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ABSTRACT
Recently, the emergence of large language models (LLMs) has revo-

lutionized the paradigm of information retrieval (IR) applications,

especially in web search, by generating vast amounts of human-

like texts on the Internet. As a result, IR systems in the LLM era

are facing a new challenge: the indexed documents are now not

only written by human beings but also automatically generated by

the LLMs. How these LLM-generated documents influence the IR

systems is a pressing and still unexplored question. In this work,

we conduct a quantitative evaluation of IR models in scenarios

where both human-written and LLM-generated texts are involved.

Surprisingly, our findings indicate that neural retrieval models tend

to rank LLM-generated documents higher. We refer to this cat-

egory of biases in neural retrievers towards the LLM-generated

content as the source bias. Moreover, we discover that this bias is

not confined to the first-stage neural retrievers, but extends to the

second-stage neural re-rankers. Then, in-depth analyses from the

perspective of text compression indicate that LLM-generated texts

exhibit more focused semantics with less noise, making it easier for

neural retrieval models to semantic match. To mitigate the source

bias, we also propose a plug-and-play debiased constraint for the op-

timization objective, and experimental results show its effectiveness.

Finally, we discuss the potential severe concerns stemming from the

observed source bias and hope our findings can serve as a critical

wake-up call to the IR community and beyond. To facilitate future

explorations of IR in the LLM era, the constructed two new bench-

marks are available at https://github.com/KID-22/Source-Bias.
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1 INTRODUCTION
With the advent of large language models (LLMs), exemplified by

ChatGPT, the field of artificial intelligence generated content (AIGC)

has surged to new heights of prosperity [12, 65]. LLMs have demon-

strated their remarkable capabilities in automatically generating

human-like text at scale, resulting in the Internet being inundated

with an unprecedented volume of AIGC content [47, 64]. This influx

of LLM-generated content has fundamentally reshaped the digital

ecosystem, challenging conventional paradigms of content creation,

dissemination, and information access on the Internet [2, 75].

Meanwhile, information retrieval (IR) systems have become in-

dispensable for navigating and accessing the Internet’s vast infor-

mation landscape [36, 45]. As illustrated in Figure 1, in the era

preceding the widespread emergence of LLMs, IR systems focused

on retrieving documents solely from the human-written corpus in

response to users’ queries [33, 34, 68]. However, the proliferation of

AIGC driven by LLMs has expanded the corpus of IR systems to in-

clude both human-written and LLM-generated texts. Consequently,

this paradigm shift raises a fundamental research question: What
is the impact of the proliferation of generated content on IR
systems?We aim to explore whether existing retrieval models tend

to prioritize LLM-generated text over human-written text, even

when both convey similar semantic information. If this holds, LLMs

may dominate information access, particularly as their generated

content is rapidly growing on the Internet [25].
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Figure 1: The overview evolution of IR paradigm from the
Pre-LLM era to the LLM era.

To approach the fundamental research question, we decompose

it into four specific research questions. The first question is RQ1:
How to construct an environment to evaluate IR models in
the LLM era?Given the lack of public retrieval benchmarks encom-

passing both human-written and LLM-generated texts, we propose

an innovative and practical method to create such a realistic evalu-

ation environment without the need of costly human annotation.

Specifically, we leverage the original human-written texts as the

instruction conditions to prompt LLMs to generate rewritten text

copies while preserving the same semantic meaning. In this way, we

can confidently assign the same relevancy labels to LLM-generated

data according to the original labels. Extensive empirical analysis

validates the quality of our constructed environment, demonstrat-

ing its effectiveness in mirroring real-world IR scenarios in the LLM

era. As a result, we introduce two new benchmarks, SciFact+AIGC

and NQ320K+AIGC, tailored for IR research in the LLM era.

With the constructed environment, we further exploreRQ2: Are
retrieval models biased towards LLM-generated content? We

conduct comprehensive experiments with various representative

retrieval models, ranging from traditional lexical models to modern

neural models based on pretrained language models (PLMs) [22, 23,

72, 73]. Surprisingly, we uncover that neural retrievers are biased

towards LLM-generated texts, i.e., tend to rank LLM-generated

texts in higher positions. We refer to this as source bias, as the
neural retrievers favor content from specific sources (i.e., LLM-

generated content). Further experiments indicate that the source

bias not only extends to the second-stage neural re-rankers from the

first-stage retrieval but also manifests more severely. These findings

corroborate the prevalence of source bias in neural retrieval models.

Then, what we are curious about is RQ3: Why are neural re-
trieval models biased towards LLM-generated texts? Inspired
by the recent studies positing LLMs as lossless compressors [17],

we analyze the cause of source bias from the viewpoint of text

compression. Our analysis of singular values [31] in different cor-

pora reveals that LLM-generated texts exhibit more focused seman-

tics with minimal noise, enhancing their suitability for semantic

matching. Furthermore, our in-depth perplexity analysis shows that

LLM-generated texts consistently achieve lower perplexity scores,

which indicates a higher degree of comprehensibility and confi-

dence from the PLM’s perspective. These observations collectively

suggest that LLM-generated texts are more readily understandable

to PLM-based neural retrievers, thereby resulting in source bias.

Finally, we try to answer RQ4: How tomitigate source bias in
neural retrieval models? To tackle this, we propose an intuitive

yet effective debiased constraint. This constraint is designed to

penalize biased samples during the optimization process, thereby

shifting the focus of retrieval models from exploiting inherent short-

cuts to emphasizing semantic relevance. Besides, our debiased con-

straint is model-agnostic and can be plugged and played to the

ranking optimization objectives of various neural retrieval models.

Furthermore, it offers the capability to control the degree of bias

removal, offering the flexibility to balance the treatment between

the two sources of content based on specific requirements and

environmental considerations.

Last but not least, we discuss the potential emerging concerns

stemming from source bias, highlighting the risk of human-written

content being gradually inaccessible, especially due to the rapidly

increasing LLM-generated content on the Internet [8, 25]. Further-

more, source bias could be maliciously exploited to manipulate

algorithms and potentially amplify the spread of misinformation,

posing a threat to online security. In light of these pressing issues,

we hope that our findings serve as a resounding wake-up call to all

stakeholders involved in IR systems and beyond.

In summary, the contributions of this paper are as follows:

(1) We introduce a more realistic paradigm of IR systems consid-

ering the growing prosperity of AIGC, where the retrieval corpus

consists of both human-written and LLM-generated texts. We then

uncover a new inherent bias in both neural retrieves and re-rankers

preferring LLM-generated content, termed as source bias.

(2) We provide an in-depth analysis and insights of source bias

from a text compression perspective, which indicates that LLM-

generated texts maintain more focused semantics with minimal

noise and are more readily comprehensible for neural retrievers.

(3) We propose a debiased constraint to penalize the biased sam-

ples during optimization, and experimental results demonstrate its

effectiveness in mitigating source bias in different degrees.

(4) We also provide two new benchmarks, SciFact+AIGC and

NQ320K+AIGC, which contain both high-quality human-written

and various LLM-generated corpus and corresponding relevancy

labels. We believe these two benchmarks can serve as valuable

resources for facilitating future research of IR in the LLM era.

2 RQ1: ENVIRONMENT CONSTRUCTION
With the increasing usage of LLMs in generating texts (e.g., para-

phrasing or rewriting), the corpus of IR systems includes both

human-written and LLM-generated texts nowadays. Constructing

an IR dataset in the LLM era typically involves two steps: collecting

both human-written and LLM-generated corpora and then employ-

ing human evaluators to annotate relevancy labels for each query-

document pair. Given that LLM-generated content is currently

unidentifiable [42] and the significant cost of human annotation,
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Figure 2: The overall paradigm of the proposed evaluation framework for IR in the LLM era.

we introduce a natural and practical framework for quantitatively

evaluating retrieval models in the LLM era, as shown in Figure 2.

