrating learnable filters to reduce noise in user behavior data.

Multi-Behavior Sequential RecommendationModels: These
models simultaneously consider user questionnaire satisfied behav-

iors, dissatisfied behaviors, and clicked behaviors. (8) DIPN [12]:

It effectively combines data from different behaviors through a

hierarchical attention mechanism to improve the accuracy of rec-

ommendations. (9) DMT [11]: It leverages multiple Transformers

to model diverse user behavior sequences, capturing the behavioral

diversity of users for recommendation. (10) DFN [38]: It enhances

recommendations by combining explicit and implicit, positive and

negative user feedback through a feedback interaction mechanism.

(11) FeedRec [36]: It achieves more precise recommendations by

integrating explicit and implicit user feedback using an attention

network to refine user interests. Additionally, we enhance GRU4Rec,

SASRec, and FMLP-Rec by sorting and mixing different behavior

sequences based on timestamp, resulting in (12) GRU4Rec𝑀 , (13)

SASRec𝑀 , and (14) FMLP-Rec𝑀 .

5.1.4 ImplementationDetails. For all models, themaximum lengths

for click history, satisfied history, and dissatisfied history are set to

100 (50), 25 (20), and 5 (5) on the Commercial (KuaiRand) dataset,

respectively. The batch size is set to 1024 and 512 for the Commer-

cial and KuaiRand datasets, respectively. We use the Adam [17]

optimizer with a learning rate of 0.001 and employ early stopping

during training to prevent over-fitting. The source code and other

details can be found at https://github.com/ke-01/SAQRec.

5.2 Overall Performance
We compare SAQRec with the aforementioned baselines on Com-

mercial and KuaiRand datasets, as shown in Table 2. From the

results, we can observe that:

(1) Firstly, SAQRec achieves the best results across the two

datasets. It outperforms existing state-of-the-art models and passes

statistical significance tests. This indicates the effectiveness of

SAQRec in leveraging the pre-trained satisfaction model to address

data sparsity and selection bias issues and further demonstrates the

effectiveness of satisfaction feature alignment and utilizing imputed

satisfactions from the satisfaction model for multi-task learning in

modeling users’ true preferences.

(2) Secondly, compared to traditional sequential recommenda-

tion models, SAQRec and some multi-behavior methods obtain

better results. This demonstrates the effectiveness of incorporating

questionnaire feedback in recommendation models. Questionnaire

feedback can reflect users’ true preferences, aiding in more accurate

modeling of user behaviors.
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Table 3: Ablation studies of SAQRec on the Commercial
dataset. Unbiased is short for Unbiased Satisfaction Model
Pre-Training. SID is short for Satisfaction Information Dis-
entanglement. MLSE is short for Multi-Level Satisfaction
Enhancement. MTL is short for Multi-Task Learning.

Model N@5 N@10 H@1 H@5 H@10 MRR

SAQRec 0.5334 0.5718 0.3638 0.6839 0.8015 0.5091
w/o Unbiased 0.5197 0.5597 0.3515 0.6707 0.7937 0.4963

w/o SID 0.5141 0.5541 0.3439 0.6659 0.7886 0.4903

w/o MLSE 0.5238 0.5621 0.3563 0.6736 0.7917 0.4998

w/o MTL 0.5248 0.5638 0.3566 0.6754 0.7954 0.5007

(3) Finally, we can also observe that not all multi-behavior models

surpass sequential recommendation models. And among multi-

behavior models, models that directly integrate questionnaire and

click feedback into a strong sequential framework outperform those

that treat questionnaire feedback as regular behavior. This indicates

that simply treating questionnaire feedback as regular behavior in

multi-behavior modeling is not only suboptimal but could also lead

to adverse effects. Instead, it is crucial to consider the challenges

associated with questionnaire feedback, such as data sparsity and

selection bias issues. And effectively leveraging the characteristics

of questionnaire feedback that can reflect users’ true preferences is

crucial for recommendation models.

5.3 Ablation Study
SAQRec comprises four key components. To investigate how differ-

ent components influence the performance of SAQRec, we conduct

experiments by removing each module at a time from the overall

model. Table 3 shows the ablation results on the commercial dataset.

