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Abstract
In recent years, graph contrastive learning (GCL) has received in-

creasing attention in recommender systems due to its effectiveness

in reducing bias caused by data sparsity. However, most existing

GCL models rely on heuristic approaches and usually assume en-

tity independence when constructing contrastive views. We argue

that these methods struggle to strike a balance between semantic

invariance and view hardness across the dynamic training process,

both of which are critical factors in graph contrastive learning.

To address the above issues, we propose a novel GCL-based rec-

ommendation framework RGCL, which effectively maintains the

semantic invariance of contrastive pairs and dynamically adapts as

the model capability evolves through the training process. Specifi-

cally, RGCL first introduces decision boundary-aware adversarial

perturbations to constrain the exploration space of contrastive

augmented views, avoiding the decrease of task-specific informa-

tion. Furthermore, to incorporate global user-user and item-item

collaboration relationships for guiding on the generation of hard

contrastive views, we propose an adversarial-contrastive learn-

ing objective to construct a relation-aware view-generator. Besides,

considering that unsupervised GCL could potentially narrower mar-

gins between data points and the decision boundary, resulting in

decreased model robustness, we introduce the adversarial examples

based on maximum perturbations to achieve margin maximization.

We also provide theoretical analyses on the effectiveness of our

designs. Through extensive experiments on five public datasets,

we demonstrate the superiority of RGCL compared against twelve

baseline models.

CCS Concepts
• Information systems → Recommender systems.
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1 Introduction
Recently, the intersection of graph neural networks (GNNs) and

recommender systems has emerged as a focal point of research

attention in both academia and industry [18]. While GNNs have

demonstrated remarkable efficacy in capturing high-order connec-

tivity relationships between users and items through their potent

message propagation mechanism [17, 33], the inherent data spar-

sity within recommendation scenarios introduces unexpected bias

in users (e.g., non-active vs. active users) and items (e.g., long-tail

vs. popular items) representations, thereby impairing the overall

model performance [3, 19].

To mitigate the issue of data sparsity and drawing inspiration

from self-supervised learning (SSL), recent works have introduced

Graph Contrastive Learning (GCL) into GNN-based algorithms [20,

30, 40]. GCL represents a new learning paradigm that integrates

contrastive learning [15] with GNN-based recommenders, simul-

taneously enhancing the alignment of positive embedding pairs

and minimizing the similarity to augmented negative instances. In

this way, GCL can effectively alleviate the problem of representa-

tion degradation among low-degree nodes. In general, GCL-based

recommenders can be classified into two categories based on how

to build the contrastive samples: (1) Hardness-driven methods.
These methods basically aim to construct hard enough samples to

challenge original recommender models and provide more difficult

knowledge to widen the model vision. The methods in this line

mainly differentiate themselves by how to define the hardness and

how to build hard enough samples. For example, SGL [32] generates

challenging views using various strategies, such as node dropout

and edge dropout. (2) Rationality-driven methods. These meth-

ods aim to maintain the rationality of the constructed samples, that
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Figure 1: An overview of two types of representative GCL-
based recommenders. To facilitate the presentation, we only
show a single user and item with injected noise. However,
in practice, the semantic-aware GCL-based methods should
integrate perturbations to all graph nodes.

is, the augmented features and original labels should form reason-

able samples. For example, SimGCL [39] makes slight changes to

the original features, such that the augmented feature-label pairs

can be still reasonable (i.e., semantically invariant).

Although the aforementioned GCL-based recommenders have

shown impressive performance to some extent, we argue that these

methods still suffer from several significant limitations. As depicted

in Figure 1, on the one hand, hardness-driven models blindly pur-

sue the example hardness in contrastive augmentations through

manual-designed heuristic strategies. Unfortunately, these models

may inadvertently remove certain crucial nodes or edges, neglect-

ing how to maintain task-specific semantics. This oversight makes

it challenging for recommenders to accurately capture user pref-

erences and item characteristics. On the other hand, rationality-
driven methods introduce slight feature perturbations to retain the

underlying semantic structure but may overlook the benefits of

introducing hard samples on providing more diverse knowledge.

Notably, both challenging positive pairs and hard negative pairs

are essential to the success of GCL-based recommenders [26, 28].

In extreme cases, the zero-noise version of contrastive learning

may not yield significant performance gains, as verified by prior re-

search [34, 39]. In summary, achieving an adaptive and ideal balance

between the hardness and rationality of contrastive augmentations

for GCL-based recommenders poses a highly intricate challenge.

In this work, we aim to leverage the idea of adversarial robust-
ness [22] to facilitate the construction of optimal contrastive aug-

mented data. To be specific, the goal of adversarial robustness is

to promote feature invariance upon task-relevant information, as-

suring the neural networks are not fooled by imperceptible data

perturbations. More importantly, it specifies the maximum per-

turbation boundary that the current model can tolerate, which

explicitly defines a feasible exploration space for conducting ex-

ample augmentation. Therefore, grounded by such idea, the graph

contrastive learning can effectively balance the example hardness

and rationality, both of which are crucial factors to high-quality

representations. While this idea is inherently intuitive and holds in-

triguing potential, its implementation still faces several challenges

and obstacles. C1: prevalent contrastive augmentation approaches,

assuming entity independence, struggle to maintain inherent struc-

tural features as they overlook the important connections among

user-user and item-item. C2: as an unsupervised learning algo-

rithm, GCL in blindly pursuing representation uniformity might

unintentionally compromise the robust requirement, that is, nar-

row margins between data points and the model decision boundary,

risking unexpected decreases in the model robustness.

To realize our idea and overcome the above challenges, this pa-

per proposes a novel Robust Graph Contrastive Learning-based
recommendation framework, named RGCL. Specifically, we first

calculate the maximum perturbation magnitudes for different users

and items at each graph layer, while preserving core semantic in-

formation for both user and item sides. (Rationality) Compared to

manual-designed heuristics graph contrastive learning methods, we

propose an adversarial-contrastive objective to adaptively generate

challenging positive pairs and hard negative pairs based on the

global relationships between user-user and item-item, (Hardness)
which simultaneously overcomes the limitations of the entity in-

dependence assumption. (C1) At last, we optimize the joint loss of

adversarial and contrastive components to concurrently increase

the dissimilarity between different users (items) and maximize the

distances between user-item inputs and model decision boundary,

further improving the robustness of the recommendation model.

(C2) In summary, our contributions can be summarized as follows:

• We propose a model-agnostic graph contrastive learning frame-

work, which utilizes dynamic decision boundary-aware adver-

sarial perturbations to constrain the perturbation space of con-

trastive augmented view, achieving a better balance between

contrastive hardness and sample rationality.

• We develop a joint learning algorithm based on multi-view con-

trastive learning and margin maximum adversarial learning to

optimize RGCL, empowering better representation uniformity

while improving model robustness.

• We give theoretical analyses to underscore the importance of

hard contrastive views in model optimization and elucidate the

insights behind the efficacy of RGCL in enhancing robustness.

• Extensive experiments on five real-world datasets demonstrate

the superior performance of our proposed RGCL framework.

2 Preliminaries
2.1 GNN-based Recommendation
Formally, let U = {𝑢1, 𝑢2, . . . , 𝑢𝑀 } and I = {𝑖1, 𝑖2, . . . , 𝑖𝑁 } denote
the set of users and items, respectively, where𝑀 and 𝑁 represent

the number of users and items, respectively. Considering recommen-

dation scenario with implicit feedback, a binary matrix R ∈ R𝑀×𝑁

are typically used to record user-item interactions (e.g., clicks or
purchases), where 𝑟𝑢,𝑖 = 1 indicates that user 𝑢 has interacted with

item 𝑖 , otherwise 𝑟𝑢,𝑖 = 0. Following most GNN-based recommen-

dation works [11, 12, 14], we formulate the interaction behaviors

between users and items as a standard bipartite graph G = {V,A},
where V = U ∪ I involves all graph nodes, and A indicates the

adjacent matrix. Following the common practice [3, 12], we encode

the user 𝑢 and item 𝑖 as d-dimensional latent vectors e𝑢 ∈ R𝑑 and

e𝑖 ∈ R𝑑 , respectively. Besides, E = {e𝑢 | 𝑢 ∈ U} ∪ {e𝑖 | 𝑖 ∈ I} is
defined as the overall learnable embedding matrix for all nodes.
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Similar to other GCL-based works [30, 32, 39], this paper adopts

the LightGCN [12] as model backbone. Specifically, the compre-

hensive graph representations z𝑢 and z𝑖 for user 𝑢 and item 𝑖 in

LightGCN are calculated by

z𝑢 =

𝐿∑︁
𝑙=0

h(𝑙 )
𝑢 , h(𝑙 )