To better align with real-world scenarios, the evaluation environ-

ments should meet the following three essential criteria. Firstly,
it is imperative to distinguish between human-written and LLM-

generated texts within the corpus. Secondly, we need access to

relevancy labels for LLM-generated data in response to queries.

Thirdly, each human-written text should better have a correspond-

ing LLM-generated counterpart with the same semantics, ensuring

the most effective and fair evaluation.

2.1 Notation
Formally, in the Pre-LLM era, given a query 𝑞 ∈ Q where Q is the

set of all queries, the traditional IR system aims to retrieve a list

of top-𝐾 relevant documents {𝑑 (1) , 𝑑 (2) , . . . , 𝑑 (𝐾 ) } from a corpus

C𝐻 = {𝑑𝐻
1
, 𝑑𝐻

2
, . . . 𝑑𝐻

𝑁
} which consists of 𝑁 human-written docu-

ments. However, in the era of LLMs, there is also LLM-generated

text in the corpus. To evaluate the IR models in the LLM era, we also

create an additional LLM-generated corpus C𝐺 = {𝑑𝐺
1
, 𝑑𝐺

2
, . . . , 𝑑𝐺

𝑁
}

where each document is generated by a LLM, e.g., 𝑑𝐺
1
can be created

by prompting ChatGPT to rewrite 𝑑𝐻
1

while preserving its original

semantics information. Consequently, given a query 𝑞, the objec-

tive of a retriever in the LLM era is to return the top-𝐾 relevant

documents from the mixed corpus C = C𝐻 ⋃C𝐺 .

2.2 Constructing IR Datasets in the LLM Era
In this section, we prompt LLMs to rewrite human-written corpus

to build two new standard retrieval datasets: SciFact+AIGC and

NQ320K+AIGC. These two new datasets can serve as valuable

resources to facilitate future research of IR in the LLM era.

2.2.1 Human-Written Corpus. We first choose two widely used

retrieval datasets written by humans in the Pre-LLM era as the

seed data: SciFact and NQ320K. SciFact
1
[57] dataset aims to re-

trieve evidence from the research literature containing scientific

paper abstracts for fact-checking. NQ320K
2
[32] is based on the

Natural Questions (NQ) dataset from Google, where the documents

are gathered from Wikipedia pages, and the queries are natural

language questions. Following the practice in BEIR benchmark [52],

1
https://allenai.org/data/scifact

2
https://ai.google.com/research/NaturalQuestions

we process these two datasets in a standard format: corpus C𝐻 ,
queries Q, and relevancy labels R𝐻 = {(𝑞𝑚, 𝑑𝐻𝑚 , 𝑟𝑚)}𝑀

𝑚=1
, where

𝑀 is the number of labeled query-document pairs in the dataset.

2.2.2 LLM-Generated Corpus. For the LLM-generated corpus, we

repurpose the original human-written corpus as our seed data and

instruct LLMs to rewrite each given text from the human-written

corpus. As the written text generated by LLM carries almost the

same semantic information as the original human-written text, we

can assign the same relevancy labels to new <query, LLM-generated

document> pairs as those assigned to the original labeled <query,

human-written document> pairs.

Our instruction is straightforward: “Please rewrite the following
text: {{human-written text}}”, as illustrated in the left part of Figure 2.

This straightforward instruction enables LLMs to generate text

without too many constraints while maintaining semantic equiva-

lence to the original human-written text. Specifically, we choose

Llama2 [54] and ChatGPT to rewrite each seed human-written cor-

pus, as Llama2 and ChatGPT are both the most widely-used and

nearly the state-of-the-art open-sourced and closed-source LLM,

respectively. We only generate texts with ChatGPT corresponding

to the texts in SciFact dataset, mainly due to the significant cost

involved in processing the larger NQ320K dataset.

For the LLM-generated corpus, we conduct post-processing to re-

move unrelated parts of the original response from LLM like “Sure,

here’s a possible rewrite of the text:”. As a result, we can obtain two

corresponding LLM-generated corpora with SciFact and NQ320K

as seed data. After that, we extend the original labels of query

and human-written text R𝐻 = {(𝑞𝑚, 𝑑𝐻𝑚 , 𝑟𝑚)}𝑀
𝑚=1

to get the cor-

responding label of LLM-generated text R𝐺 = {(𝑞𝑚, 𝑑𝐺𝑚, 𝑟𝑚)}𝑀
𝑚=1

.

We will validate the quality of the datasets in the following sec-

tion. Combining each original human-written corpus C𝐻 with its

corresponding LLM-generated corpus C𝐺 , original queries Q, and

labels R𝐻 ⋃R𝐺 , we can create two new datasets, denoted as Sci-

Fact+AIGC and NQ320K+AIGC. Table 1 summarizes the statistics

of the proposed two datasets.

2.3 Statistics and Quality Validation of Datasets
Take the Llama2-generated data as an example, we conduct the

statistics and quality validation of the constructed datasets. The

analysis of ChatGPT-generated datasets shows similar observations

and conclusions and is omitted due to the page limitation.
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Table 1: Statistics of the constructed two datasets. Avg. Doc / Query means the average number of relevant documents per query.

Dataset # Test Queries # Avg. Query Length

Human-Written Corpus Llama2-Generated Corpus ; ChatGPT-Generated Corpus

# Corpus Avg. Doc Length Avg. Doc / Query # Corpus Avg. Doc Length Avg. Doc / Query

SciFact+AIGC 300 12.38 5,183 201.81 1.1 5,183 ; 5,183 192.66 ; 203.57 1.1 ; 1.1

NQ320K+AIGC 7,830 9.24 109,739 199.79 1.0 109,739 ; – 174.49 ; – 1.0 ; –

Table 2: Performance comparison of retrieval models on the sole human-written or Llama2-generated corpus on SciFact+AIGC
and NQ320K+AIGC datasets. For brevity, we omit the percent sign ‘%’ of ranking metrics in subsequent tables and figures.

Model

Model Corpus

SciFact+AIGC NQ320K+AIGC

Type NDCG@1 NDCG@3 NDCG@5 MAP@1 MAP@3 MAP@5 NDCG@1 NDCG@3 NDCG@5 MAP@1 MAP@3 MAP@5

Lexical

TF-IDF

Human-Written 42.0 49.5 52.7 40.7 47.1 49.0 12.2 15.8 16.8 12.2 14.9 15.5

LLM-Generated 43.0 49.8 52.6 40.8 47.5 49.2 9.4 12.6 13.9 9.4 11.8 12.5

BM25

Human-Written 46.0 54.2 56.3 43.8 51.5 52.8 12.9 16.3 17.6 12.9 15.5 16.2

LLM-Generated 46.3 53.6 55.3 44.1 51.1 52.2 11.9 15.3 16.5 11.9 14.5 15.1

Neural

ANCE

Human-Written 38.7 44.3 46.5 36.3 41.9 43.3 50.6 60.0 62.2 50.6 57.7 58.9

LLM-Generated 41.0 46.0 48.2 37.8 43.5 45.0 49.3 58.8 61.2 49.3 56.5 57.8

BERM

Human-Written 37.0 42.1 44.2 34.7 39.7 41.3 49.2 58.3 60.4 49.2 56.1 57.3

LLM-Generated 40.7 44.5 46.2 37.7 42.3 43.5 48.4 57.5 59.8 48.4 55.3 56.5

TAS-B

Human-Written 52.7 58.1 60.2 49.9 55.6 57.2 53.4 63.0 65.4 53.4 60.7 62.0

LLM-Generated 50.7 57.0 58.9 48.0 54.6 55.9 51.9 62.3 64.7 51.9 59.8 61.1

Contriever

Human-Written 54.0 61.8 63.2 51.4 58.9 60.0 58.2 68.4 70.3 58.2 65.9 67.0

LLM-Generated 55.7 62.0 64.8 52.9 59.5 61.5 57.1 67.5 69.8 57.1 64.9 66.2
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Figure 3: Distribution of term Jaccard similarity and overlap
between Llama2-generated and human-written corpora.