We will delve into a detailed discussion of each component:

Unbiased Satisfaction Model Pre-Training (Unbiased): We

employ Eq. (3) rather than Eq. (5) for training the satisfaction model

to validate unbiased training. It is evident that the absence of un-

biased training significantly impacts model performance due to

selection bias. Therefore, adopting an unbiased training approach

helps improve the generalization ability of the satisfaction model,

leading to more reliable satisfaction estimates and guiding the rec-

ommendation model’s feature representation and training process

for better alignment.

Satisfaction Information Disentanglement (SID): This mod-

ule disentangles satisfaction and dissatisfaction information from

the users’ click history using historical questionnaire feedback.

Observations indicate that SID significantly contributes to the fi-

nal predictions, emphasizing the benefit of introducing historical

questionnaire feedback to uncover users’ preferences.

Multi-level Satisfaction Enhancement (MLSE): This module

categorizes click history into distinct satisfaction groups based on

imputed satisfaction provided by the pre-trained satisfaction model.

The performance decline emphasizes the importance of leveraging

imputed satisfaction for a more nuanced understanding of users’

preferences. Despite SID already disentangles user click history

into satisfaction and dissatisfaction, the model can further capture

users’ preferences in detail through MLSE.

Multi-task Learning (MTL): As shown in Eq. (19), SAQRec

employs imputed satisfaction provided by the pre-trained satis-

faction model as the pseudo-label for multi-task learning. It can
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Figure 3: Performance comparison of SAQRec over user
groups with different activity levels. The histograms rep-
resent the percentage of improvement (%) over FMLP-Rec𝑀
and the lines denote the performance. The X-axis represents
grouping by user activity levels from low to high, which are
G1, G2, G3, and G4, respectively.

be observed that without multi-task learning, optimizing only the

click loss L𝐶 in Eq. (15) leads to a decrease in performance. This

indicates that multi-task learning enables the model to leverage

imputed satisfaction information, enhancing click predictions and

better aligning the model’s output with users’ true preferences.

5.4 Experimental Analysis
In this section, we conduct an experimental analysis on the com-

mercial dataset for SAQRec.

5.4.1 Performance Improvement w.r.t. Different User Groups. In this

section, we explore the performance improvements of SAQRec

relative to FMLP-Rec𝑀 for users with different levels of activity.

Specifically, we categorize users into four groups, G1, G2, G3, and

G4, based on the number of their interactions, ranging from fewer to

more. The results are shown in Figure 3. We can draw the following

conclusions: SAQRec consistently outperforms the best-performing

baseline, FMLP-Rec𝑀 , across users with different levels of activ-

ity. Additionally, it can be observed that SAQRec achieves more

significant performance improvements for users with midium to

high activity levels. This is because when the historical interaction

length is shorter, users may exhibit random behavior patterns that

are difficult to capture. As the historical length increases, SAQRec

can effectively capture users’ true preferences with more interac-

tions, thus achieving relatively stable performance gains.

5.4.2 Impact of Hyper-parameters. In this section, we analyze the

impact of different hyper-parameters on the model performance.

Performance Comparison w.r.t. the Numbers of Satisfac-
tion Levels.We analyze how the number of user satisfaction levels

(𝑁𝐼 ) in MLSE impacts SAQRec’s performance (see Figure 4(a)). The

model performs better as satisfaction levels increase from 1 to 9, in-

dicating an improved understanding of users’ preferences at a finer

granularity. Considering the potential for increased complexity, we

choose to use only nine levels.

Performance Comparison w.r.t. Different Epoch for Label
Correction. We enhance the model’s learning of satisfaction by

introducing adaptive label correction at epoch 𝑁𝑚𝑖𝑥 , as defined

in Eq. (18). Figure 4(b) shows that introducing label correction at

the third epoch achieves optimal effects. Performance gradually

improves before this point but declines afterward as themodel tends

to be overfitted, relying excessively on the imputed satisfaction.
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(a) Performance comparison w.r.t. different 𝑁𝐼 .
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(b) Performance comparison w.r.t. different 𝑁𝑚𝑖𝑥 .
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(c) Performance comparison w.r.t. different 𝛽 .