𝑢 =
∑︁
𝑗 ∈N𝑢

1√︁
|N𝑢 | |N𝑗 |

h(𝑙−1)
𝑗

, 𝑙 ≥ 1,

z𝑖 =
𝐿∑︁
𝑙=0

h(𝑙 )
𝑖

, h(𝑙 )
𝑖

=
∑︁
𝑣∈N𝑖

1√︁
|N𝑖 | |N𝑣 |

h(𝑙−1)
𝑣 , 𝑙 ≥ 1,

where N𝑢 and N𝑖 indicate the neighboring nodes of user 𝑢 and

item 𝑖 , respectively. h(𝑙 )
𝑢 and h(𝑙 )

𝑖
means the 𝑙-th layer graph rep-

resentation for user 𝑢 and item 𝑖 , respectively. Here, h(0)
𝑢 and h(0)

𝑖
are initialized with the learnable embedding e𝑢 and e𝑖 , respectively.
The predicted score 𝑟𝑢,𝑖 for the (𝑢, 𝑖) pair is computed as the inner

product of their graph representations, i.e., 𝑟𝑢,𝑖 = ⟨z𝑢 , z𝑖 ⟩. Finally,
the BPR [25] loss is adopted as the optimization objective:

L𝐵𝑃𝑅 = −
∑︁
𝑢∈U

∑︁
𝑖+∈I+

𝑢

∑︁
𝑖−∈I−

𝑢

ln𝜎 (𝑟𝑢,𝑖+ − 𝑟𝑢,𝑖− ),
(1)

where 𝜎 (𝑥) = 1/(1 + 𝑒−𝑥 ), I+
𝑢 and I−

𝑢 represent the positive item

and unobserved item set for user 𝑢, respectively.

2.2 GCL-based Recommenders
In real-world scenarios, interaction behaviors between users and

items are actually highly sparse, which can lead to severe overfitting

and bias problems [32]. Graph contrastive learning (GCL), as a

novel learning paradigm, helps mitigate the above problems [3, 39].

In specific, GCL firstly generates diverse graph views for each

user and item (e.g., node dropout and feature masking). Then the

different views of the same user (item) are treated as the positive

pairs, while the different views of the different instances are treated

as the negative pairs. Finally, contrastive learning loss is used to

optimize the model parameters with paired users and items, where

InfoNCE [24] is the most commonly adopted loss. Formally, the

contrastive learning loss for the user side can be defined as follows:

L𝑈
𝐶𝐿 (x𝑢 , y𝑢 ) =

∑︁
𝑢∈U

− log

exp(𝑠𝑖𝑚(x𝑢 , y𝑢 )/𝜏)∑
𝑣∈U exp(𝑠𝑖𝑚(x𝑢 , y𝑣)/𝜏)

,
(2)

where x𝑢 and y𝑢 denote the two different augmented views of user

𝑢, 𝑠𝑖𝑚(·, ·) and 𝜏 represents the cosine similarity function and tem-

perature hyper-parameter, respectively. Similarly, the contrastive

learning loss of the item side is formulated as follows:

L𝐼
𝐶𝐿 (x𝑖 , y𝑖 ) =

∑︁
𝑖∈I

− log

exp(𝑠𝑖𝑚(x𝑖 , y𝑖 )/𝜏)∑
𝑗∈I exp(𝑠𝑖𝑚(x𝑖 , y𝑗 )/𝜏)

.
(3)

where x𝑖 and y𝑖 denote the two different views of item 𝑖 .

2.3 Adversarial Robustness
Adversarial training (AT) stands out as one of the most promising

approaches for bolstering adversarial robustness [9, 21, 22]. The

goal of AT is to increase model robustness by generating adversarial

examples through well-designed perturbations, which purposefully

induce the neural network to error. Formally, the optimal perturba-

tion for data sample (𝑥,𝑦) is found by maximizing the loss function

L(·) : 𝛿∗ = argmaxL(𝑥 + 𝛿,𝑦;𝜽 ) where 𝛿 represents an adver-

sarial perturbation of ℓ𝑝 norm smaller than 𝜖 . Then, the model is

trained on a mixture of both original clean examples and generated

adversarial examples to enhance the robustness ability.

Discussion. Adversarial robustness uncovers the root cause

of the model’s adversarial vulnerability, that is, the non-smooth

feature space near data samples [16]. In other words, small input

perturbations likely result in large changes in the potential seman-

tics, subsequently affecting the model output, which is the basis

challenge that adversarial defense algorithms strive to resolve. Ac-

tually, this particularly fits well with graph contrastive learning,

which aims to maximize the consistency of the given instance un-

der different augmentation views. More importantly, adversarial

robustness provides the maximum boundary of feature perturba-

tions that the model can tolerate (cf. Sec 3.2), which effectively

restrains the exploration space for contrastive augmentation and

guides the generation of optimal view-generator.

3 Our Approach: RGCL
3.1 Overall Framework
The overall framework of RGCL is presented in Figure 2. In specific,

we calculate the maximum feature perturbations to guide the sub-

sequent generation of both contrastive examples and adversarial

examples. For contrastive examples, we firstly generate two random-

augmented views Z′
and Z′′

using random perturbations. Besides,

the third view Z𝑎𝑐
, which we refer to as adversarial-contrastive

view, is generated through maximizing relation-aware contrastive

function. On the foundation of these contrastive samples, we em-

ploy multi-view contrastive learning to prompt high-quality repre-

sentations. Furthermore, to safeguard the model robustness against

potential compromises arising from the uniformity optimization

of graph contrastive learning, we generate adversarial examples

using maximum perturbation to strenuously enlarge the distances

between data points and the decision boundary. Finally, the model

is updated by employing a joint optimization objective with aug-

mented contrastive and adversarial data.

3.2 Decision Boundary-aware Perturbation
To build our contrastive samples, we first derive perturbations that

the original samples can maximally tolerate to maintain user pref-

erences. Ideally, the perturbations should satisfy two conditions:

(1) the perturbations should be as large as possible, such that the

obtained contrastive samples are hard enough (hardness require-
ment). (2) The augmented samples after incorporating the pertur-

bations should be still aligned with the user’s original preferences

(rationality requirement).
Different from traditional adversarial learning problems based on

classification settings, recommender system is basically a ranking

problem, and the perturbations should be learned to maintain user

preference rankings. To this end, we propose to learn the maximum

perturbations that can maintain item pair-wise rankings. Further-

more, given that different orders of graph representations possess

different levels of expressive capacity, that is, higher-layer represen-

tations aggregate richer structure information and reflect more com-

plex connectivity patterns. Consequently, we tailor the maximum

perturbation for each high-order graph representation indepen-

dently. In specific, for each user 𝑢 and a positive-negative item pair

(𝑖+, 𝑖−), suppose their original representations are z𝑢 =
∑𝐿
𝑙=0

h(𝑙 )
𝑢 ,
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Figure 2: Overall framework of our proposed dynamic decision boundary-aware graph contrastive learning framework RGCL.

z⊤
𝑖+ =

∑𝐿
𝑙=0

h(𝑙 )
𝑖+ , and z⊤

𝑖− =
∑𝐿
𝑙=0

h(𝑙 )
𝑖− , respectively. We define the

pair-wise ranking function as 𝑔(𝑢, 𝑖+, 𝑖−) =
〈
z̃(𝑘 )𝑢 , z𝑖+

〉
−

〈
z̃(𝑘 )𝑢 , z𝑖−

〉
,

where z̃(𝑘 )𝑢 =
∑𝐿
𝑙=0,𝑙≠𝑘

h(𝑙 )
𝑢 + (h(𝑘 )

𝑢 +𝚫) is the user embedding after

incorporating perturbation 𝚫 ∈ R𝑑 to 𝑘-th layer graph represen-

tation h(𝑘 )
𝑢 , and < ·, · > means inner product. Then, the learning

objective of perturbation 𝚫 is designed as follows:

∆(𝑘 )
𝑢 = argmax

𝚫

| |𝚫| |𝑝 s.t. 𝑔(𝑢, 𝑖+, 𝑖−) > 0, (4)

where ∥ · ∥𝑝 means the vector’s p-norm. Here, pair-wise ranking

function 𝑔(·) is linearized around the 𝑘-th representation h(𝑘 )
𝑢 , thus

the maximum perturbation 𝚫
(𝑘 )
𝑢 is exactly corresponding to the

orthogonal projection of h(𝑘 )
𝑢 onto the model decision hyperplane.