2.3.1 Term-based Statistics and Analysis. We first analyze the term-

based similarity between the LLM-generated corpus and the human-

written corpus. Specifically, we compute the Jaccard similarity

(
|𝑑𝐺 ⋂

𝑑𝐻 |
|𝑑𝐺 ⋃

𝑑𝐻 | ) and the overlap (
|𝑑𝐺 ⋂

𝑑𝐻 |
|𝑑𝐻 | ) between each LLM-generated

document and orginal human-written document. As shown in Fig-

ure 3, both the Jaccard similarity and overlap distributions ex-

hibit normal distribution, with peaks at about 0.6 and 0.8 for Sci-

Fact+AIGC, and about 0.4 and 0.6 for NQ320K+AIGC, respectively.

These observations suggest that while there is a considerable over-

lap of terms between the LLM-generated text and the original

human-written text, there are also distinct differences, especially

noticeable in the NQ320K+AIGC dataset.

2.3.2 Semantic-based Statistics and Analysis. For the LLM-generated

texts, a pivotal consideration is whether they faithfully preserve

the underlying semantics of the corresponding human-written cor-

pus. If they indeed do so, we then can confidently assign them the

same relevancy labels as the labels of their corresponding original

human-written texts given each query.

To assess this, we first leverage the OpenAI embedding model
3

to acquire semantic embeddings for both the LLM-generated and

3
text-embedding-ada-002:https://platform.openai.com/docs/guides/embeddings
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Figure 4: Semantic embedding visualization of different cor-
pora on SciFact+AIGC and NQ320K+AIGC datasets.
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Figure 5: Distribution of cosine similarity of semantic embed-
ding between Llama2-generated and human-written corpora.

human-written texts. Subsequently, we visualize these embeddings

through T-SNE [55] in Figure 4. We observe a strikingly close over-

lap between the Llama2-generated corpus and the human-written

corpus in the latent space. This observation strongly suggests that

these LLM-generated corpora adeptly preserve the original seman-

tics. Moreover, we delve into the cosine similarity of semantic em-

beddings between the LLM-generated text and their corresponding

human-written counterparts. The results, as shown in Figure 5, also

indicate a high degree of similarity, with most values exceeding 0.95,

affirming the faithful preservation of semantics in LLM-generated

text. Hence, for each query-document pair (𝑞, 𝑑𝐺 ), we can confi-

dently assign the relevancy label 𝑟 to be the same as that of (𝑞, 𝑑𝐻 ).
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Table 3: Verification of semantics and text quality with hu-
man evaluation. The numbers in parentheses represent the
proportion agreed upon by all three human annotators for
each option.

SciFact+AIGC NQ320K+AIGC

Which document is more relevant to the given query?

Human LLM Equal Human LLM Equal

0.0%(0.0%) 0.0%(0.0%) 100.0%(82.0%) 2.0%(0.0%) 0.0%(0.0%) 98.0%(81.6%)
Which document exhibits higher quality by considering the following aspects:

linguistic fluency, logical coherence, and information density?

Human LLM Equal Human LLM Equal

8.0%(0.0%) 6.0%(0.0%) 86.0%(46.5%) 4.0%(0.0%) 6.0%(0.0%) 90.0%(60.%)

2.3.3 Retrieval Performance Evaluation. To further validate the

accuracy of the relevancy label assignments, we conduct an eval-

uation of retrieval models on the human-written corpus and the

LLM-generated corpus, respectively. The following representative

retrieval models are adopted in the experiments: (1) Lexical Re-

trieval Models:TF-IDF [46] andBM25 [41] and (2) Neural Retrieval
Models: ANCE [67], BERM [70], TAS-B [26], Contriever [28].

The results on each sole source corpus on the proposed two new

benchmarks are presented in Table 2. It is evident that all retrieval

models exhibit no significant performance discrepancies in terms

of various ranking metrics between the human-written and LLM-

generated corpora across all datasets. This observation reinforces

the confidence in the quality of our newly constructed datasets.

2.3.4 Human Evaluation. Note that in our constructed datasets,

LLMs were instructed to rewrite human-written texts based solely

on the original human-written text, without any query-related in-

put, thereby preventing the additional query-specific information
during rewriting. Moreover, to further verify this, we conduct a hu-

man evaluation. Specifically, we randomly select 50 <query, human-

written document, LLM-generated document> triples from each

dataset. The human annotators, comprising the authors and their

highly educated colleagues, are asked to determine which docu-

ment is more semantically relevant to the given query. The options

are “Human”, “LLM”, or “Equal”. During the evaluation, annota-

tors are unaware of the source of each document. Each triple is

labeled at least by three different annotators, with the majority

vote determining the final label. The results in Table 3, confirm that

both sources of texts have almost the same semantic relevance to

the given queries, which guarantees the fairness of our following

exploration of source bias.

Additionally, we also conduct further human evaluations specifi-

cally focused on text quality. The human annotators are asked to

determine “Which document exhibits higher quality by consider-

ing the following aspects: linguistic fluency, logical coherence, and

information density?” The notation process is the same as above,

and the results are summarized in Table 3. The results indicate no

significant distinction between LLM-generated and human-written

content on text quality, demonstrating consistency across both

sources. In fact, we also analyze the data cases and find that LLMs

typically alter only parts of the vocabulary, leading to minor stylis-

tic differences without impacting the core content, which can be

further verified with these human evaluations.

3 RQ2: UNCOVERING SOURCE BIAS
In this section, we conduct extensive experiments on the con-

structed datasets to explore the source bias from various aspects.

With the constructed simulated environment, we first introduce

the evaluation metrics to quantify the severity of source bias. We

then conduct experiments with different retrieval models on both

the first-stage retrieval and the second-stage re-ranking.

3.1 Evaluation Metrics for Source Bias
To quantitatively explore source bias, we calculate ranking metrics,

targeting separately either human-written or LLM-generated cor-

pus. Specifically, for each query, an IR model produces a ranking

list that comprises documents from mixed corpora. We then calcu-

late top-𝐾 Normalized Discounted Cumulative Gain (NDCG@𝐾)

and Mean Average Precision (MAP@𝐾 ), for 𝐾 ∈ {1, 3, 5}, indepen-
dently for each corpus source. When assessing one corpus (e.g.,

human-written), documents from the other (e.g., LLM-generated)

are treated as non-relevant, though the original mixed-source rank-

ing order is maintained. This approach allows us to independently

assess the performance of IR models on each corpus source.

To better normalize the difference among different benchmarks,

we also introduce the relative percentage difference as follows:

Relative Δ =
MetricHuman-written − Metric

LLM-generated

1

2
(MetricHuman-written + Metric

LLM-generated
)
×100%,

where the Metric can be NDCG@𝐾 and MAP@𝐾 . Note that Rela-

tive Δ > 0 means retrieval models rank human-written texts higher,

and Relative Δ < 0 indicates LLM-generated texts are ranked higher.

The greater the absolute value of Relative Δ, the greater the ranking
performance difference between two sourced content.

