
J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 833 – 840, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Cost-Sensitive Learning of SVM for Ranking 

Jun Xu1, Yunbo Cao2, Hang Li2, and Yalou Huang1 

1 College of Software, Nankai University, Weijin Road 94, Tianjin, China 
nkxj@hotmail.com, yellow@nankai.edu.cn 

2 Microsoft Research Asia, Zhichun Road 49, Beijing, China 
{yucao, hangli}@microsoft.com 

Abstract. In this paper, we propose a new method for learning to rank. 
‘Ranking SVM’ is a method for performing the task. It formulizes the problem 
as that of binary classification on instance pairs and performs the classification 
by means of Support Vector Machines (SVM). In Ranking SVM, the losses for 
incorrect classifications of instance pairs between different rank pairs are 
defined as the same. We note that in many applications such as information 
retrieval the negative effects of making errors between higher ranks and lower 
ranks are larger than making errors among lower ranks. Therefore, it is natural 
to bring in the idea of cost-sensitive learning to learning to rank, or more 
precisely, to set up different losses for misclassification of instance pairs 
between different rank pairs. Given a cost-sensitive loss function we can 
construct a Ranking SVM model on the basis of the loss function. Simulation 
results show that our method works better than Ranking SVM in practical 
settings of ranking. Experimental results also indicate that our method can 
outperform existing methods including Ranking SVM on real information 
retrieval tasks such as document search and definition search. 

1   Introduction 

Learning to rank is an important research topic in machine learning, because many 
issues in information retrieval and data mining can be formalized as ranking 
problems. For example, in information retrieval, the user types a query, and the 
system calculates the relevance scores of documents with respect to the query and 
returns the documents in descending order of the relevance scores. The relevance 
scores can be calculated by a ranking function constructed with machine learning. 

Machine learning approaches to ranking have been proposed. Ranking SVM [14] is 
such a method. It formulizes the learning to rank as that of learning for classifying 
instance pairs into two categories and trains a SVM model to perform the task. 

We note that in many applications such as information retrieval, the negative 
effects of making errors between higher ranks and lower ranks are larger than making 
errors among lower ranks[5]. In Ranking SVM, however, the losses for incorrect 
classifications of instance pairs between different rank pairs are defined as the same 
(i.e., only correctly ranked and incorrectly ranked are considered). Therefore, to make 
Ranking SVM more useful in practice, it is necessary to change the formation of the 
loss function.   



834 J. Xu et al. 

In the paper, we propose a new method for learning ‘Ranking SVM’ based on cost-
sensitive learning. Specifically, we set different losses for misclassification of instance 
pairs between different rank pairs. We find it is feasible to make a generalization of the 
learning algorithm of Ranking SVM such that given a cost-sensitive loss function we 
construct a Ranking SVM model on the basis of the loss function.  

2   Related Work 

The problem of learning to rank can be formulized as classification [10],[12], 
regression [17], or ordinal regression. The ordinal regression methods can be further 
classified into two groups: referred to, in this paper, as ‘point-wise training’ (c.f. [6], 
[7]) and ‘pair-wise training’ (c.f. [4], [14]) respectively. We consider pair-wise 
training in this paper. Ranking SVM [14] is a typical method of ordinal regression 
based on pair-wise training. It formulizes the learning to rank problem as that of 
learning for classifying instance pairs into two categories (correctly ranked and 
incorrectly ranked) and trains a SVM model to perform the task. 

Cost-sensitive learning is a sub-field of supervised learning in which classifiers are 
constructed when different penalties (losses) are needed for different types of 
classification errors [9]. Recent research on cost-sensitive learning can be grouped 
into three categories: 1) creating particular classifiers in cost-sensitive learning (e.g., 
[3], [11]), 2) assigning each example to its lowest expected cost class (e.g., [8], [24]), 
and 3) modifying the distribution of training examples prior to performing learning 
(e.g., [1], [18]). 