For the sake of simplicity and better interpretation, we denote

that 𝑓 (h(𝑘 )
𝑢 ) = 𝜕𝑔(𝑢, 𝑖+, 𝑖−)/𝜕h(𝑘 )

𝑢 . The maximum perturbation

∆(𝑘 )
𝑢 is equivalent to solving for the directional vector from h(𝑘 )

𝑢

to the decision boundary, which is formally given as follows:

∆(𝑘 )
𝑢 = − 𝑔(𝑢, 𝑖

+, 𝑖−)
∥ 𝑓 (h(𝑘 )

𝑢 )∥𝑞𝑞
· sign(𝑓 (h(𝑘 )

𝑢 )) ⊙ ∥ 𝑓 (h(𝑘 )
𝑢 )∥𝑞−1, (5)

where sign(·) is the sign function, and ⊙ denotes element-wise

product. The value of 𝑞 depends on the choice of perturbation norm

ℓ𝑝 (1 ≤ 𝑝 ≤ ∞), and satisfies that
1

𝑝 + 1

𝑞 = 1 by following Holder’s

Inequality’s constraint [22]. In our work, 𝑝 is set as∞ and 𝑞 is set

as 1, as we empirically found that perturbation constraints under

the ℓ∞ norm have better model performance.

Following that, since users often interact with multiple items in

real-world recommendation scenarios, we extend the above method

to all interactions of user 𝑢 for deriving the final optimal perturba-

tion constraint, which can be rewritten as follows:

∆(𝑘 )
𝑢 = − 𝑔(𝑢, 𝑖

+, 𝑖−)
∥ 𝑓 (h(𝑘 )

𝑢 )∥1
· sign(𝑓 (h(𝑘 )

𝑢 )),

where 𝑖+, 𝑖− = argmin

𝑖+∈I+
𝑢 ,𝑖−∈I−

𝑢

����� 𝑔(𝑢, 𝑖+, 𝑖−)∥ 𝑓 (h(𝑘 )
𝑢 )∥1

����� . (6)

Note that we only focus on perturbing the high-order graph

representations for users and items, while skipping the beginning

features, i.e., 1 ≤ 𝑘 ≤ 𝐿. This is because the original features

contain the most abundant semantic information, and polluting

these features could lead to a severe performance decrease. On

the other hand, by perturbing higher-order representations, we

subtly and implicitly disrupt the potential semantic and structural

characteristics. Intuitively, it can efficaciously simulates the noise

encountered in real-world scenarios, thereby further enhancing the

model robustness. Similarly, we can obtain the graph perturbations

of item nodes from a dual perspective.

3.3 Relation-aware Contrastive Learning with
Perturbation Constraints

As highlighted in Sec. 1, existing GCL-based recommenders strug-

gle to achieve a harmonious balance between contrastive hardness

and rationality, both of which are pivotal to acquire high-quality

user (item) representations. To this end, in this subsection, wemetic-

ulously design the relation-aware adversarial-contrastive objective,

which utilizes the global relationships among user-user and item-

item to create more challenging positive and hard negative pairs

under perturbation constraints. Finally, we optimize the represen-

tations through multi-view contrastive learning.

3.3.1 Perturbation-constrained Contrastive Augmentation.
Following previous works [38, 39], we adopt the random perturba-

tions {r(𝑙 )𝑢 : 𝑙 = 1, 2, · · · , 𝐿} for user 𝑢 to generate the first random

contrastive view z′𝑢 as follows:

z′𝑢 =
1

𝐿 + 1

(
h(0)
𝑢 +

𝐿∑︁
𝑙=1

(
h(𝑙 )
𝑢 + r(𝑙 )𝑢

))
,

where r(𝑙 )𝑢 = 𝜖 · r ⊙ sign(h(𝑙 )
𝑢 )

∥r ⊙ sign(h(𝑙 )
𝑢 )∥2

.

(7)

Here, r ∈ R𝑑 following a uniform distribution 𝑈 (0, 1), and 𝜖 is

a hyper-parameter to control the initial perturbation magnitude.

Similarly, we could obtain the augmentation views z′
𝑖
for item 𝑖 .

Following that, we can get the second augmented representations

z′′𝑢 and z′′
𝑖
in the same way but utilizing the perturbations r with

different random initialization for more diverse contrastive effects.

However, different users and items have unique intrinsic robust-
ness, which means that even imperceptible perturbations may result

in large semantic changes for fragile instances. In turn, they unin-

tentionally lead to the erroneous feature-label examples, which is

heavily overlooked by existing GCL methods. Therefore, we pro-

pose to employ the instance-wise perturbation constrains to guide

the generation of contrastive samples, aiming to avoid lossing task-

relevant semantic information and build rational view-generator.

Specifically, for the 𝑙-layer augmentation perturbations r(𝑙 )𝑢 , we

constrain its exploration space by using the following projection
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operation Π(·) to obtain the constrained perturbation r̃(𝑙 )𝑢 :

r̃(𝑙 )𝑢 = Π(r(𝑙 )𝑢 ) = min(𝑎𝑏𝑠 (𝚫(𝑙 )
𝑢 ),max(−𝑎𝑏𝑠 (𝚫(𝑙 )

𝑢 ), r(𝑙 )𝑢 ), (8)

wheremax(·, ·) andmin(·, ·) are both wise-element operations, and

𝑎𝑏𝑠 (·) computes the absolute value of each element for the given

vector. Here, we conservatively constrain the magnitude of random

perturbation r̃(𝑙 )𝑢 within a bounded 𝛿
(𝑙 )
𝑢 -ball, where we define 𝛿

(𝑙 )
𝑢

as | |∆(𝑙 )
𝑢 | |∞. The main motivation behind Eq. (8) is that ∆(𝑙 )

𝑢 is

the maximum perturbation with the most attacking direction, and

our conservative strategy ensures that other perturbation direction

bounded within the ball could also safely maintain semantic in-

variance. Consequently, we replace r(𝑙 )𝑢 in Eq. (7) with constrained

perturbation r̃(𝑙 )𝑢 for achieving contrastive rationality.

3.3.2 Relation-aware Adversarial-Contrastive Augmenta-
tion. To break the assumption of instance independence in tradi-

tional GCL-based algorithms and simultaneously further enhance

the hardness of contrastive examples, RGCL generates the relation-

aware adversarial-contrastive perturbations to fool the model by

confusing the identities among different users and items. To be

specific, we propose to maximize the following contrastive loss for

generating instance-specific perturbations 𝜼:

max

𝜼

∑︁
𝑢∈U

− log

exp(𝑠𝑖𝑚(¥z𝑢 , z′′𝑢 )/𝜏)
exp(𝑠𝑖𝑚(¥z𝑢 , z′′𝑢 )/𝜏) +

∑
𝑣∈U/𝑢 exp(𝑠𝑖𝑚(¥z𝑢 , z′′𝑣 )/𝜏)

,

where ¥z𝑢 =
1

𝐿 + 1

(
h(0)
𝑢 +

𝐿∑︁
𝑙=1

(
h(𝑙 )
𝑢 + r̃(𝑙 )𝑢 + 𝜼 (𝑙 )

𝑢

))
, (9)

and 𝜼 = {| |𝜼 (𝑙 )
𝑢 | |∞ ≤ 𝛿

(𝑙 )
𝑢 : 𝑢 ∈ U, 𝑙 ∈ {1, 2, . . . , 𝐿}} denotes the

perturbation set of user 𝑢. However, as the general GNN-based rec-

ommenders involve nonlinear transformations, it is extremely chal-

lenging to find a closed-form solution for the above optimization

problem. Drawing inspiration from the fast gradient sign method

(FGSM) proposed in Goodfellow et al. [9], which assumes that the

objective function is approximately linear around the current model

parameters. Building on this approximation, we can obtain an opti-

mal max-norm constrained perturbation as follows:

𝜼 (𝑙 )
𝑢 = 𝛿

(𝑙 )
𝑢 · sign(𝜕L𝑈

𝐶𝐿 (¥z𝑢 , z
′′
𝑢 )/𝜕𝜼

(𝑙 )
𝑢 ). (10)

Similarly, we can compute the relation-aware perturbations for

items. Due to space limitation, the detailed derivation steps are

omitted here. After that, we generate the relation-aware adversarial-

contrastive views for users and items as follows:

z𝑎𝑐𝑢 =
1

𝐿 + 1

(
h(0)
𝑢 +

𝐿∑︁
𝑙=1

(
h(𝑙 )
𝑢 + r̃(𝑙 )𝑢 ⊙ sign(𝜼 (𝑙 )

𝑢 )
))

,

z𝑎𝑐𝑖 =
1

𝐿 + 1

(
h(0)
𝑖

+
𝐿∑︁
𝑙=1

(
h(𝑙 )
𝑖

+ r̃(𝑙 )
𝑖

⊙ sign(𝜼 (𝑙 )
𝑖

)
))

,

(11)

where r̃(𝑙 )𝑢 and r̃(𝑙 )
𝑖

are defined in Eq. (8) and note that they are

initialized with different random values.