3.2 Bias in Neural Retrieval Models
In our assessment of various retrieval models on SciFact+AIGC

and NQ320K+AIGC datasets, we observe distinct phenomena when

evaluating against human-written and LLM-generated corpora, as

reported in Table 4. Our key findings are as follows:

Lexical models prefer human-written texts. Lexical models

like TF-IDF and BM25 show a tendency to favor human-written

texts over LLM-generated texts across most ranking metrics in

both datasets. A plausible explanation for this phenomenon lies in

the term-based distinctions between text generated by LLMs and

human-written content, as evident in Figure 3. Additionally, the

queries are crafted by humans and thus exhibit a style more closely

aligned with human-written text.

Neural retrievers are biased towards LLM-generated texts.
Neuralmodels, which rely on semanticmatchingwith PLMs, demon-

strate a pronounced preference for LLM-generated texts, often per-

forming over 30% better on these compared to human-written texts.

These findings suggest an inherent bias in neural retrievers towards

LLM-generated text, which we named the source bias. This source
bias may stem from PLMs-based neural retrievers and LLMs sharing

similar Transformer-based architectures [56] and pretraining ap-

proaches, leading to potential exploitation of semantic shortcuts in
LLM-generated text during semantic matching. Additionally, LLMs

seem to semantically compress information in a manner that makes
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Table 4: Performance comparison of retrieval models for mixed human-written and Llama2-generated corpora on SciFact+AIGC
and NQ320K+AIGC dataset. The numbers indicate that retrieval models rank human-written documents in higher positions
than LLM-generated documents (i.e., Relative Δ > 0%). Conversely, the numbers mean retrieval models rank LLM-generated
documents in higher positions than human-written documents (i.e., Relative Δ ≤ 0%). The intensity of the color reflects the
extent of the difference. In the subsequent tables, we will continue with this color scheme.

Model

Model Target Corpus

SciFact+AIGC NQ320K+AIGC

Type NDCG@1 NDCG@3 NDCG@5 MAP@1 MAP@3 MAP@5 NDCG@1 NDCG@3 NDCG@5 MAP@1 MAP@3 MAP@5

Lexical

TF-IDF

Human-Written 22.0 36.9 39.7 21.2 33.0 34.7 7.1 11.0 12.3 7.1 10.0 10.8

LLM-Generated 17.0 33.8 37.2 16.2 29.5 31.5 3.4 8.1 9.4 3.4 7.0 7.7

Relative Δ 25.6 8.8 6.5 26.7 11.2 9.7 70.5 30.4 26.7 70.5 35.3 33.5

BM25

Human-Written 26.7 40.3 44.4 25.7 36.7 39.1 7.2 11.6 12.9 7.2 10.6 11.3

LLM-Generated 21.0 38.8 41.5 19.6 34.3 35.9 6.1 10.9 11.9 6.1 9.7 10.3

Relative Δ 23.9 3.8 6.8 26.9 6.8 8.5 16.5 6.2 8.1 16.5 8.9 9.3

Neural

ANCE

Human-Written 15.3 30.1 32.7 14.2 26.2 27.7 22.2 41.2 44.6 22.2 36.9 38.8

LLM-Generated 24.7 35.8 37.7 23.3 32.4 33.6 29.1 45.9 49.0 29.1 42.0 43.8

Relative Δ -47.0 -17.3 -14.2 -48.5 -21.2 -19.2 -26.9 -10.8 -9.4 -26.9 -12.9 -12.1

BERM

Human-Written 16.3 30.2 31.8 15.7 26.5 27.5 18.6 37.5 40.7 18.6 33.1 34.9

LLM-Generated 23.7 34.1 36.4 21.7 30.8 32.2 31.6 47.0 50.0 31.6 43.5 45.1

Relative Δ -37.0 -12.1 -13.5 -32.1 -15.0 -15.7 -51.8 -22.5 -20.5 -51.8 -27.2 -25.5

TAS-B

Human-Written 20.0 40.2 43.1 19.5 35.2 36.9 25.7 45.4 48.8 25.7 40.9 42.8

LLM-Generated 31.7 44.8 47.5 29.7 41.1 42.7 27.6 46.5 50.0 27.6 42.2 44.2

Relative Δ -45.3 -10.8 -9.7 -41.5 -15.5 -14.6 -7.1 -2.4 -2.4 -7.1 -3.1 -3.2

Contriever

Human-Written 24.0 43.7 47.8 23.3 38.8 41.2 25.9 48.5 51.9 25.9 43.3 45.3

LLM-Generated 31.0 47.8 50.5 29.6 43.2 44.8 32.5 51.9 55.4 32.5 47.5 49.4

Relative Δ -25.5 -9.0 -5.5 -23.8 -10.7 -8.4 -22.6 -6.8 -6.5 -22.6 -9.3 -8.7

Table 5: Performance comparison of different neural re-
trieval models for mixed human-written and ChatGPT-
generated corpora on SciFact+AIGC dataset.

Model Target Corpus NDCG@1 NDCG@3 NDCG@5 MAP@1 MAP@3 MAP@5

TF-IDF

Human-Written 22.7 36.5 39.5 22.0 32.8 34.6

LLM-Generated 16.7 34.9 37.1 16.0 30.2 31.4

Relative Δ 30.5 4.5 6.3 31.6 8.3 9.7

BM25

Human-Written 24.3 38.5 42.7 23.7 34.8 37.3

LLM-Generated 24.3 40.2 42.7 23.1 35.8 37.3

Relative Δ 0.0 -4.3 0.0 2.6 -2.8 0.0

ANCE

Human-Written 18.0 30.8 33.8 16.5 27.2 29.0

LLM-Generated 24.7 35.6 37.4 24.0 32.7 33.7

Relative Δ -31.4 -14.5 -10.1 -37.0 -18.4 -15.0

BERM

Human-Written 16.3 29.9 32.3 14.8 26.0 27.4

LLM-Generated 22.7 32.5 35.3 21.9 29.7 31.4

Relative Δ -32.8 -8.3 -8.9 -38.7 -13.3 -13.6

TAS-B

Human-Written 23.0 41.5 44.4 22.2 36.9 38.6

LLM-Generated 28.7 45.5 46.7 27.2 40.9 41.6

Relative Δ -22.1 -9.2 -5.0 -20.2 -10.3 -7.5

Contriever

Human-Written 24.0 44.0 47.2 23.3 39.1 41.0

LLM-Generated 33.0 48.3 50.6 31.3 44.0 45.4

Relative Δ -31.6 -9.3 -7.0 -29.3 -11.8 -10.2

it more comprehensible to neural models. A deeper exploration

into the causes of source bias is presented in the following section.

To strengthen our conclusion that source bias is not limited to
any specific LLM, we extend our investigation to include ChatGPT,

another widely adopted and nearly state-of-the-art LLM. We em-

ploy ChatGPT to generate a corpus using the same prompts as those

utilized with Llama2 in the above experiments. Subsequently, in Ta-

ble 5, we report the evaluation results on the SciFact+AIGC dataset,

which contains both human-written and ChatGPT-generated texts.

Once again, the results clearly indicate a bias within neural retrieval

models, favoring the corpus generated by ChatGPT across all rank-

ing metrics. This observation provides additional substantiation of

the presence of source bias within these neural retrieval models.

Furthermore, we also explore the popular InstructGPT-prompts

GitHub Repository, which includes several common prompts for

Table 6: Bias evaluation of re-ranking models on Sci-
Fact+AIGC dataset. The re-ranking methods rerank the top-
100 retrieved hits from a first-stage BM25 model.

