
Directly Optimizing Evaluation Measures
in Learning to Rank

Jun Xu, Tie-Yan Liu
Microsoft Research Asia
No. 49 Zhichun Road,
Beijing, China 100190

{junxu,tyliu}@microsoft.com

Min Lu
Nankai University

No. 94 Weijin Road,
Tianjin, China 300071

lumin@nankai.edu.cn

Hang Li, Wei-Ying Ma
Microsoft Research Asia
No. 49 Zhichun Road,
Beijing, China 100190

{hangli,wyma}@microsoft.com

ABSTRACT
One of the central issues in learning to rank for information re-
trieval is to develop algorithms that construct ranking models by
directly optimizing evaluation measures used in information re-
trieval such as Mean Average Precision (MAP) and Normalized
Discounted Cumulative Gain (NDCG). Several such algorithms in-
cluding SVMmap and AdaRank have been proposed and their ef-
fectiveness has been verified. However, the relationships between
the algorithms are not clear, and furthermore no comparisons have
been conducted between them. In this paper, we conduct a study on
the approach of directly optimizing evaluation measures in learning
to rank for Information Retrieval (IR). We focus on the methods
that minimize loss functions upper bounding the basic loss function
defined on the IR measures. We first provide a general framework
for the study and analyze the existing algorithms of SVMmap and
AdaRank within the framework. The framework is based on upper
bound analysis and two types of upper bounds are discussed. More-
over, we show that we can derive new algorithms on the basis of this
analysis and create one example algorithm called PermuRank. We
have also conducted comparisons between SVMmap, AdaRank, Per-
muRank, and conventional methods of Ranking SVM and Rank-
Boost, using benchmark datasets. Experimental results show that
the methods based on direct optimization of evaluation measures
can always outperform conventional methods of Ranking SVM and
RankBoost. However, no significant difference exists among the
performances of the direct optimization methods themselves.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval models

General Terms
Algorithms, Experimentation, Theory

Keywords
Evaluation measure, Learning to rank, Information retrieval

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’08, July 20–24, 2008, Singapore.
Copyright 2008 ACM 978-1-60558-164-4/08/07 ...$5.00.

1. INTRODUCTION
Learning to rank for Information Retrieval (IR) is a problem as

follows. In learning, a ranking model is constructed with train-
ing data that consists of queries, their corresponding retrieved doc-
uments, and relevance levels provided by human annotators. In
ranking, given a new query, the retrieved documents are ranked by
using the trained ranking model.

In IR, ranking results are generally evaluated in terms of eval-
uation measures such as Mean Average Precision (MAP) [1] and
Normalized Discounted Cumulative Gain (NDCG) [14]. Ideally, a
learning algorithm trains a ranking model by optimizing the perfor-
mance in terms of a given evaluation measure. In this way, higher
accuracy in ranking is expected. However, this is usually difficult
due to the non-continuous and non-differentiable nature of IR mea-
sures.

Many learning to rank algorithms proposed typically minimize
a loss function loosely related to the IR measures. For example,
Ranking SVM [13] and RankBoost [10] minimize loss functions
based on classification errors in document pairs.

Recently, researchers have developed several new algorithms that
manage to directly optimize the performance in terms of IR mea-
sures. The effectiveness of these methods have also been verified.
From the viewpoint of loss function optimization, these methods
fall into three categories. First, one can minimize upper bounds
of the basic loss function defined on the IR measures [30, 17, 27].
Second, one can approximate the IR measures with functions that
are easy to handle [7, 23]. Third, one can use specially designed
technologies for optimizing the non-smooth IR measures [3, 8].

There are open questions regarding the direct optimization ap-
proach. (1) Is there a general theory that can guide the development
of new algorithms? (2) What is the relationship between existing
methods? (3) Which direct optimization method empirically per-
forms best?

In this paper, we conduct a study on direct optimization of IR
measures in learning to rank and answer the above questions. Specif-
ically, we focus on the first category of methods that minimize loss
functions upper bounding the basic loss function defined on the IR
measures. This has become one of the hottest research topics in
learning to rank.

(1) We conduct a general analysis of the approach. We indicate
that direct optimization of IR measures amounts to minimizing dif-
ferent loss functions based on the measures. We first introduce one
basic loss function, which is directly defined on the basis of IR
measures, and indicate that there are two types of upper bounds on
the basic loss function. We refer to them as type one bound and
type two bound, respectively. Minimizing the two types of upper
bounds leads to different learning algorithms. With this analysis,
different algorithms can be easily studied and compared. More-

107

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1390334.1390355&domain=pdf&date_stamp=2008-07-20

over, new algorithms can be easily derived. As an example, we
create a new algorithm called PermuRank.

(2) We show that the existing algorithms of AdaRank and SVMmap

manage to minimize loss functions which are type one upper bound
and type two upper bound, respectively.

(3) We compare the performances of the existing direct optimiza-
tion methods of AdaRank and SVMmap using several benchmark
datasets. Experimental results show that the direct optimization
methods of SVMmap, AdaRank, and PermuRank can always im-
prove upon the baseline methods of Ranking SVM and RankBoost.
Furthermore, the direct optimization methods themselves can work
equally well.