Compared to the random-augmented view, adversarial-contrastive

augmentation has two main advantages: (1) The optimization objec-

tive integrates global users (items) to confuse their identities, thus

the view generation process is essentially guided by the user-user

and item-item relationships, resulting in relation-aware and more

challenging contrastive representations. (2) Considering different

intrinsic vulnerability among instances, our proposed adversarial-

contrastive perturbations are instance-specific and dynamically

adopted along with the model training process, thereby further

improving the model robustness and adaptability.

3.3.3 Multi-View Contrastive Learning. In summary, based on

the above discussion, we have obtained views triplets (z′𝑢 , z′′𝑢 , z𝑎𝑐𝑢 )
and (z′

𝑖
, z′′
𝑖
, z𝑎𝑐
𝑖
) for user𝑢 and item 𝑖 , respectively. Then, we employ

multi-view contrastive learning objective for different views of the

same instances, i.e., {z′𝑢 ↔ z′′𝑢 , z𝑎𝑐𝑢 ↔ z′𝑢 , and z𝑎𝑐𝑢 ↔ z′′𝑢 } for user
𝑢, while z′

𝑖
↔ z′′

𝑖
, z𝑎𝑐
𝑖

↔ z′
𝑖
, and z𝑎𝑐

𝑖
↔ z′′

𝑖
for item 𝑖 . The complete

contrastive loss function is formulated as follows:

L𝐶𝐿 =L𝑈
𝐶𝐿 (z

′
𝑢 , z

′′
𝑢 ) + L𝑈

𝐶𝐿 (z
𝑎𝑐
𝑢 , z

′
𝑢 ) + L𝑈

𝐶𝐿 (z
𝑎𝑐
𝑢 , z

′′
𝑢 )

L𝐼
𝐶𝐿 (z

′
𝑖 , z

′′
𝑖 ) + +L𝐼

𝐶𝐿 (z
𝑎𝑐
𝑖 , z

′
𝑖 ) + L𝐼

𝐶𝐿 (z
𝑎𝑐
𝑖 , z

′′
𝑖 ) .

(12)

whereL𝑈
𝐶𝐿

(·) andL𝐼
𝐶𝐿

(·) are defined in Eq. (2) and (3), respectively.
Through the multi-view contrastive learning approach, the model

is able to acquire more difficult knowledge from hard yet rational

contrastive pairs, mitigating recommendation biases and preventing

the overfitting resulting from sparse supervised data.

3.4 Towards Margin Maximization via
Adversarial Optimization

However, excessive pursuit of representation uniformity in GCL

may lead to reduced distances between data points and the decision

boundary, potentially compromising the model robustness. We at-

tribute such dilemma is caused by the inherent deficiency that the

GCL’s essence is unsupervised learning paradigm, which pushes

all different instances apart while ignoring task-specific semantic

relations [28]. To tackle the above issue, we propose to use adver-

sarial examples for achieving margin maximization. Specifically,

we generate adversarial examples using the maximum adverasrial

perturbation defined in Eq. (6), which can be formulated as follows:

z𝑎𝑑𝑣𝑢 =
1

𝐿 + 1

(
h(0)
𝑢 +

𝐿∑︁
𝑙=1

(
h(𝑙 )
𝑢 + ∆(𝑙 )

𝑢

))
,

z𝑎𝑑𝑣𝑖 =
1

𝐿 + 1

(
h(0)
𝑖

+
𝐿∑︁
𝑙=1

(
h(𝑙 )
𝑖

+ ∆(𝑙 )
𝑖

))
.

(13)

We then utilize the generated adversarial examples to optimize

the BPR objective (i.e., Eq. (1)), which is given as follows:

L𝐴𝐷𝑉 = −
∑︁
𝑢∈U

∑︁
𝑖+∈I+

𝑢

∑︁
𝑖−∈I−

𝑢

ln𝜎 (𝑟𝑎𝑑𝑣𝑢,𝑖 − 𝑟𝑎𝑑𝑣𝑢,𝑗 ),

where 𝑟𝑎𝑑𝑣𝑢,𝑖 =

〈
z𝑎𝑑𝑣𝑢 , z𝑎𝑑𝑣𝑖

〉
, 𝑟𝑎𝑑𝑣𝑢,𝑗 =

〈
z𝑎𝑑𝑣𝑢 , z𝑎𝑑𝑣𝑗

〉
.

(14)

By explicitly creating adversarial examples around the model’s

decision boundary, the model optimized with both original and

adversarial data can more effectively boost the confidence of input

data, thereby enhancing the model’s overall robustness.

3.5 Model Training
3.5.1 Joint Optimization Objective. In the training stage, we

propose to optimize the model parameters with the joint learning

objective, which is formulated as follows:

L = L𝐵𝑃𝑅 + 𝜇L𝐴𝐷𝑉 + 𝛼L𝐶𝐿, (15)
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where 𝜇 and 𝛼 are the hyper-parameters for different loss terms.

3.5.2 Complexity Analysis. Since RGCL doesn’t introduce any

other trainable parameters, the space complexity and the inference

time complexity of model remains the same as GNN backbone. Be-

sides, the total training time complexity of RGCL is𝑂 ((𝐿 |E |+𝐵2)𝑑),
where𝐵 and E denote the batch size and edge set, respectively. Thus,

our method retains the same order of computation complexity as

other state-of-the-art GCL-based methods, such as SimGCL [39]

and RocSE [36]. Due to the limited space, please refer to Appendix A

for more detailed analysis.

4 Theoretical Analysis
4.1 Hardness-aware Contrastive Learning
The core motivation of this paper is to construct semantic pre-
serving and hardness enhancing view-generator for contrastive

learning. For the former, we capitalize on the decision boundary-

aware constraint to help build rationality-aware views. For the

latter, we carefully construct more challenging contrastive paired

data because their hardness significantly affects the optimization

process of model parameters.

To further explain, we give a proof that contrastive loss is es-

sentially hardness-aware learning mechanism. Specifically, tak-

ing the side of users as an example, given a set of users U =

{𝑢1, 𝑢2, . . . , 𝑢𝑀 }, we denote the similarity of user 𝑢𝑖 under different

augmented views (e.g., random-augmented view or adversarial-

contrastive view) as 𝑠𝑖,𝑖 , and the similarity between user 𝑢𝑖 and 𝑢 𝑗
as 𝑠𝑖, 𝑗 . The probability of 𝑢𝑖 being identified as 𝑢 𝑗 is formulated as:

𝑃𝑖, 𝑗 =
exp(𝑠𝑖, 𝑗/𝜏)

exp(𝑠𝑖,𝑖/𝜏) +
∑
𝑘≠𝑖 exp(𝑠𝑖,𝑘/𝜏))

.

Thus, the objective of contrastive learning is rewritten as follows:

𝜑 (𝑢𝑖 ) = − log

exp(𝑠𝑖,𝑖/𝜏)
exp(𝑠𝑖,𝑖/𝜏) +

∑
𝑘≠𝑖 exp(𝑠𝑖,𝑘/𝜏)

.

Then, the expression of updating model parameters 𝜽 is

𝜕𝜑 (𝑢𝑖 )
𝜕𝜽

=
𝜕𝜑 (𝑢𝑖 )
𝜕𝑠𝑖,𝑖

𝜕𝑠𝑖,𝑖

𝜕𝜽
+

∑︁
𝑗≠𝑖

𝜕𝜑 (𝑢𝑖 )
𝜕𝑠𝑖, 𝑗

𝜕𝑠𝑖, 𝑗

𝜕𝜽
,

where we give the derivation results for
𝜕𝜑 (𝑢𝑖 )
𝜕𝑠𝑖,𝑖

and
𝜕𝜑 (𝑢𝑖 )
𝜕𝑠𝑖,𝑗

:

𝜕𝜑 (𝑥𝑖 )
𝜕𝑠𝑖,𝑖

=
1

𝜏
(𝑃𝑖,𝑖 − 1) ∝ exp(𝑠𝑖,𝑖/𝜏),

𝜕𝜑 (𝑢𝑖 )
𝜕𝑠𝑖, 𝑗

=
1

𝜏
𝑃𝑖, 𝑗 ∝ exp(𝑠𝑖, 𝑗/𝜏),

(16)

where we can observe that the gradients of the contrastive loss

w.r.t. both positive and negative pairs are proportional to the corre-

sponding exponential form of their similarity scores. This means

that smaller positive pair similarity 𝑠𝑖,𝑖 and larger negative pair

similarity 𝑠𝑖, 𝑗 will have a greater impact on the model parameter

optimization. Therefore, our proposed RGCL can learn the high-

quality representations by constructing the challenging positive

pairs and hard negative pairs, which fits to guide model optimiza-

tion through hardness-aware contrastive learning.