3   Learning of SVM for Ranking 

Assume that a training set of labeled data is available. Each instance ( , ) n
i ix y R Y∈ ×  

has been generated independently from an unknown distribution, where x  denotes a 
feature vector and y denotes a label of rank. In the space of ranks

1 2{ , , , }qY r r r= , 
there exists a total order between the ranks

1 1q qr r r−
, where ‘ ’ denotes 

preference relationship. The goal of ranking learning is to induce a ranking 
function f F∈ , which can determine preference relation between instances:  

( ) ( )⇔ >i j i jx x f x f x  (1) 
Herbrich et al propose transforming the learning task into that of learning for 

classification on pairs of instances (Ranking SVM)[14]. First, we assume that f is a 
linear function: 

( ) ,wf x w x= , (2) 

where w  denotes a vector of weights and >⋅⋅< ,  stands for an inner product. Plugging 
(2) into (1) we obtain 

, 0⇔ − >i j i jx x w x x  (3) 

Note that the relation 
i jx x  between instance pairs 

ix and 
jx  is expressed by a 

new vector −i jx x . Next, we take any instance pair and their relation to create a new 
vector and a new label. Let (1)x and (2)x  denote the first and second instances, and let 
y(1) and y(2) denote their ranks, then we have 



 Cost-Sensitive Learning of SVM for Ranking 835 

(1) (2)
(1) (2)

(2) (1)
1,
1

y yx x z
y y

⎛ ⎞⎧+− = ⎨⎜ ⎟−⎩⎝ ⎠
 (4) 

From the given training data set S, we create a new training data set S' containing 
 labeled vectors:  

( ){ }(1) (2)

1
' ,i i i

i
S x x z

=
= −  (5) 

Next, we take S' as classification data and construct a SVM model that can assign 
either positive label 1z = +  or negative label 1z = −  to any vector (1) (2)x x− .  

Constructing the SVM model is equivalent to solving the following quadratic 
optimization problem: 

2

1
(1) (2)

1
min ( )

2
subject to 0, , 1 1, , .

i
w

i

i i i i i

M w w C

z w x x i

ξ

ξ ξ
=

= +

≥ − ≥ − =

∑  (6) 

Note that the optimization in (6) is equivalent to that in (7), when 1
2Cλ =  [13]. 

2(1) (2)

1

min 1 , ,i i i
w

i

z w x x wλ
+=

⎡ ⎤− − +⎣ ⎦∑  (7) 

where subscript ‘+’ indicates positive part. The first term is the so-called ‘empirical 
hinge loss’ and the second term is a regularizer.  

Suppose that *w is the weights in the SVM solution. We utilize *w  to form a 
ranking function *

*( ) ,wf x w x= .  

In many applications such as information retrieval the negative effects of making 
errors between higher ranks and lower ranks are larger than making errors among 
lower ranks[5]; for example, usability studies show that search users usually only look 
at the top ranked results [22].  

Let us consider an example in information retrieval. Suppose that there are seven 
documents to rank and there are three possible ranks: definitely relevant, possibly 
relevant, and not relevant, denoted as ‘d’, ‘p’, and ‘n’ respectively.  The perfect 
ranking is given and two rankings 1 and 2 are supposed to be made. 

Perfect ranking: d p p n n n n 
Ranking 1: p d p n n n n 
Ranking 2: d p n p n n n 

Both ranking 1 and ranking 2 are not perfect. From practical viewpoint, the ‘loss’ 
in ranking 1 should be larger than that in ranking 2, because the error in ranking 1 is 
between the highest rank d and the middle rank p, while the error in ranking 2 is 
between the middle rank p and the lowest rank n. That is to say, a larger penalty 
should be added to the former. However, this is not reflected in the conventional 
Ranking SVM or any other existing ranking methods.  