Figure 4: Effects of hyper-parameters 𝑁𝐼 , 𝑁𝑚𝑖𝑥 and 𝛽 . NDCG@5 is on the left axis, and MRR is on the right axis.

Performance Comparison w.r.t. Different Weight of the
Satisfaction Loss. We implement multi-task learning with the

hyper-parameter 𝛽 (Eq. (19)) to balance click and satisfaction predic-

tion tasks. Figure 4(c) illustrates the impact of varying 𝛽 from 1e-5

to 1e-1 on model performance. A smaller 𝛽 reduces the significance

of the satisfaction prediction task, weakening its influence on guid-

ing the click prediction task. This leads to a decline in performance,

highlighting the importance of leveraging imputed satisfactions as

pseudo-labels to better align with users’ true preferences.

5.5 Online A/B Testing
To comprehensively validate SAQRec’s performance in our scenario,

we conduct a consecutive 7-day online A/B testing on Kuaishou

APP. The test, utilizing 10% of the primary traffic through random

bucketing, includes a control group using the platform’s advanced

base model and an experimental group combining the base model

with SAQRec. Specific results are presented in Table 4, demonstrat-

ing positive gains in watch time and positive-to-negative feedback

ratio across all seven days compared to the base model. Specifically,

(1) The average user watch time increases by 0.124%, and the aver-

age video watch time increases by 0.509%, signifying the improved

effectiveness of the recommendation model in understanding users’

preferences. This enables the delivery of more personalized and

user-preference-aligned recommendations, thereby enhancing plat-

form satisfaction and encouraging users to spend more time on

the platform. (2) The positive-to-negative feedback ratio for video

content increases by 0.333%, indicating a relative rise in users’ pos-

itive feedback compared to negative feedback. This enhancement

indicates user preference for positive behaviors (e.g., sharing, liking,

and commenting), reflecting an increase in user satisfaction.

Table 4: OnlineA/B results onKuaishouAPP.AUT is short for
the average user watch time. AVT is short for average video
watch time. P2N is short for positive-to-negative feedback
ratio. "↑" denotes that a higher value of the corresponding
metric is better. In Kuaishou’s scenario, a 0.1% increase in
watch time is considered a significant improvement, poten-
tially yielding substantial business gain.

Metrics Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

AUT ↑ +0.085% +0.107% +0.119% +0.136% +0.098% +0.157% +0.164%

AVT ↑ +0.509% +0.594% +0.328% +0.556% +0.512% +0.564% +0.499%

P2N ↑ +0.344% +0.405% +0.238% +0.395% +0.336% +0.314% +0.300%

6 CONCLUSION
In this paper, we propose SAQRec, which enhances recommen-

dations by leveraging questionnaire feedback to align with users’

true preferences. SAQRec has two stages: (1) The first stage pre-

trains an unbiased satisfaction model to address the issues of data

sparsity and selection bias; (2) The second stage aligns the recom-

mendation model with user preferences through the satisfaction

feature alignment module, which includes satisfaction information

disentanglement and multi-level satisfaction enhancement. The im-

puted satisfactions are further used as pseudo-labels for multi-task

learning. The results of offline and online experiments validate the

effectiveness of SAQRec in enhancing user satisfaction.

APPENDIX
This section provides the proofs of Theorem 4.1.

Proof.

EO [L
unbias

(𝑠)]

= −EO

[
1

|O|
∑︁
O

𝑠log(𝑠) + (1 − 𝑠)log(1 − 𝑠)
Pr(𝑜 = 1)

]
= −EO

[
1

|D|
∑︁
D

𝑠log(𝑠) + (1 − 𝑠)log(1 − 𝑠)
Pr(𝑜 = 1) 𝑜

]
= − 1

|D|
∑︁
D

𝑠log(𝑠) + (1 − 𝑠)log(1 − 𝑠)
Pr(𝑜 = 1) EO [𝑜]

= − 1

|D|
∑︁
D

𝑠log(𝑠) + (1 − 𝑠)log(1 − 𝑠)
Pr(𝑜 = 1) Pr(𝑜 = 1) = L

ideal
(𝑠) .
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