4.2 Theoretical Analysis of Model Robustness
Although contrastive learning can improve the representation uni-

formity and reduce the recommendation bias, it may potentially

push data points closer to model decision boundary and eventually

decrease model robustness due to the nature of task-unrelated un-

supervised learning. To make it up, our RGCL explicitly maximizes

the margin by constructing adversarial examples based on decision

boundary-aware perturbation. Then, in this subsection, we give the

explanation on the rationality of our method.

For the sake of notation simplicity, we assume that input exam-

ple is denoted as 𝑥 . The goal of recommendation algorithm is to

make the preference probabilities for user 𝑢’s positive items are

higher than that for negative items, which is denoted as 𝑔(𝑥 ;𝜽 ) > 0.

Inspired by work [7], the margin between data point and decision

boundary is denoted as 𝑑 (𝑥 ;𝜽 ), which can be defined as follows:

𝑑 (𝑥 ;𝜽 ) = ∥∆∗∥ = max ∥∆∥ 𝑠 .𝑡 . ∆ : 𝑔(𝑥 + ∆;𝜽 ) > 0. (17)

We denote the BPR loss function as𝜓 (·), then we have the theorem:

Theorem 1. Gradient descent on𝜓 (𝑔(𝑥 + ∆∗
;𝜽 )) w.r.t. 𝜽 with a

proper step size increases𝑑 (𝑥 ;𝜽 ), where∆∗ = argmax𝑔 (𝑥+∆;𝜽 )>0 ∥∆∥
is the maximum perturbation given the current 𝜽 .

Proof. Let 𝜌 (∆) = ∥∆∥ and assume 𝜌 (∆) and 𝜓 (𝑔(𝑥 ;𝜽 )) are
functions with twice continuous derivatives in a neighborhood of

(∆∗, 𝜽 ), 𝑐 is a constant, and the matrix

©«
𝜕2𝜌 (∆∗ )
𝜕∆2

+ 𝑐 · 𝜕2𝜓 (𝑔 (𝑥+∆∗
;𝜽 ) )

𝜕∆2

𝜓 (𝑔 (𝑥+∆∗
;𝜽 ) )

𝜕∆(
𝜕𝜓 (𝑔 (𝑥+∆∗

;𝜽 ) )
𝜕∆

)𝑇
0

ª®¬
is full rank, then we have

∇𝑑 (𝑥 ;𝜽 ) = 𝐶 (𝑥, 𝜽 ) 𝜕𝜓 (𝑔(𝑥 + ∆∗
;𝜽 ))

𝜕𝜃
,

where

𝐶 (𝑥, 𝜽 ) =

〈
𝜕𝜌 (∆∗ )
𝜕∆ ,

𝜕𝜓 (𝑔 (𝑥+∆∗
;𝜽 ) )

𝜕∆

〉
 𝜕𝜓 (𝑔 (𝑥+∆∗

;𝜽 ) )
𝜕∆

2
2

is a scalar. □

The above proof demonstrates that under proper perturbations,

our method can maximize the margin by minimizing the adversarial

loss. Therefore, our proposed method can maximize the margin be-

tween data points and the model decision boundary by generating

adversarial examples with the maximum perturbations defined in

Seq. 3.2, thereby effectively improving the robustness of model. Be-

sides, we give an additional robust analysis of our method from the

perspective of connections between the sharpness of loss landscape

and PAC-Bayes theory. It further theoretically elaborates on the

model’s tolerance to parameter perturbations. The detailed analysis

is presented in the Appendix B.

5 EXPERIMENTS
In this section, we conduct extensive experiments to validate the

effectiveness of RGCL, and our goal is to answer the following

research questions: RQ1: How does RGCL perform compared with

state-of-the-art recommendation models? RQ2: How do different

 

2859



Towards Robust Recommendation via Decision Boundary-aware Graph Contrastive Learning KDD ’24, August 25–29, 2024, Barcelona, Spain

Table 1: Overall performance comparison among baseline and our models. We use bold fonts to label the best performance and
use underlines to label the second. The NDCG and Recall metrics are abbreviated as ‘N’ and ‘R’, respectively.

Dataset Metric BPRMF NeuMF GCMC NGCF GCCF LightGCN GraphCL SGL LightGCL RocSE CGI SimGCL RGCL Improv. p-value

ML-1M

R@10 0.1702 0.1553 0.1676 0.1763 0.1753 0.1774 0.1837 0.1828 0.1796 0.1786 0.1797 0.1866 0.1934 +3.91% 2.67e-4

N@10 0.2485 0.2291 0.2480 0.2544 0.2624 0.2581 0.2617 0.2625 0.2591 0.2577 0.2613 0.2657 0.2694 +1.58% 7.52e-4

R@20 0.2582 0.2400 0.2526 0.2673 0.2611 0.2680 0.2749 0.2745 0.2722 0.2699 0.2703 0.2798 0.2901 +3.69% 7.50e-4

N@20 0.2576 0.2393 0.2551 0.2647 0.2677 0.2670 0.2721 0.2725 0.2693 0.2676 0.2699 0.2758 0.2821 +2.29% 2.26e-3

R@50 0.4174 0.3952 0.4073 0.4297 0.4171 0.4310 0.4379 0.4381 0.4343 0.4333 0.4308 0.4468 0.4581 +2.53% 4.42e-4

N@50 0.3038 0.2848 0.2985 0.3121 0.3109 0.3137 0.3196 0.3202 0.3162 0.3149 0.3158 0.3242 0.3321 +2.42% 4.08e-4

Alibaba

R@10 0.0682 0.0450 0.0503 0.0700 0.0707 0.0734 0.0741 0.0769 0.0747 0.0767 0.0740 0.0791 0.0824 +4.20% 1.69e-3

N@10 0.0435 0.0284 0.0308 0.0446 0.0446 0.0461 0.0473 0.0486 0.0469 0.0485 0.0466 0.0502 0.0528 +5.00% 1.57e-4

R@20 0.1070 0.0718 0.0805 0.1101 0.1104 0.1138 0.1151 0.1187 0.1158 0.1166 0.1146 0.1218 0.1267 +4.00% 4.02e-4

N@20 0.0553 0.0365 0.0399 0.0568 0.0567 0.0584 0.0598 0.0613 0.0594 0.0607 0.0589 0.0632 0.0663 +4.85% 1.54e-6

R@50 0.1875 0.1282 0.1454 0.1920 0.1931 0.1975 0.1944 0.2020 0.2010 0.1937 0.1967 0.2059 0.2129 +3.40% 4.63e-4

N@50 0.0746 0.0501 0.0554 0.0764 0.0765 0.0784 0.0787 0.0812 0.0798 0.0792 0.0786 0.0834 0.0869 +4.29% 1.12e-4

Kuaishou

R@10 0.0565 0.0588 0.0645 0.0663 0.0787 0.0730 0.0738 0.0748 0.0775 0.0714 0.0726 0.0788 0.0899 +14.14% 5.05e-6

N@10 0.0326 0.0351 0.0375 0.0370 0.0441 0.0413 0.0436 0.0450 0.0461 0.0409 0.0417 0.0451 0.0498 +8.00% 6.99e-4

R@20 0.0992 0.1095 0.1193 0.1266 0.1327 0.1269 0.1225 0.1282 0.1430 0.1242 0.1316 0.1325 0.1529 +6.88% 4.03e-4

N@20 0.0457 0.0504 0.0541 0.0551 0.0603 0.0573 0.0584 0.0609 0.0660 0.0571 0.0596 0.0613 0.0687 +4.09% 3.89e-3

R@50 0.2027 0.2172 0.2203 0.2562 0.2477 0.2388 0.2366 0.2522 0.2788 0.2489 0.2565 0.2503 0.2865 +2.79% 8.94e-3

N@50 0.0702 0.0760 0.0782 0.0857 0.0879 0.0840 0.0854 0.0902 0.0980 0.0866 0.0891 0.0897 0.1005 +2.54% 9.41e-3

Gowalla

R@10 0.1330 0.1205 0.1185 0.1296 0.1319 0.1419 0.1540 0.1470 0.1448 0.1461 0.1447 0.1564 0.1606 +2.66% 7.69e-4

N@10 0.1162 0.1038 0.1013 0.1136 0.1150 0.1257 0.1363 0.1305 0.1277 0.1271 0.1280 0.1379 0.1419 +2.89% 1.84e-3

R@20 0.1894 0.1783 0.1749 0.1878 0.1924 0.2041 0.2178 0.2123 0.2085 0.2117 0.2059 0.2245 0.2272 +1.18% 1.83e-2