To deal with the problem, we propose a new type of SVM model for ranking, which 
retains different losses for different rank pairs. Specifically, we introduce penalty 
weights τ ’s into different rank pairs in the loss function in (7). That is to say, we re-
formalize SVM learning problem as that of minimizing the following loss function. 

2(1) (2)
( )

1

min ( ) 1 , ,k i i i iw
i

L w z w x x wτ λ
+=

⎡ ⎤= − − +⎣ ⎦∑  (8) 



836 J. Xu et al. 

where k(i) represents the type of rank pairs (1)
iy and (2)

iy with regard to (1) (2)
i ix x− ; 

( )k iτ represents penalty weight for k(i). 
If it is to penalize errors between a rank pair, then we can assign a larger weight 

(larger than 1.0). Note that our method contains Ranking SVM as a special case in 
which all τ ’s equal 1.0. 

In our method, instead of directly solving (8), we solve the equivalent quadratic 
optimization problem as described below.  

2

( )
1

(1) (2)

1
min ( )

2
subject to 0, , 1 1, ,

k i i
w

i

i i i i i

M w w C

z w x x i

ξ

ξ ξ
=

= + ⋅

≥ − ≥ − =

∑ . (9) 

This is because the following proposition 1 holds. Note that in (9) we use different 
C’s for different rank pairs. 

Proposition 1: The problems in (8) and (9) are equivalent, when 
( ) ( ) 2k i k iC τ λ= .  

The Lagrange dual function of problem (9) is  

(1) (2) (1) (2)
' ' ' '

1 1 ' 1

1
,

2
α α α

= = =

= − − −∑ ∑∑D i i i i i i i i i
i i i

L z z x x x x . (10) 

We maximize LD subject to the constraints 
( )0 1, ,i k iC iα≤ ≤ = . 

4   Experimental Results 

We conducted three experiments: simulation, document search, and definition search. 
As measures for evaluating the results of ranking methods, we used Normalized 

Discounted Cumulative Gain (NDCG)[16] and Mean Average Precision (MAP)[2]. 
They are both widely used in information retrieval. NDCG is based on the assumption 
that there are more than two ranks for relevance ranking while MAP is based on the 
assumption that there are two categories: relevant and irrelevant.  

As baselines, we used Ranking SVM in all the experiments. In the document 
search experiment, we also compared our method with BM25 [21] and Language 
Model for Information Retrieval (LMIR) [20]. In the definition search experiment, we 
also used SVM classifier as a baseline. 

One important issue for our method is to determine the values of the penalty 
parameters τ ’s. It appears to be hard to derive the ideal values of τ ’s analytically. In 
this paper we propose a heuristic method (c.f. Fig. 1) for estimating the parameter 
values. In experiments we used training data sets for the estimation. 

4.1   Simulation Experiments 

We conducted a simulation to verify the effectiveness of our method. First, we 
assumed that there are three ranks: r1, r2, and r3, and instances in the two dimensional 
Euclidean space are generated according to Gaussian distributions N(mk, I). We set 
the centers as m1=(0, -0.5), m2=(0, 2), and m3=(2, 2.5) for r1, r2, and r3, respectively. 
    We assume that the standard deviations I’s are represented by the 2 2×  identity 
matrix. Next, we randomly generated nk instances for each rank rk (k =1, 2, 3) 
according to its distribution. We set n1 = 1000, n2 = 200, and n3 = 100 (c.f., Fig. 2).  



 Cost-Sensitive Learning of SVM for Ranking 837 

 

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0 10 20 30 40 50 60 70 80 90 100

N

N
D

C
G Our approach

Ranking SVM

 

Fig. 2. Two ranking functions in simulation Fig. 3. NDCG curves in simulation 

We applied our method and Ranking SVM to learn ranking functions from the 
data. In our method we set large penalty values for rank pairs r3-r1 and r3-r2 , and set a 
small penalty value for rank pair r2-r1. The ranking function 

1 2( ) 2.85 3.01f x x x= +  
was created with our method. The ranking function obtained by conventional Ranking 
SVM was

1 2( ) 0.53 2.04f x x x= + . Fig. 2 shows the ranking functions. We calculated 
the NDCG values at the positions of 1, 10, 20, …, 100 and the results are given in Fig. 
3. We can see that the NDCG scores of our method stay at 1.0 until when position N 
reaches 90. The results demonstrate that our method works better than Ranking SVM 
for enhancing ranking accuracy.  