Metrics Target Corpus

Llama2-generated ChatGPT-generated

BM25 +MiniLM +monoT5 BM25 +MiniLM +monoT5

NDCG@1

Human-Written 26.7 21.3 19.7 24.3 18.3 21.3

LLM-Generated 21.0 32.7 39.7 24.3 35.7 39.3

Relative Δ 23.9 -42.2 -67.3 0.0 -64.4 -59.4

NDCG@3

Human-Written 40.3 42.8 45.9 38.5 41.4 46.4

LLM-Generated 38.8 47.8 52.9 40.2 50.1 54.2

Relative Δ 3.8 -11.0 -14.2 -4.3 -19.0 -15.5

NDCG@5

Human-Written 44.4 46.9 49.0 42.7 45.6 48.9

LLM-Generated 41.5 50.2 54.7 42.7 53.0 56.1

Relative Δ 6.8 -6.8 -11.0 0.0 -15.0 -13.7

MAP@1

Human-Written 25.7 20.8 18.9 23.7 17.9 20.5

LLM-Generated 19.6 30.8 37.8 23.1 33.8 37.8

Relative Δ 26.9 -38.8 -66.7 2.6 -61.5 -59.3

MAP@3

Human-Written 36.7 37.5 39.7 34.8 35.8 40.3

LLM-Generated 34.3 43.6 48.9 35.8 45.9 50.0

Relative Δ 6.8 -15.0 -20.8 -2.8 -24.7 -21.5

MAP@5

Human-Written 39.1 40.0 41.6 37.3 38.3 41.7

LLM-Generated 35.9 45.0 50.1 37.3 47.6 51.4

Relative Δ 8.5 -11.8 -18.5 0.0 -21.7 -20.8

rephrasing passages
4
. The experimental results in Appendix A

show varying degrees of source bias, indicating that common prompts

can easily trigger source bias with LLM-generated content. These

findings highlight the notable presence of source bias in neural

retrieval models towards LLM-generated content.

3.3 Bias in Re-Ranking Stage
In a typical IR system, there are two primary stages of document

filtering. The first stage involves a retriever, responsible for doc-

ument recall, while the second stage employs a re-ranker, which

fine-tunes the ordering of documents within the initially retrieved

set. While we have revealed the presence of the source bias in the

first stage, a natural pivotal research question remains: does this

4
https://github.com/kevinamiri/Instructgpt-prompts
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Figure 6: Comparision of the relative singular value (SV) of
the different corpus after SVD. The singular values are sorted
in descending order from left to right.

bias also manifest in the re-ranking stage? To delve into this, we

select two representative and state-or-the-art re-ranking models:

MiniLM [62] andmonoT5 [37] to rerank the top-100 document

list retrieved by a first-stage BM25 model.

The results on the SciFact+AIGC dataset with Llama-generated

corpus and ChatGPT-generated corpus are presented in Table 6.

From the results, while even the first-stage retrievers (BM25) may

exhibit a preference for human-written content, the second-stage

re-rankers once again demonstrate a bias in favor of LLM-generated

content. Remarkably, the bias in re-ranking models appears to be

more severe, as evidenced by the relative percentage difference of

−67.3% and −59.4% in NDCG@1 for monoT5, respectively. These

findings further confirm the pervasiveness of source bias in neural

ranking models that rely on PLMs, regardless of the first retrieval

stage or second re-ranking stage.

4 RQ3: THE CAUSE OF SOURCE BIAS
In this section, we delve deeper into why neural retrieval mod-

els exhibit source bias. Our objective is to determine whether the

LLM-generated texts, characterized by reduced noise and more con-

centrated semantic topics, are inherently easier for neural retrieval

models to semantically match. We conduct a series of analyses from

the perspective of text compression and provide valuable insights.

4.1 Viewpoint from Text Compression
We first explore the cause of source bias from a compression per-

spective, drawing inspiration from recent studies that suggest LLMs

are lossless compressors [17]. We hypothesize that LLMs efficiently

focus on essential information, minimizing noise during generation,

in contrast to human-written texts, which may include more di-

verse topics and incidental noise. To verify this, we employ Singular

Value Decomposition (SVD) [31] to compare topic concentration

and noise in human-written and LLM-generated texts. The dimen-

sion of the SVD corresponds to the maximum number of topics, and

the singular value associated with each topic represents its strength.

High singular values predominantly capture primary topic infor-

mation, whereas low singular values indicate noise.

Specifically, we utilize the OpenAI embedding model to obtain

embedding matrices for each corpus in the SciFact+AIGC dataset

and then conduct SVD. The resulting singular values are arranged

0.0 0.5 1.0 1.5 2.0 2.5 3.0
PPL

0.00
0.02
0.04
0.06
0.08

Pr
ob

ab
ili

ty

Human
Llama2
ChatGPT

Figure 7: Comparision of the PPL of the different corpus.

in descending order, and their comparison to the human-written

corpus is visualized in Figure 6. As we can see, LLM-generated

texts exhibit larger singular values at the top large singular values,

while smaller singular values at the tail small singular values. This

observation suggests that LLM-generated texts tend to have more

focused semantics with less noise, rendering them more suitable

for precise semantic matching. In contrast, human-written texts

often contain a wider range of latent topics and higher levels of

noise, making them harder for neural retrievers to understand. As

a result, this difference in semantic concentration may contribute

to the observed source bias in neural retrievers.

4.2 Further Analysis from Perplexity
Considering that most modern neural retrievers are grounded on

PLMs [23, 72, 73], such as BERT [19], Roberta [35], and T5 [40], we

analyze the perplexity of PLMs to further support the conclusion

above from the viewpoint of compression that LLM-generated texts

can be better understood by PLMs. Perplexity is an important metric

for evaluating how well a language model can understand a given

text [6, 59]. For a specific language model (LM) and a document 𝑑 =

(𝑑0, 𝑑1, · · · , 𝑑𝑆 ), the log perplexity is defined as the exponentiated

average negative log-likelihood of each token in the tokenized

sequence of 𝑑5:

PPL(𝑑) = − 1

𝑆

(
𝑆∑︁
𝑠=1

log 𝑃LM (𝑑𝑠 |context)
)
,

where 𝑆 is the token length of text 𝑑 and 𝑃LM (𝑑𝑠 ) is the predicted
likelihood of the 𝑠-th token conditioned on the context. Lower

perplexity suggests more confidence and understanding of LM for

text patterns, while higher perplexity implies greater uncertainty

in predictions, often arising from complex or unpredictable text

patterns.

Using the most widely-used LM, BERT [19], as an example, we

employ it to calculate the PPL for different corpus. As BERT is

not an autoregressive LM, we follow standard practices [58, 63]

to calculate the likelihood of each token conditioned on the other

tokens, i.e.,

𝑃LM (𝑑𝑠 |context) := 𝑃BERT (𝑑𝑠 |𝑑≤𝑆\{𝑠 } ).
The distribution of perplexity for different corpus in the SciFact+AIGC

dataset is shown in Figure 7. Notably, LLM-generated texts consis-

tently exhibit significantly lower perplexity, indicating enhanced

comprehensibility and higher confidence from BERT’s perspective.

Consequently, PLMs-based neural retrievers can more effectively

model the semantics of LLM-generated texts, leading to the ob-

served source bias in favor of LLM-generated texts.

5
For simplicity, we denote the log perplexity as PPL.

 

532



KDD ’24, August 25–29, 2024, Barcelona, Spain Sunhao Dai et al.

w/o debias   1e-4 5e-4 1e-3 5e-3 1e-2
α

0

10

20

30

N
D

C
G

@
1 

(%
)

w/o debias   1e-4 5e-4 1e-3 5e-3 1e-2
α

0

10

20

30

N
D

C
G

@
1 

(%
)

ANCE BERM

-47.0% -47.0%

14.9%

76.5%

113.0%
134.7%

-37.0% -36.4%

-4.8%

29.8%

91.9%
79.1%

Target on human Target on LLM Relative Δ

(a) Results on mixed human-written and Llama2-generated corpora

w/o debias   1e-4 5e-4 1e-3 5e-3 1e-2
α

0

10

20

30

N
D

C
G

@
1 

(%
)

w/o debias   1e-4 5e-4 1e-3 5e-3 1e-2
α

0

10

20

30

N
D

C
G

@
1 

(%
)

ANCE BERM

-31.4%
-11.4%

48.1%

73.8%

129.5% 134.7%

-32.8%

-10.9%

17.6%

47.6%

92.7% 87.1%

Target on human Target on LLM Relative Δ

(b) Results on mixed human-written and ChatGPT-generated corpora

Figure 8: Performance comparison (NDCG@1) of neural
models on SciFact+AIGC dataset with different debiased co-
efficient 𝛼 . The grey dashed line represents Relative Δ = 0.