N@20 0.1355 0.1238 0.1205 0.1333 0.1356 0.1470 0.1579 0.1527 0.1493 0.1495 0.1487 0.1610 0.1646 +2.22% 4.59e-3

R@50 0.3003 0.2888 0.2832 0.3009 0.3057 0.3194 0.3335 0.3273 0.3240 0.3297 0.3205 0.3460 0.3468 +0.23% 1.31e-1

N@50 0.1682 0.1563 0.1524 0.1667 0.1691 0.1810 0.1922 0.1867 0.1835 0.1845 0.1826 0.1969 0.2000 +1.55% 1.58e-3

Yelp

R@10 0.0509 0.0407 0.0520 0.0506 0.0512 0.0612 0.0663 0.0681 0.0626 0.0656 0.0579 0.0740 0.0753 +1.75% 1.16e-2

N@10 0.0392 0.0309 0.0400 0.0390 0.0399 0.0479 0.0518 0.0532 0.0487 0.0512 0.0449 0.0582 0.0591 +1.58% 6.58e-3

R@20 0.0844 0.0691 0.0867 0.0842 0.0851 0.1001 0.1067 0.1098 0.1021 0.1052 0.0940 0.1182 0.1191 +0.78% 1.52e-3

N@20 0.0509 0.0408 0.0520 0.0507 0.0517 0.0614 0.0658 0.0677 0.0624 0.0650 0.0574 0.0736 0.0744 +1.09% 2.83e-3

R@50 0.1571 0.1339 0.1623 0.1570 0.1582 0.1814 0.1909 0.1950 0.1852 0.1871 0.1704 0.2075 0.2108 +1.58% 2.36e-3

N@50 0.0720 0.0596 0.0740 0.0718 0.0730 0.0850 0.0903 0.0925 0.0865 0.0888 0.0796 0.0995 0.1010 +1.46% 2.03e-3

Figure 3: Model convergence analysis w.r.t training epochs.

designs of RGCL contribute to the final recommendation perfor-

mance? RQ3: How does RGCL perform against different data spar-

sity and item popularity? RQ4: How do different hyper-parameters

affect the recommendation performance of RGCL?

5.1 Experimental Setup
Datasets. We conduct extensive experiments on the following

datasets: MovieLens (ML)-1M [10], Alibaba [5], Kuaishou [8], Yelp,

and Gowalla [6]. For detailed introductions and preprocessing de-

tails of these datasets, please refer to Appendix C.

Baseline Models.We compare RGCL with different methods, in-

cluding traditional recommenders (BPR [25] andNeuMF [13]), GNN-

based recommenders (GCMC[1], NGCF [29], GCCF [4], and Light-

GCN [12]) and GCL-based recommenders (GraphCL [37], SGL [32],

LightGCL [3], CGI [30], RocSE [36], and SimGCL [39]).

EvaluationMetrics. To ensure the evaluation reliability, following

standard practice [30, 32, 35], we adopt the full-ranking strategy

to mitigate the evaluation bias. For evaluation metrics, we adopt

NDCG@𝐾 and Recall@𝐾 , where 𝐾 ∈ {10, 20, 50}. More implemen-

tation details are provided in https://tangjiakai.github.io/RGCL/.

5.2 Overall Performance (RQ1)
The results of different methods on all datasets are shown in Table 1.

Based on the results, we have the following observations:

• Compared to traditional baselines, such as BPRMF and NeuMF,

all GNN-based models perform better on most datasets, which

agrees with the previous work and confirms the effectiveness of

GNNs [12, 29]. Among all the GNN-based methods, LightGCN

usually achieves the excellent performance due to its simple

yet effective linear convolution structure. Furthermore, most

GCL-based recommenders outperform the GNN-based methods,

indicating the desirable property of GCL for alleviating the bias

introduced by high-degree nodes. However, these GCL-based

models fail to explicitly delineate the definitions of task-relevant

semantic rationality and contrastive hardness, thus they achieve

inferior balance between contrastive rationality and hardness

when constructing augmentation views.

• By comparing our approach with all state-of-the-art baselines,

it is clear to see that RGCL yields a consistent boost across all

datasets. Besides, the most 𝑝-values that are much less than 0.01

also demonstrate the effectiveness of RGCL. We attribute the

marked enhancement in performance to the excellent balance be-

tween preserving semantic information and bolstering hardness

of contrastive examples, which further prompts the ability upper

bound of GCL-based recommenders. Besides, we increase the

distance between sample points and decision boundary through

enhanced adversarial examples, avoiding compromises in robust-

ness caused by contrastive learning.

Training Efficiency. Moreover, to verify the convergence perfor-

mance of RGCL, we track the Recall@20 and NDCG@20 curves
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Table 2: Ablation Study on ML-1M and Yelp datasets.

Model

ML-1M Yelp

R@20 N@20 R@50 N@50 R@20 N@20 R@50 N@50

w/o cons 0.2882 0.2798 0.4566 0.3302 0.1185 0.0733 0.2086 0.0995

w/o rand 0.2838 0.2793 0.4470 0.3265 0.1183 0.0736 0.2080 0.0996

w/o ac 0.2872 0.2813 0.4570 0.3315 0.1182 0.0737 0.2085 0.1000

w/o adv 0.2832 0.2801 0.4470 0.3276 0.1180 0.0737 0.2083 0.1000

RGCL 0.2901 0.2821 0.4581 0.3321 0.1191 0.0744 0.2108 0.1010

of different models w.r.t. the training epochs in Figure 3. From the

results, we can observe that RGCL converges significantly faster

than SimGCL and LightGCN. Although LightGCL also achieves

great convergence speed, its accuracy performance is worse than

RGCL, as seen in Table 1. One possible reason is that its static

SVD contrastive view fails to keep pace with the evolving model

capability during training, eventually limiting the improvement of

representation quality. Different from these baselines, RGCL adopts

the decision boundary-aware perturbation to guide on the example

generation, which adaptively adjusts the augmentation strength to

reduce the inconsistency between the representation quality and

the contrastive hardness. As a result, RGCL shows both significantly

greater efficiency and efficacy.

5.3 Ablation Study (RQ2)
To further validate the importance and contribution of each compo-

nent in RGCL, we devise multiple simplified variants. In specific, we

compare the following four variants: (1) in w/o cons, we drop the

decision boundary-aware perturbation constraints on contrastive

views. (2) In w/o rand, we do not introduce random initialized per-

turbation (i.e., set r as all-one vector). (3) In w/o ac, we drop the

relation-aware view generator but only retain two random aug-

mented views; (4) In w/o adv, we drop the adversarial regularization

term L𝐴𝐷𝑉 in the final loss. The experiment is conducted based

on the datasets of ML-1M and Yelp, while the observation and

conclusion on the other datasets are similar and omitted.

We present the results in Table 2, where we can see: For w/o cons

variant, unconstrained perturbations result in a significant perfor-

mance decrease, suggesting that a uniform perturbation cannot

effectively preserve that semantic information due to different in-

trinsic robustness among instances. The w/o rand variant performs

much worse than RGCL, which demonstrates that introducing

some variances for augmented views is necessary. Furthermore, our

method gains improvement over w/o ac variant, which reveals the

importance of challenging positive pairs and hard negative pairs

However, only optimizing contrastive learning is still sub-optimal,

which is evidenced by the lowered performance of w/o adv variant

as compared with RGCL. We speculate that over-optimizing con-

trastive learning for representation uniformity may potentially lead

to a reduction in the distance between data points and the model’s

decision boundary, eventually deteriorating the robustness. In sum-

mary, the above observations demonstrate that all the designs are

crucial to the final performance improvement.

5.4 Robustness Evaluation (RQ3)
To validate the model robustness, We split all users (items) into

five groups based on the interaction number while keeping the

total number of each group the same. The experimental results are

presented in Figure 4, where we can observe that in user (item)

Figure 4: Recommendation performances at different level
of data sparsity and item popularity. The black dashed line
represents no performance improvement or decline.
groups with sparse interactions, RGCL demonstrates more signifi-

cant performance improvements. This implies that RGCL effectively

capture interest preference of inactive users and characteristic of

long-tailed items. Note that the performance trends on the item side

for ML-1M and Yelp datasets are different. We speculate that one

possible reason is that the proportion of long-tailed items in ML-1M

is much higher than Yelp, which results in major contribution to

the overall performance by low-degree item groups in ML-1M.

5.5 Further Analysis of RGCL (RQ4)
In this subsection, we further conduct more detailed experiments

on the RGCL method to confirm its effectiveness. Due to space

limitation, we only show the results on ML-1M and Yelp datasets

while the similar conclusions can be derived from other datasets.