The rest of the paper is organized as follows. After a summary
of related work in Section 2, we formally describe the problem of
learning to rank for Information Retrieval in Section 3. In section 4,
we propose a general framework for directly optimizing evaluation
measures. Two existing algorithms of SVMmap and AdaRank, and
a new algorithm PermuRank are analyzed and discussed within this
framework. Section 5 reports our experimental results and Section
6 concludes this paper.

2. RELATED WORK
The key problem for document retrieval is ranking, specifically,

to create a ranking model that can sort documents based on their
relevance to the given query. Traditional ranking models such as
BM25 [22] and Language Models for Information Retrieval (LMIR)
[20, 16] only have a few parameters to tune. As the ranking models
become more sophisticated (with more features) and more labeled
data become available, how to tune or train a ranking model be-
comes a challenging issue.

In recent years, methods of learning to rank have been applied
to ranking model construction and promising results have been ob-
tained. Learning to rank is to automatically create a ranking model
by using labeled training data and machine learning techniques.
Several approaches have been proposed. The pairwise approach
transforms the ranking problem into binary classification on docu-
ment pairs. Typical methods include Ranking SVM [13, 15], Rank-
Boost [10], and RankNet [4]. For other methods belonging to the
approach, refer to [12, 29, 6, 25, 21, 30, 24, 31]. The methods of
Ranking SVM, RankBoost, and RankNet minimize loss functions
that are loosely related to the evaluation measures such as MAP
and NDCG.

Recently, the approach of directly optimizing the performance
in terms of IR measures has also been proposed. There are three
categories:

First, one can minimize loss functions upper bounding the basic
loss function defined on the IR measures. For example, SVMmap

[30] minimizes a hinge loss function, which upper bounds the basic
loss function based on Average Precision. AdaRank [27] minimizes
an exponential loss function upper bounding the basic loss function.
(See also [17].)

Second, one can approximate the IR measures with easy-to-handle
functions. For example, the work in [23] proposes a smoothed ap-
proximation to NDCG [14]. (See also [7].)

Third, one can use specially designed technologies for optimiz-
ing non-smooth IR measures. For example, LambdaRank [3] im-
plicitly minimizes a loss function related to IR measures. Genetic
Programming (GP) is also used to optimize IR measures [2]. For
example, [8] proposed a specifically designed GP for learn a rank-
ing model for IR. (See also [28, 9, 19]).

In this paper, we focus on the first category and take SVMmap

and AdaRank as examples of existing methods.

3. LEARNING TO RANK
Learning to rank for Information Retrieval is a problem as fol-

lows. In retrieval (testing), given a query, the system returns a
ranked list of documents in descending order of their relevance
scores. In learning (training), a number of queries and their cor-
responding retrieved documents are given. Furthermore, the labels
of the documents with respect to the queries are also provided. The
labels represent ranks (i.e., categories in a total order). The objec-
tive of learning is to construct a ranking model that achieves the
best result on test data in the sense of minimization of a loss func-
tion. Ideally the loss function is defined directly on the IR measure
used in testing.

Suppose that Y = {r1, r2, · · · , r`} is the set of ranks, where `
denotes the number of ranks. There exists a total order between
the ranks r` � r`−1 � · · · � r1, where � denotes the order. Sup-
pose that Q = {q1, q2, · · · , qm} is the set of queries in training.
Each query qi is associated with a list of retrieved documents di =

{di1, di2, · · · , di,n(qi)} and a list of labels yi = {yi1, yi2, · · · , yi,n(qi)},
where n(qi) denotes the sizes of lists di and yi, di j ∈ D denotes
the jth document in di, and yi j ∈ Y denotes the label of document
di j. A feature vector φ(qi, di j) is created from each query-document
pair (qi, di j), i = 1, 2, · · · ,m; j = 1, 2, · · · , n(qi). The training set is
denoted as S = {(qi,di, yi)}mi=1.

Let the documents in di be identified by the integers {1, 2, · · · , n(qi)}.
We define permutation πi on di as a bijection from {1, 2, · · · , n(qi)}
to itself. We use Πi to denote the set of all possible permutations on
di, and use πi(j) to denote the position of item j (i.e., di j). Ranking
is nothing but to select a permutation πi ∈ Πi for the given query qi

and the associated list of documents di using the ranking model.
The ranking model is a real valued function of features. There

are two types of ranking models. We refer to them as f and F
respectively.

Ranking model f is a document level function, which is a linear
combination of the features in a feature vector φ(qi, di j):

f (qi, di j) = w>φ(qi, di j), (1)

where w denotes the weight vector. In ranking for query qi we
assign a score to each of the documents using f (qi, di j) and sort the
documents based on their scores. We obtain a permutation denoted
as τi.