In Appendix B, we also provide a theoretical analysis to illustrate

and verify the observation in Figure 7 that LLM-generated texts

have a smaller perplexity than human-written texts.

5 RQ4: MITIGATING SOURCE BIAS
In this section, we propose a simple but effective approach to miti-

gate source bias by introducing a debiased constraint to the opti-

mization objective. In this way, we can force the neural IR models

to focus on modeling semantic relevance rather than the inherent

semantic shortcut of the LLM-generated content.

5.1 Our Method: A Debiased Constraint
Our earlier findings of source bias indicate that neural retrievers

tend to rank LLM-generated documents in higher positions. Thus,

the motivation of our debiased method is straightforward, which is

to force the retrieval models to focus on modeling the semantic rele-

vance and not assign higher predicted relevance scores to the LLM-

generated documents. Specifically, following the practice in Sec-

tion 2.2, we first generate the corresponding LLM-generated corpus

C𝐺 for the original human-written training corpus C𝐻 . In this way,

we can get the new paired training data D = {(𝑞𝑚, 𝑑𝐻𝑚 , 𝑑𝐺𝑚)}𝑀
𝑚=1

,

where each element (𝑞𝑚, 𝑑𝐻𝑚 , 𝑑𝐺𝑚) is a <query, human-written docu-

ment, LLM-generated document> triplet. 𝑑𝐻𝑚 and 𝑑𝐺𝑚 are the corre-

sponding human-written and LLM-generated relevant documents

for the query 𝑞, respectively. Then we introduce the debiased con-

straint, which can be defined as

L
debias

=
∑︁

(𝑞𝑚,𝑑𝐻𝑚 ,𝑑𝐺𝑚 ) ∈D
max{0, 𝑟 (𝑞, 𝑑𝐺 ;Θ) − 𝑟 (𝑞, 𝑑𝐻 ;Θ)} (1)
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Figure 9: Performance comparison of neural retrievers
on only human-written SciFact dataset with different co-
efficient 𝛼 in our proposed debiased method.

where 𝑟 (𝑞, 𝑑𝐺 ;Θ) and 𝑟 (𝑞, 𝑑𝐻 ;Θ) are the predicted relevance scores
of (𝑞, 𝑑𝐺 ) and (𝑞, 𝑑𝐻 ) by the retrieval models with parameters Θ,
respectively. This constraint can penalize biased samples when the

predicted relevance score of (𝑞, 𝑑𝐺 ) is greater than that of (𝑞, 𝑑𝐻 ).
Based on the debiased constraint defined in (1), we can define

the final loss for training an unbiased neural retriever:

L = L
rank

+ 𝛼L
debias

(2)

where the L
rank

can be any common-used loss for the ranking task,

e.g., contrastive loss or regression loss [22, 23, 73]. And 𝛼 is the

debiased co-efficient that can balance the ranking performance and

the degree of the source bias. The larger 𝛼 indicates the greater

penalty on the biased samples, leading to the retriever being more

likely to rank the human-written texts in higher positions.

5.2 Results and Analysis
To evaluate the effectiveness of our proposed debiased method,

we equip the debiased constraint defined in Eq. (1) to two rep-

resentative neural retrievers: ANCE [67] and BERM [70]. In the

experiments, we vary the debiased co-efficient 𝛼 within the range of

{1𝑒-4, 5𝑒-4, 1𝑒-3, 5𝑒-3, 1𝑒-2}. The original retrieval models learned

without the debiased constraint are denoted as “w/o debias”. The

results on the SciFact+AIGC dataset are presented in Figure 8.

As we can see, as the debiased co-efficient 𝛼 increases, the Rela-

tive Δ gradually shifts from negative to positive across almost all

metrics and mixed datasets. This trend indicates that the neural

retrieval models can rank human-written text higher than LLM-

generated text with large 𝛼 . This can be attributed to the inclusion

of our debiased constraint into the learning objective, which can

penalize the biased samples and compel the retrieval models not to

assign higher predicted relevance scores to LLM-generated content.

Moreover, as shown in Figure 9, our method not only maintains the

retrieval performance on the sole human-written corpus but also

provides improvements, especially with BERM as the backbone.

This improvement is likely due to the inclusion of LLM-generated

samples, which might enhance the model’s ability to discern rele-

vance among similar documents.

In summary, these empirical results have demonstrated the ef-

ficacy of our proposed debiased method in mitigating source bias

to different extents by adjusting the debiased coefficient 𝛼 . This

flexibility allows for customizing debiasing mechanisms to meet di-

verse perspectives and demands. Notably, the decision to maintain
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equality between the two content sources or favor human-written

content can be tailored based on specific requirements and envi-

ronmental considerations. For example, users may not mind the

content’s source if it is of high quality and fulfills their informa-

tional needs. However, bias becomes a significant issue when we

aim to credit content providers and encourage more creation, im-

pacting the sustainability of the content creation ecosystem. The

optimal strategy for enhancing the sustainable development of the

IR ecosystem remains an open question for further exploration.

6 DISCUSSION: SOUNDING THE ALARM
Through a rigorous series of experiments and thorough analysis,

we have identified that neural retrieval models demonstrate clear

preferences for LLM-generated texts, referred to as source bias. This

bias, with the burgeoning proliferation of LLMs and AIGC, may

raise significant concerns for a variety of aspects.

First, the presence of source bias poses a significant risk of

gradually rendering human-written content less accessible, po-

tentially causing a disruption in the content ecosystem. More se-

verely, the concern is escalating with the growing prevalence of

LLM-generated content online[8, 25]. Second, there is the risk that

source bias may amplify the spread of misinformation, especially

considering the potential of LLMs to generate deceptive content,

whether intentionally or not [5, 13, 39, 49]. Third, source bias may

be maliciously exploited to attack against neural retrieval models

within today’s search engines, creating a precarious vulnerability

that could be weaponized by malicious actors, reminiscent of earlier

web spam link attacks against PageRank [24].

As discussed above, since LLMs can be readily instructed to

generate texts at scale, source bias presents potential tangible and

serious threats to the ecosystem of web content, public trust, and on-

line safety. We hope this discussion will sound the alarm regarding

the risks posed by source bias in the LLM era.

7 RELATEDWORK
Large Language Models for IR. The emergence of large language

models (LLMs) [64, 71, 74] has ushered in a transformative era

across various research domains, such as natural language process-

ing (NLP) [7, 11], education [21, 38], recommender systems [15, 20],

finance [27, 66], and medicine [3, 53]. In the field of IR, much ef-

fort has also been made to utilize the remarkable knowledge and

capabilities of LLMs to enhance IR systems [2, 75]. In the indus-

try community, an exemplary successful application is New Bing
6
,

which is an LLM-powered search assistant that adeptly extracts

information from various web pages and delivers concise sum-

marized responses to user queries, thereby improving the search

experience. In the research community, there has been a proactive

exploration of integrating LLMs into the IR components, including

query rewriters [48, 60], retrievers [16, 69], re-rankers [14, 50], and

readers [29, 43]. For a more comprehensive overview of the recent

advancements in LLMs for IR, please refer to the recent survey [75].