5.5.1 Analysis of the model tolerance to hyper-parameter
𝜖 . To validate the robustness of our method to perturbation hyper-

parameter 𝜖 , we conduct extensive experiments of performance

comparison with SimGCL baseline with different values of 𝜖 . Specif-

ically, we set the search range as {0.005,0.01,0.05,0.1,0.2,0.5,1.0}. As

shown in Figure 6, we observe that SimGCL shows obvious per-

formance fluctuations as 𝜖 changes. We speculate that the twofold

reasons are the following: (1) different instances have different lev-

els of intrinsic robustness. However, uniform and unconstrained

perturbations may potentially destroy the semantic structure for

fragile instances, ultimately leading to erroneous contrastive views.

(2) For instances with better intrinsic robustness, the hardness of

contrastive examples is insufficient, hindering the full exploita-

tion of contrastive learning. In contrast, our RGCL adopts decision

boundary-aware perturbation constraints to guide the generation

of both random and adversarial contrastive examples, leading to sta-

ble and superior performance. This demonstrates the insensitivity

of RGCL to perturbation hyper-parameter 𝜖 .

5.5.2 Impact of the coefficient 𝛼 . We change 𝛼 to a set of prede-

termined representative values presented in Figure 5(a). We can see

that the recommendation performance of RGCL gradually improves

as 𝛼 increases, which suggests that contrastive learning can facili-

tate the uniformity of node representation and learn high-quality

features. Correlating with the results in Figure 7 and 8, it also sug-

gests that the personalized characteristic of low-degree users and

items can be better captured by our algorithm.
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Figure 5: Hyper-parameter analysis w.r.t. 𝛼 , 𝐿, 𝜏 .

Figure 6: The model tolerance to hyper-parameter 𝜖. The
bars represent the accuracy metrics, while the lines show the
relative improvement of RGCL compared to SimGCL.

5.5.3 Impact of the layer number 𝐿. To investigate the impact

of the GNN layer number on model performance, we vary the

hyper-parameter 𝐿 in the range {1, 2, 3}. From the Figure 5(b), We

can observe that the performance trend of RGCL differs across

different datasets. For example, for the ML-1M, the over-smoothing

occurs even with small 𝐿, while for the Yelp, the model shows the

significant performance improvement as layer number 𝐿 increases.

5.5.4 Impact of the temperature 𝜏 . The temperature 𝜏 plays an

important role in contrastive learning [28]. Figure 5(c) shows the

impact of model performance w.r.t. different 𝜏 . We can see that the

performance fluctuates severely as we use different 𝜏 . Specifically,

too large values of 𝜏 lead to poor performance, which is consistent

with the previous work [32]. Conversely, too small temperature

values also fail to achieve optimal model performance. One possible

reason is that too small 𝜏 enforces the model to concentrate few

hardest examples that dominate the optimization process, which is

detrimental to achieve the satisfactory generalization ability. There-

fore, a suitable temperature is essential to maximize the benefits

from graph contrastive learning.

More Analysis. To comprehensively evaluate the superiority

of RGCL, we conduct more extensive experiments to answer the

following RQs: RQ5: What is the effect of RGCL on improving the

representation uniformity of users and items? RQ6: How does the

RGCL framework perform when applied to other GNN backbones?

(cf. Appendix D.2) RQ7: How does RGCL maintain the semantic

information of contrastive examples? (cf. Appendix D.3)

6 Related Work
Graph Neural Network in Recommendation. In recent years, the

application of GNN models in recommender systems has achieved

remarkable success [1, 4, 12, 29]. For example, NGCF [29] mod-

els the higher-order connectivity in user-item graph by explicitly

injecting collaborative signals into the embedding process. Com-

pared with NGCF, LightGCN [12] simplifies the design of GCN by

removing redundant feature transformation and nonlinear activa-

tion function. However, GNN-based recommenders suffer from the

sparsity of user-item interactions. Although external data sources

(e.g., multi-behavior and knowledge graphs) help mitigate the above

issue, obtaining such data is often challenging and even unavailable

due to expensive cost or privacy protection. In contrast, graph con-

trastive learning, as an popular self-supervised learning paradigm,

effectively overcomes the challenge of data sparsity.

GCL-based Recommendation Models. Graph contrastive learning
(GCL) bridges the advantages of GNNs with contrastive learning,

effectively alleviating recommendation bias and simultaneously

modeling high-order connectivity. Generally, GCL methods can

be classified into hardness-driven and rationality-driven methods.

Specifically, for hardness-driven methods, the key task is to con-

struct diverse and challenging views. For example, GraphCL [37]

and SGL [32] devise heuristic strategy to generate different con-

trastive views, such edge dropout and feature masking. However,

these methods are prone to losing important semantic since the

augmentation operations are indeed unrelated to the downstream

task yet simply based on human-designed experiences. In contrast,

rationality-driven GCL methods alleviate the above issue by intro-

ducing slight feature perturbations to maintain semantic consis-

tency, such as SimGCL [39] and RocSE [36]. However, these meth-

ods still suffer from potential issues, such as insufficient contrastive

hardness and tedious trial-and-error of hyper-parameter,resulting

in suboptimal performance and poor flexibility.

7 Conclusion
In this paper, we propose a novel graph contrastive learning frame-

work, named RGCL, aiming to strike a better trade-off between

rationality and hardness for the contrastive view-generator. Specif-

ically, we propose a decision boundary-aware perturbation con-

straints and relation-aware adversarial-contrastive augmentation to

generate contrastive examples. Besides, RGCL generates adversarial

examples based on the adversarial perturbations to achieve mar-

gin maximization between data points and the decision boundary,

further improving the model robustness.
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Table 3: Statistics of the datasets.

Dataset #Users #Items #Interactions Sparsity
ML-1M 6,038 3,489 820,336 96.1059%

Alibaba 12,265 6,145 193,120 99.7437%

Kuaishou 2,457 1,042 35,795 98.6019%

Gowalla 13,149 14,009 535,650 99.7092%

Yelp 42,324 28,748 1,611,965 99.8675%

A Analysis of Training Time Complexity
The extra training time complexity of RGCL comes from the loss

terms of contrastive and adversarial components. Suppose the num-

ber of nodes and edges are |V| and |E |, respectively. Let 𝐵 denote

the batch size,𝑑 denote the embedding dimension, L denote the total

layer number. We analyze the time complexity of each component

as follows:

• Original loss. The time complexity of the original LightGCN

model comes from adjacent matrix construction, graph convolu-

tion computation and BPR calculation. Their time complexities

are𝑂 ( |E |),𝑂 (𝐿 |E |𝑑) and𝑂 (𝐵𝑑) respectively. Therefore, the total
time complexity is 𝑂 ((𝐿 |E | + 𝐵)𝑑).

• Contrastive loss. To begin with, solving for the perturbation

constraints in contrastive learning needs one pass of forward and

backward propagation, where the time complexity is 𝑂 (𝐿 |E |𝑑).
Then, constructing two random-augmented views requires two

pass of forward propagation. As for adversarial-contrastive view,

it also needs extra one pass of forward and backward propagation,

where the time complexity of the contrastive loss paradigm is

𝑂 (𝐵2𝑑). Therefore, the total time complexity of the contrastive

learning component is 𝑂 ((𝐿 |E | + 𝐵2)𝑑).
• Adversarial loss. The adversarial perturbations for generating
adversarial examples has already been accounted in the con-

trastive loss part. Thus, in this part, we simply consider the

time complexity of forward propagation and BPR loss, which

are 𝑂 (𝐿 |E |𝑑) and 𝑂 (𝐵𝑑), respectively. Therefore, the total time

complexity of the adversarial loss is 𝑂 ((𝐿 |E | + 𝐵)𝑑).
In summary, the total time complexity of the proposed RGCL is

𝑂 ((𝐿 |E |+𝐵2)𝑑), whichmaintains the same order of time complexity

as other graph contrastive learning algorithms [36, 39]. However,

the experimental results in Figure 3 demonstrates that our algorithm

has better converge and accuracy performance.