4.2   Experiment on Document Search 

In the experiment, we tested whether our proposed methods can work well for document 
search. We made use of the OHSUMED collection [15]. The relevance judgments of 
OHSUMED are either ‘d’ (definitely relevant), ‘p’ (possibly relevant), or ‘n’ (not 
relevant). Rank ‘n’ has the largest number of documents, followed by ‘p’ and ‘d’.   

Each instance consists of a vector of features, determined by a query and a 
document. We adopted the feature set of [19]. Table 1 shows all the features. For 

Method: Given a rank pair (r1, r2), estimate value of the penalty parameter τ  for the rank
pair.  

Drop = 0, T = number of iterations 
Query set Q = {q1, q2, …, qk}, 
for i = 1 to k do 

Get document set Di = {di1, di2, …, din} retrieved by qi  
Get corresponding rank labels Li = {li1, li2, …, lin}  
Create a perfect ranking for qi and calculate NDCG@1: Mperfect 
Dropi = 0 
for j = 1 to T do 

          Randomly pick up two documents d1 and d2 whose labels are r1 and r2 respectively 
        Swap d1 and d2 and calculate NDCG@1 for the new ranking: Mij 
        Dropi = Dropi + (Mperfect - Mij)  
End for 
Drop = Drop + (Dropi / T) 

End for 
Return Drop / k 

Fig. 1. Heuristic Method for setting the penalty parameters τ ’s 



838 J. Xu et al. 

example, tf (term frequency), idf (inverse document frequency), document length, and 
their combinations are features. BM25 score is another feature, which is calculated 
using the ranking method of BM25[21]. For the baseline methods of BM25 and 
LMIR, we used the tool Lemur (http://www.lemurproject.org/). 

We compared the performances of our method and Ranking SVM with the data 
through 4-fold cross-validation. The result reported in Fig. 4 are those averaged over 
four trials. From the figure, we see that our method outperforms baselines in terms of 
all the measures. The result indicates that our method is effective for the task of 
document retrieval.  

We conducted Sign Test on the improvements of our method over BM25, LMIR, 
and Ranking SVM in terms of NDCG@1. The results indicate that the improvements 
are statistically significant (p-value < 0.05). 

We analyzed the results and found that our method can indeed make better 
rankings than Ranking SVM. For example, for query 9, the top five documents 
returned by ranking SVM and our method are listed in Table 2 (the scores of 
NDCG@1 and NDCG@5 are also given). We note that both of the two ranking 
methods have two document pairs incorrectly ranked. Two (d, p) pairs reversed in the 
ranking by Ranking SVM and one (d, p) and one (p, n) pairs reversed by our method. 
However, the errors in our method are less hurtful, as they are not between the ranks d 
and p That is to say, our method can meet the requirement in practical ranking 
problems better. 

4.3   Experiment on Definition Search 

In this experiment, we verify whether our method can also be used in other 
information retrieval tasks such as search of definitions [23]. The problem is defined 
as retrieving and ranking definitions found from documents for a given query term. 
The key issue here is to rank definitions (or definition candidates) extracted from 
documents. The definitions can be in paragraphs or sentences and are extracted by 
patterns and rules. The definition candidates are categorized into three levels: ‘good’, 
‘indifferent’, and ‘bad’, according to their goodness as definitions. This is another 
multiple ranks ranking problem. SVM and Ranking SVM are used for performing the 
task and it is empirically proved that both of the methods can work well. We tried to 
see whether it is possible to improve the results by using the cost sensitive learning 
method proposed in this paper.  