Artificial IntelligenceGeneratedContent.Artificial Intelligence
Generated Content (AIGC) is a rapidly advancing field that involves

the creation of content using advanced Generative AI (GAI) [1, 12,

6
https://www.bing.com/new

65]. Unlike traditional content crafted by humans, AIGC can be gen-

erated at scale and in considerably less time [25, 47]. Recently, the

development of LLMs and other GAI models has greatly improved

the quality of AIGC content than before. For instance, LLMs such

as ChatGPT have shown impressive abilities in generating human-

like content [12, 65]. The DALL-E-3 [9], another state-of-the-art

text-to-image generation system, can follow user instructions to

produce high-quality images. Nevertheless, as AIGC becomes more

prevalent across myriad domains, ethical concerns, and potential

risks come into sharper focus [51, 61]. In fact, inevitably, the GAI

models may generate content with bias and discrimination as the

large training data always contain bias and toxicity [8, 18, 76]. Fur-

thermore, researchers have found that LLMs can be manipulated

into generating increasingly deceptive misinformation, posing chal-

lenges to online safety [13, 30, 49]. In addition, some recent studies

indicate that training GAI models with synthetic data could result in

the collapse of the next-generation models [4, 10, 44]. Thus, AIGC

is a double-edged sword that requires cautious handling.

8 CONCLUSION AND FUTUREWORK
In this paper, we provide a preliminary analysis of the impact of the

proliferation of generated content on IR systems, which is a pressing

and emerging problem in the LLM era. We first introduce two

new benchmarks, SciFact+AIGC and NQ320K+AIGC, and build an

environment for evaluating IRmodels in scenarios where the corpus

comprises both human-written and LLM-generated texts. Through

extensive experiments within this environment, we uncover an

unexpected bias of neural retrieval models favoring LLM-generated

text. Moreover, we provide an in-depth analysis of this bias from the

perspective of text compression. We also introduce a plug-and-play

debiased strategy, which shows the potential to mitigate the source

bias to different degrees. Finally, we discuss the crucial concerns

and potential risks of this bias to the whole web ecosystem.

Our study offers valuable insights into several promising direc-

tions for future research, including exploring source bias in other

information systems (e.g., recommender systems and advertising

systems) and examining source bias in neural models towards AIGC

data across multiple data modalities, not limited to text. Moreover,

uncovering the root cause of the source bias and thus further miti-

gating it are difficult but crucial research directions.
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A MORE EXPERIMENTAL RESULTS
In Table 7, we provide the results for source bias with more common

prompts sourced from InstructGPT-prompts Github Repository
7
.

These results indicate that common prompts can easily trigger

source bias with LLM-generated content.

Table 7: Overall source bias in neural retrievers w.r.t. Rel-
ative Δ (NDCG@1) on SciFact+AIGC with mixed human-
written and Llama2-generated corpora generated from dif-
ferent common rephrasing prompts.

Prompt ANCE BERM TAS-B Contriever

Rewrite the text below in your own words: -7.0 -22.8 -11.2 -27.6

Paraphrase the provided text while maintaining its meaning: -26.0 -55.3 -24.1 -13.6

Summarize the following passage in a concise manner: -1.4 -43.3 -34.0 -32.4

Simplify the given passage while keeping the main ideas: -29.0 -21.7 -22.5 -40.9

Rephrase the given text using alternative expressions: -25.3 -34.7 -61.9 -18.4

Condense the following passage to focus on key points: -19.0 -24.8 -22.8 -16.4

Briefly restate the provided text without losing its essence: -29.6 -50.7 -41.3 -29.8

Reword the passage below to make it more succinct: -40.6 -71.1 -54.7 -34.0

Express the following text in a different way while keeping its intent: -50.7 -39.8 -34.9 0.0

B THEORETICAL ANALYSIS AND INSIGHTS
In Figure 7, we have compared the PPL for different corpus using

the BERT model. In this section, we aim to further provide some

theoretical insights into the above observations that LLM-generated

texts have a smaller perplexity than human-written texts.

Without loss of generality, we define the PPL in an autoregressive

manner. Let 𝑑𝐻 denote a document written by humans, and 𝑑𝐺 a

document generated by an LLM conditioned on 𝑑𝐻 . For a given

document 𝑑 and BERT model B, PPL is calculated as

PPL(𝑑,B) = − 1

𝑆

𝑆∑︁
𝑠=1

log 𝑃BERT (𝑑𝑠 |𝑑<𝑠 ) .

Similarly, we use PPL(𝑑,H) to represent the PPL of document 𝑑

when evaluated by humans. The PPL of 𝑑𝐺 conditioned on 𝑑𝐻 is

denoted as

PPL(𝑑𝐺 | 𝑑𝐻 ,B) = − 1

𝑆

𝑆∑︁
𝑠=1

log 𝑃BERT (𝑑𝐺𝑠 |𝑑𝐺<𝑠 , 𝑑𝐻 ) .

When evaluated by humans, we use PPL(𝑑𝐺 | 𝑑𝐻 ,H) to represent

the PPL of 𝑑𝐺 conditioned on 𝑑𝐻 .

In the theorem below, we introduce three assumptions: Seman-

tic Superiority, Conditional Redundancy, and Bounded Perplexity,

7
https://github.com/kevinamiri/Instructgpt-prompts#rephrase-a-passage

 

536

https://github.com/kevinamiri/Instructgpt-prompts#rephrase-a-passage


KDD ’24, August 25–29, 2024, Barcelona, Spain Sunhao Dai et al.

to theoretically establish the sufficient conditions under which

PPL(𝑑𝐺 ,B) ≤ PPL(𝑑𝐻 ,B) holds. Semantic Superiority suggests

that the perplexity of human-written texts, when evaluated by

humans, is lower than when evaluated by BERT. Conditional Re-

dundancy implies that the perplexity of 𝑑𝐺 , given 𝑑𝐻 , is lower than

the perplexity of 𝑑𝐻 when evaluated directly. This is intuitively

true when the information added in generating from 𝑑𝐻 to 𝑑𝐺

doesn’t exceed the original information in 𝑑𝐻 . Bounded perplex-

ity assumes that there exists an upper bound 𝜖 on the increase in

perplexity when evaluating 𝑑𝐺directly, compared to evaluating 𝑑𝐺

conditioned on 𝑑𝐻 . Then we have the following theorem:

Theorem B.1. Given the following conditions:
• Semantic Superiority: human beings outperform BERT in under-
standing human-written texts, i.e.,

PPL(𝑑𝐻 ,B) − PPL(𝑑𝐻 ,H) ≥ 0.

• Conditional Redundancy: generating 𝑑𝐺 from 𝑑𝐻 adds less per-
plexity than 𝑑𝐻 itself, i.e.,

PPL(𝑑𝐻 ,H) − PPL(𝑑𝐺 | 𝑑𝐻 ,H) ≥ 0.

• Bounded Perplexity: there exists a bounded non-negative difference
𝜖 in BERT’s perplexity for 𝑑𝐺 with or without 𝑑𝐻 , i.e.,

PPL(𝑑𝐺 ,B) − PPL(𝑑𝐺 | 𝑑𝐻 ,B) ≤ 𝜖.
If LLM aligns more closely with BERT than with humans when pre-
dicting 𝑑𝐺 given 𝑑𝐻 , such that for any 𝑠 ∈ [𝑆],

𝐷KL

(
𝑃LLM (𝑑𝐺𝑠 |𝑑𝐺<𝑠 , 𝑑𝐻 )∥𝑃BERT (𝑑𝐺𝑠 |𝑑𝐺<𝑠 , 𝑑𝐻 )

)
+ 𝜖

≤ 𝐷KL

(
𝑃LLM (𝑑𝐺𝑠 |𝑑𝐺<𝑠 , 𝑑𝐻 )∥𝑃Human (𝑑𝐺𝑠 |𝑑𝐺<𝑠 , 𝑑𝐻 )

)
,

(3)

it follows that

E𝑃LLM (𝑑𝐺 |𝑑𝐻 )
[
PPL(𝑑𝐺 ,B) − PPL(𝑑𝐻 ,B)

]
≤ 0.