B Further Robustness Analysis
Inspired by previous work [23, 34], we provide the robustness anal-

ysis from the perspective of connections between sharpness of

loss landscape and PAC-Bayes theory. Generally, smoother feature

space can avoid large feature variations caused by input perturba-

tions [31]. Meanwhile, from the perspective of model optimization,

flatter loss landscape can bring better model robustness. Specifically,

assuming that the prior distribution Q over the model parameters,

with probability at least 1 − 𝜉 over the draw of the training data,

the expected error of L𝐵𝑃𝑅 can be bounded as follows:

E∆

[
L̃𝐵𝑃𝑅

]
≤ E∆ [L𝐵𝑃𝑅] + 4

√︄
KL(𝜽 + 𝝃 ∥Q) + ln

2𝑚
𝜉

𝑚
, (18)

where L̃𝐵𝑃𝑅 represents the expected error,𝑚 is the size of training

data, ∆ denotes the perturbation of model parameter. Then, we

rewrite the above bound as follows:

E∆

[
L̃𝐵𝑃𝑅

]
≤ E [L𝐵𝑃𝑅] + E∆ [L𝐵𝑃𝑅] − E [L𝐵𝑃𝑅]︸                         ︷︷                         ︸

Expected sharpness

+4

√︄
KL(𝜽 + 𝚫∥Q) + ln

2𝑚
𝜉

𝑚
,

(19)

where expected sharpness E∆ [L𝐵𝑃𝑅] − E [L𝐵𝑃𝑅] demonstrates

that our method aims to reduce the sensitivity to model parameter

variations and increase the smoothness of the feature space. There-

fore, the proposed perturbation-based augmentation examples can

achieve more robust and well-generalized model performance.

C Recommendation Datasets
We conduct extensive experiments on the following five publicly

available recommendation datasets in this paper: MovieLens (ML)-

1M, Alibaba, Kuaishou, Gowalla, and Yelp. To transform the explicit

user ratings into implicit interaction, the interactions with ratings

above three are viewed as the positive example for rating-based

datasets (i.e., ML-1M and Yelp). For Yelp and Gowalla datasets, we

filter users and items that have less than fifteen interaction number

to ensure the data quality. For all datasets, we randomly divide the

data into training set, validation set and testing set using a ratio

of 8:1:1. For negative samples used in BPR objective, we uniformly

sample one negative item for each positive interaction. The overall

experiments are repeated five times with different initialized seeds

for significance test of model performance. The statistics of the five

recommendation datasets are shown in Table 3.

D More Experimental Analysis
D.1 Visualization of Representation (RQ5)
To better understand how RGCL promotes the uniformity of repre-

sentations for preserving personalized node information, we visu-

alize the learned item embeddings and user embeddings in Figure 7

and Figure 8, respectively. Specifically, we firstly map the learned

node representations to 2-dimensional normalized vectors using

t-SNE [27]. Then, we use Kernel Density Estimation (KDE) [2] to

visualize the distribution of transformed feature representations.

Moreover, for a clearer demonstration, we also visualize the density

estimations of their angles, where angles are calculated using the

function: 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑦, 𝑥) for each instance (𝑥,𝑦). We can observe

our RGCL shows a better uniform distribution on both users and

items. This shows that RGCL can effectively learn high-quality

representations by avoiding the bias caused by the dominance of

advantaged users and items. Besides, correlating with the results

in Table 1, RGCL achieves a win-win breakthrough in representa-

tion uniformization and performance improvement compared other

baselines, suggesting the superiority of our designs.

D.2 Generalization Evaluation (RQ6)
To verify the generalization of our proposed model-agnostic frame-

work, we employ RGCL framework on three other commonly used

GNN-based backbones, i.e., GCMC [1], NGCF [29] and GCCF [4].

We summarize the experimental results in Table 4. From the table,

we can see that RGCL generalizes well across different GNN-based
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Table 4: Generalization evaluation on different GNN-based backbones.

Model

ML-1M Yelp

R@10 N@10 R@20 N@20 R@50 N@50 R@10 N@10 R@20 N@20 R@50 N@50

GCMC 0.1676 0.2480 0.2526 0.2551 0.4073 0.2985 0.0520 0.0400 0.0867 0.0520 0.1623 0.0740

GCMC + RGCL 0.1807 0.2608 0.2714 0.2707 0.4351 0.3176 0.0596 0.0463 0.0980 0.0596 0.1802 0.0835
Improv. +7.86% +5.15% +7.42% +6.11% +6.82% +6.42% +14.60% +15.65% +13.02% +14.44% +11.03% +12.82%

NGCF 0.1763 0.2544 0.2673 0.2647 0.4297 0.3121 0.0506 0.0390 0.0842 0.0507 0.1570 0.0718

NGCF + RGCL 0.1813 0.2565 0.2744 0.2683 0.4378 0.3165 0.0530 0.0405 0.0878 0.0526 0.1662 0.0752
Improv. +2.83% +0.81% +2.67% +1.36% +1.89% +1.41% +4.87% +3.86% +4.23% +3.71% +5.82% +4.72%

GCCF 0.1753 0.2624 0.2611 0.2677 0.4171 0.3109 0.0512 0.0399 0.0851 0.0517 0.1582 0.0730

GCCF + RGCL 0.1838 0.2679 0.2722 0.2747 0.4315 0.3195 0.0575 0.0451 0.0937 0.0576 0.1701 0.0798
Improv. +4.84% +2.09% +4.25% +2.61% +3.47% +2.76% +12.34% +12.98% +10.15% +11.49% +7.54% +9.32%

LightGCN 0.1774 0.2581 0.2680 0.2670 0.4310 0.3137 0.0612 0.0479 0.1001 0.0614 0.1814 0.0850

LightGCN + RGCL 0.1934 0.2694 0.2901 0.2821 0.4581 0.3321 0.0753 0.0591 0.1191 0.0744 0.2108 0.1010
Improv. +9.02% +4.39% +8.26% +5.65% +6.29% +5.86% +22.89% +23.39% +19.05% +21.19% +16.20% +18.84%

ML-1M

Yelp

Figure 8: Visualization of user representation and degree.
Darker colors indicate more points falling within the region.

Age: 56 

Retired

ID: 315

ID Title Genre Score 
(Origin.)

Score  
(Pert)

Score 
(Origin.)

Score  
(Pert)

882 The Fly Horror 
Sci-Fi 2.3078 2.3340 4.4559 4.4867

1534 Predator 2
Action 
Sci-Fi 
Thrill

1.5178 1.5754 6.9851 7.0299

757 2010: The Year We 
Make Contact

Mystery 
Sci-Fi 2.2103 2.2487 3.1964 3.2163

494 Star Trek VI
Action 

Adventure 
Sci-Fi

4.2437 4.3038 3.5136 3.5356

642 This Is Spinal Tap
Comedy 
Drama 
Musical

-6.1093 -6.1159 3.1963 3.2195

RGCL SimGCL

>

Figure 9: Case study on ML-1M. The “Score (Origin.)” and
“Score (Pert)” indicate predicted scores based on the original
and contrastive user and item embeddings, respectively. Best
viewed in color.

ML-1M

Yelp

Figure 7: Visualization of item representation. Darker colors
indicate more points falling within the region.

backbones, further demonstrating the effectiveness and flexibility

of our method. Additionally, the improvement based on the NGCF

backbone is not significant, which we attribute to the redundant

weight parameters and unnecessary nonlinear feature transforma-

tions of NGCF model, thus posing challenges to the model learning.

D.3 Case Study (RQ7)
In this section, we present a case study to intuitively show the

effectiveness of our model to preserve the important semantic in-

formation. From the Figure 9, we can observe that user #315 prefers

horror, action, and science fiction movies while showing less inter-

est in comedy movies. Comparing the SimGCL and RGCL methods,

although both original ranking results attain the correct ordering

preferences for positive items and negative items, the introduction

of noise perturbation for SimGCL baseline leads to a reversal in

the predicted scores for movies #757 (liked movie) and movie #642

(disliked movie). It indicates that SimGCL baseline cannot reason-

ably control perturbations to preserve task-relevant information,

resulting in irrational contrastive samples. In contrast, our proposed

RGCL generates rational contrastive pairs and thus effectively im-

proves model robustness and recommendation performance.

 

2865


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 GNN-based Recommendation
	2.2 GCL-based Recommenders
	2.3 Adversarial Robustness

	3 Our Approach: RGCL
	3.1 Overall Framework
	3.2 Decision Boundary-aware Perturbation
	3.3 Relation-aware Contrastive Learning with Perturbation Constraints
	3.4 Towards Margin Maximization via Adversarial Optimization
	3.5 Model Training

	4 Theoretical Analysis
	4.1 Hardness-aware Contrastive Learning
	4.2 Theoretical Analysis of Model Robustness

	5 EXPERIMENTS
	5.1 Experimental Setup
	5.2 Overall Performance (RQ1)
	5.3 Ablation Study (RQ2)
	5.4 Robustness Evaluation (RQ3)
	5.5 Further Analysis of RGCL (RQ4)

	6 Related Work
	7 Conclusion
	References
	A Analysis of Training Time Complexity
	B Further Robustness Analysis
	C Recommendation Datasets
	D More Experimental Analysis
	D.1 Visualization of Representation (RQ5)
	D.2 Generalization Evaluation (RQ6)
	D.3 Case Study (RQ7)