We conducted 5-fold cross validation and Fig. 5 shows the results averaged over 
the five trials. In the experiment, we also used SVM classifier as baseline. We did not 
 

Table 1. Features for building ranking model. C(w, d) represents the raw count of word w in 
document d; C represents the collection; n is the number of terms in the query; |.| is the size of 
a set; and idf(.) is the inverse document frequency. 

1 log( ( , ) 1)
i

i
q q d

c q d
∈ ∩

+∑
 

2 
| |

( , )log( 1)
∈ ∩

+∑ i

i

C
c q C

q q d  
3 log( ( ))

∈ ∩
∑

i

i
q q d

idf q
 

4 
( , )

| |log( 1)i

i

c q d
d

q q d∈ ∩
+∑

 
5 

( , )
| |log( ( ) 1)i

i

c q d
id

q q d

idf q
∈ ∩

⋅ +∑
 

6 
( , ) | |
| | ( , )log( 1)i

i

i

c q d C
d c q C

q q d∈ ∩

⋅ +∑
 

7 log( 25 )BM score     



 Cost-Sensitive Learning of SVM for Ranking 839 

Table 2. Top 5 documents ranked by Ranking SVM and our method with respect to query 9 

 Ranking SVM Our Method 
Top 5 ranked docs p d d p n d p d n p 
NDCG@1 0.3333 1.0 
NDCG@5 0.5453 0.6238 

 

use BM25 and LMIR, because they are not suitable for conducting definition search.  
From Fig. 5, we conclude that our method outperforms the baseline methods of using 
SVM classifier and Ranking SVM. This indicates again that our method is effective 
for improving real ranking problems. 

5   Conclusion 

In the paper, we have proposed a novel cost-sensitive method to learn Support Vector 
Machines for ranking. We note that in many applications such as information retrieval 
the negative effects of making errors between higher ranks and lower ranks are much 
larger than making errors among lower ranks. Therefore, in learning methods for 
ranking, it is necessary to set up different losses for incorrectly ranking instances 
between different ranks. All the existing methods did not take the issue into 
consideration. In this paper, we take Ranking SVM as an example and have 
developed a new method to deal with the problem. We find that it is possible to make 
a generalization of the learning algorithm of Ranking SVM with a new cost-sensitive 
loss function. Simulation results show that our method can indeed reduce errors 
between higher ranks and lower ranks and thus perform better than Ranking SVM in 
practical settings of ranking. Experimental results verify that our method significantly 
outperforms Ranking SVM and other baseline methods for performing real 
Information Retrieval tasks. 

References 

1. Abe, N., Zadrozny, B., Langford, J.: An Iterative Method for Multi-class Cost-sensitive 
Learning. In: Proc. of 10th Inter. Conf. on KDD, Seattle, Washington, USA. (2004) 3–11 

2. Baeza-Yates, R. A., Ribeiro-Neto B.: Modern Information Retrieval, Addison-Wesley 
Longman Publishing Co., Inc., Boston, MA, 1999 

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

MAP NDCG@1 NDCG@3 NDCG@5

BM25

LMIR

Ranking SVM

Our Approach

 

0.60

0.65

0.70

0.75

0.80

MAP NDCG@1 NDCG@3 NDCG@5

SVM Classifier 

Ranking SVM

Our Approach

 

Fig. 4. Ranking accuracies in document search Fig. 5. Ranking accuracies in definition search 



840 J. Xu et al. 

3. Bradford, J., Kunz, C., Kohavi, R., Brunk, C., Brodley, C.: Pruning decision trees with 
misclassification costs. In: Proc. of ECML. Chemnitz, Germany. (1998) 131-136 

4. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: 
Learning to Rank using Gradient Descent. In: Proc. of 22nd ICML. Bonn, Germany. 
(2005) 