In Theorem B.1, the KL divergence is used to compare the distri-

butions of the document 𝑑𝐺 conditioned on 𝑑𝐻 according to the

LLM, BERT model, and humans. It is worth emphasizing that in-

equation (3) is not the assumption on the understanding capabilities

of BERT, LLM, and humans. Instead, this inequation assumes that

when predicting 𝑑𝐺 given 𝑑𝐻 , the predictions by LLM are more

closely aligned with those of BERT.

We demonstrate that, when inequation (3) is satisfied, the per-

plexity (evaluated by PLMs such as BERT) of 𝑑𝐺 is lower than

that of 𝑑𝐻 . We’d like to emphasize that it is reasonable to expect

that inequation (3) holds true because both LLM and BERT are

Transformer-based models that use similar pretraining paradigms.

The commonality in model structure and learning paradigms may

lead to similar inherent biases in text prediction, making their pre-

dictions more aligned with each other.

The proof for Theorem B.1 is provided as follows:

Proof. We start by introducing the term PPL(𝑑𝐻 ,H) :
PPL(𝑑𝐺 ,B) − PPL(𝑑𝐻 ,B)

= PPL(𝑑𝐺 ,B) − PPL(𝑑𝐻 ,H) + PPL(𝑑𝐻 ,H) − PPL(𝑑𝐻 ,B)

≤ PPL(𝑑𝐺 ,B) − PPL(𝑑𝐻 ,H),

where the last step follows from the Semantic Superiority condition.

PPL(𝑑𝐺 ,B) − PPL(𝑑𝐻 ,B) ≤ PPL(𝑑𝐺 ,B) − PPL(𝑑𝐻 ,H)

= PPL(𝑑𝐺 ,B) − PPL(𝑑𝐺 | 𝑑𝐻 ,G)

+ PPL(𝑑𝐺 | 𝑑𝐻 ,G) − PPL(𝑑𝐻 ,H) .

Next, we provide upper bounds of PPL(𝑑𝐺 | 𝑑𝐻 ,G) −PPL(𝑑𝐻 ,H) :
PPL(𝑑𝐺 | 𝑑𝐻 ,G) − PPL(𝑑𝐻 ,H)

= PPL(𝑑𝐺 | 𝑑𝐻 ,G) − PPL(𝑑𝐺 | 𝑑𝐻 ,H)

+ PPL(𝑑𝐺 | 𝑑𝐻 ,H) − PPL(𝑑𝐻 ,H)

≤ PPL(𝑑𝐺 | 𝑑𝐻 ,G) − PPL(𝑑𝐺 | 𝑑𝐻 ,H),
where the inequality follows from the Conditional Redundancy.

Taking expectation on PPL(𝑑𝐺 | 𝑑𝐻 ,G) − PPL(𝑑𝐺 | 𝑑𝐻 ,H) :

− 𝑆E𝑃LLM (𝑑𝐺 |𝑑𝐻 )
[
PPL(𝑑𝐺 | 𝑑𝐻 ,G) − PPL(𝑑𝐺 | 𝑑𝐻 ,H)

]
=

𝑆∑︁
𝑠=1

E𝑃LLM (𝑑𝐺 |𝑑𝐻 ) log
𝑃LLM (𝑑𝐺𝑠 |𝑑𝐺<𝑠 , 𝑑𝐻 )
𝑃Human (𝑑𝐺𝑠 |𝑑𝐺<𝑠 , 𝑑𝐻 )

=

𝑆∑︁
𝑠=1

E𝑃LLM (𝑑𝐺<𝑠 |𝑑𝐻 )E𝑃LLM (𝑑𝐺𝑠 |𝑑𝐺<𝑠 ,𝑑𝐻 ) log
𝑃LLM (𝑑𝐺𝑠 |𝑑𝐺<𝑠 , 𝑑𝐻 )
𝑃Human (𝑑𝐺𝑠 |𝑑𝐺<𝑠 , 𝑑𝐻 )

=

𝑆∑︁
𝑠=1

E𝑃LLM (𝑑𝐺<𝑠 |𝑑𝐻 ) 𝐷KL (𝑃LLM (𝑑𝐺𝑠 |𝑑𝐺<𝑠 , 𝑑𝐻 )∥𝑃Human (𝑑𝐺𝑠 |𝑑𝐺<𝑠 , 𝑑𝐻 ))︸                                                         ︷︷                                                         ︸
𝐷KL (𝑃LLM ∥𝑃Human )

.

Similarly, PPL(𝑑𝐺 ,B) − PPL(𝑑𝐺 | 𝑑𝐻 ,G) can be rewritten as:

PPL(𝑑𝐺 ,B) − PPL(𝑑𝐺 | 𝑑𝐻 ,G)

= PPL(𝑑𝐺 ,B) − PPL(𝑑𝐺 | 𝑑𝐻 ,B)

+ PPL(𝑑𝐺 | 𝑑𝐻 ,B) − PPL(𝑑𝐺 | 𝑑𝐻 ,G) .

Taking expectation on PPL(𝑑𝐺 | 𝑑𝐻 ,B) − PPL(𝑑𝐺 | 𝑑𝐻 ,G) :

𝑆E𝑃LLM (𝑑𝐺 |𝑑𝐻 )
[
PPL(𝑑𝐺 | 𝑑𝐻 ,B) − PPL(𝑑𝐺 | 𝑑𝐻 ,G)

]
=

𝑆∑︁
𝑠=1

E𝑃LLM (𝑑𝐿<𝑠 |𝑑𝐻 ) 𝐷KL (𝑃LLM (𝑑𝐺𝑠 |𝑑𝐺<𝑠 , 𝑑𝐻 )∥𝑃BERT (𝑑𝐺𝑠 |𝑑𝐺<𝑠 , 𝑑𝐻 ))︸                                                       ︷︷                                                       ︸
𝐷KL (𝑃LLM ∥𝑃BERT )

.

Thus,

E𝑃LLM (𝑑𝐺 |𝑑𝐻 )
[
PPL(𝑑𝐺 ,B) − PPL(𝑑𝐻 ,B)

]
≤ E𝑃LLM (𝑑𝐺 |𝑑𝐻 )

[
PPL(𝑑𝐺 ,B) − PPL(𝑑𝐺 | 𝑑𝐻 ,B)

]
+ 1

𝑆

𝑆∑︁
𝑠=1

E𝑃LLM (𝑑𝐺<𝑠 |𝑑𝐻 ) (𝐷KL (𝑃LLM∥𝑃BERT) − 𝐷KL (𝑃LLM∥𝑃Human)) .

The final results can be derived by considering the assumptions:

PPL(𝑑𝐺 ,B) − PPL(𝑑𝐺 | 𝑑𝐻 ,B) ≤ 𝜖
𝐷KL (𝑃LLM∥𝑃BERT) − 𝐷KL (𝑃LLM∥𝑃Human) ≤ −𝜖.

From these, it follows that:

E𝑃LLM (𝑑𝐺 |𝑑𝐻 )
[
PPL(𝑑𝐺 ,B) − PPL(𝑑𝐻 ,B)

]
≤ 𝜖 − 𝜖 = 0.

□
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