5. Cao, Y., Xu, J., Liu, T., Li, H., Huang, Y., Hon, H. W.: An Ordinal Regression Method for 
Document Retrieval. Proc. of 29th Inter. ACM SIGIR Conf., (2006), to appear 

6. Chu, W., Keerthi, S.: New Approaches to Support Vector Ordinal Regression. In: Proc. of 
ICML, Bonn, Germany. (2005) 145–152 

7. Crammer, K., Singer, Y.: PRanking with Ranking. Advances in NIPS 14, Cambridge, MA: 
MIT Press. (2002) 641–647 

8. Domingos, P.: MetaCost : A general method for making classifiers cost sensitive. In: Proc. 
of the 5th KDD, San Diego, CA, USA. (1999) 155–164 

9. Elkan, C.: The Foundations of Cost-Sensitive Learning. In: Proc. of the 17th Inter. Joint 
Conf. on Artificial Intelligence, (2001) 973–978 

10. Frank, E., Hall, M.: A Simple Approach to Ordinal Classification. In: Proc. of ECML, 
Freiburg, Germany. (2001) 145-165 

11. Geibel, P., Wysotzki, F.: Perceptron based learning with example dependent and noisy 
costs. In: Proc. of 12th ICML, Washington DC, USA. (2003) 

12. Har-Peled, S., Roth, D., Zimak, D.: Constraint classification: A new approach to 
multiclass classification and ranking. Advances in NIPS 15. (2002) 

13. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: data mining, 
inference and prediction. Springer-Verlag. (2001) 

14. Herbrich, R., Graepel, T., Obermayer, K.: Large Margin Rank Boundaries for Ordinal 
Regression. Advances in Large Margin Classifiers. (2000) 115-132.  

15. Hersh, W. R., Buckley, C., Leone, T. J., Hickam, D. H.: OHSUMED:  An interactive 
retrieval evaluation and new large test collection for research. In: Proc. of the 17th Inter. 
ACM SIGIR Conf. (1994) 192-201 

16. Jarvelin, K., Kekalainen, J.: IR evaluation methods for retrieving highly relevant 
documents. In: Proc. of the 23rd Inter. ACM SIGIR Conf. (2000) 41-48  

17. Kramer, S., Widmer, G., Pfahringer, B., & Degroeve, M. (2001). Prediction of ordinal 
classes using regression trees. Fundamenta Informaticae, vol. 47, 1-13.  

18. Monard, M. C. & Batista, G. E. A. P. A.: Learning with Skewed Class Distribution. 
Advances in Logic, Artificial Intelligence and Robotics, Sao Paulo, SP. (2002) 173-180 

19. Nallapati, R.: Discriminative models for information retrieval. Proc. of the 27th Inter. 
ACM SIGIR Conf., Sheffield, United Kingdom. (2004) 64-71 

20. Ponte J. and Croft W. B.: A language model approach to information retrieval. Proc. of the 
Inter. ACM SIGIR Conf. (1998) 275-281.  

21. Robertson, S., Hull, D. A.: The TREC-9 Filtering Track Final Report. Proc. of the 9th 
TREC, (2000) 25-40.  

22. Spink, A., Jansen B.J., Wolfram, D., Saracevic, T.: From e-sex to e-commerce: web search 
changes. IEEE Computer,35(3), (2002) 107-109 

23. Xu, J., Cao, Y., Li, H., Zhao, M.: Ranking Definitions with Supervised Learning Methods. 
Proc. of the 14th Inter. Conf. on World Wide Web, (2005) 811-819   

24. Zadrozny, B., Elkan, C.: Learning and making decisions when costs and probabilities are 
both unknown. In: Proc. of the 7th  Inter. Conf. on KDD, (2001) 204–213 


	Introduction
	Related Work
	Learning of SVM for Ranking
	Experimental Results
	Simulation Experiments
	Experiment on Document Search
	Experiment on Definition Search

	Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