Ranking model F is a query level function. We first introduce a
query level feature vector for each triple of qi, di and πi, denoted
as Φ(qi,di, πi). We calculate Φ by linearly combining the feature
vectors φ of query-document pairs for qi:

Φ(qi,di, πi) =
1

n(qi) · (n(qi) − 1)

∑

k,l:k<l

[zkl(φ(qi, dik)−φ(qi, dil))], (2)

where zkl = +1 if πi(k) < πi(l) (dik is ranked ahead of dil in πi),
and −1 otherwise. (A slightly different definition on Φ is given in
[30].) We define F as a linear combination of the features in feature
vector Φ:

F(qi,di, πi) = w>Φ(qi,di, πi), (3)

where w denotes the weight vector. In ranking, the permutation
with the largest score given by F is selected:

σi = arg max
σ∈Πi

F(qi,di, σ). (4)

It can be shown that, the two types of ranking models are equiv-
alent, if the parameter vectors w’s in the two models are identical.

T 1. Given a fixed parameter vector w, the two ranking
models f and F generate the same ranking result. That is, permu-
tations τi and σi are identical.

108

Table 1: Summary of notations.
Notations Explanations
qi ∈ Q Query
di = {di1, di2, · · · , di,n(qi)} List of documents for qi

di j ∈ D jth document in di

yi = {yi1, yi2, · · · , yi,n(qi)} List of ranks for qi

yi j ∈ {r1, r2, · · · , r`} Rank of di j w.r.t. qi

S = {(qi,di, yi)}mi=1 Training set
πi ∈ Πi Permutation for qi

π∗i ∈ Π∗i ⊆ Πi Perfect permutation for qi

φ(qi, di j) Feature vector w.r.t. (qi, di j)
Φ(qi,di, πi) Feature vector w.r.t. (qi,di, πi)
f and F Ranking models
E(πi, yi) ∈ [0,+1] Evaluation of πi w.r.t. yi for qi

Proof of the theorem can be found in the Appendix. Theorem 1
implies that Equation (4) can be computed efficiently by sorting
documents using Equation (1).

In IR, evaluation measures are used to evaluate the goodness of
a ranking model, which are usually query-based. By query based,
we mean that the measure is defined on a ranking list of documents
with respect to the query. These include MAP, NDCG, MRR (Mean
Reciprocal Rank), WTA (Winners Take ALL), and Precision@n [1,
14]. We utilize a general function E(πi, yi) ∈ [0,+1] to represent
the evaluation measures. The first argument of E is the permutation
πi created using the ranking model. The second argument is the
list of ranks yi given as ground truth. E measures the agreement
between πi and yi. Most evaluation measures return real values in
[0, +1]. We denote the perfect permutation as π∗i . Note that there
may be more than one perfect permutation for a query, and we use
Π∗i to denote the set of all possible perfect permutations for query
qi. For π∗i ∈ Π∗i , we have E(π∗i , yi) = 1.

Table 1 gives a summary of notations described above.

4. DIRECT OPTIMIZATION METHODS
In this section, we give a general framework for analyzing learn-

ing to rank algorithms that directly optimize evaluation measures.
Ideally, we would create a ranking model that maximize the ac-

curacy in terms of an IR measure on training data, or equivalently,
minimizes the loss function defined as follows:

R(F) =

m∑

i=1

(E(π∗i , yi) − E(πi, yi)) =

m∑

i=1

(1 − E(πi, yi)), (5)

where πi is the permutation selected for query qi by ranking model
F (or f). We refer to the loss function R(F) (or R(f)) as the ‘basic
loss function’ and those methods which minimize the basic loss
function as the ‘direct optimization approach’.

The rest of this paper will focus on the first category of direct
optimization methods (defined in Section 1) which minimize loss
functions upper bounding the basic loss function. Practically, in
order to leverage existing optimization technologies like Boosting
and SVM, bound optimization has been widely used. We can con-
sider two types of upper bounds. The first one is defined directly
on the IR measures (type one bound). The second one is defined
on the pairs between the perfect and imperfect permutations (type
two bound). AdaRank and SVMmap turn out to be algorithms that
minimize one of the two upper bounds, respectively. PermuRank,
which we propose in this paper, is an algorithm minimizes a type
two bound.

4.1 Type One Bound
The basic loss function can be upper bounded directly by the ex-

ponential function, logistic function, which is widely used in ma-
chine learning. The logistic function is defined as

m∑

i=1

log2

(
1 + e−E(πi ,yi)

)
.

The exponential function is defined as
m∑

i=1

exp{−E(πi, yi)}.

We can use the logistic function and exponential function as ‘sur-
rogate’ loss functions in learning. Note that both functions are
continuous, differentiable, and even convex w.r.t. E. The expo-
nential loss function is tighter than the logistic loss function since
E ∈ [0,+1].

The AdaRank algorithm proposed in [27] actually minimizes
the exponential loss function (type one bound), by taking a boost-
ing approach. Motivated by the famous AdaBoost algorithm [11],
AdaRank optimizes the exponential loss function through contin-
uously re-weighting the distribution over the training queries and
creating weak rankers. To do so, AdaRank repeats the process of
re-weighting the training query, creating a weak ranker, and calcu-
lating a weight for the weak ranker, according to the performances
(in terms of one IR measure) of the weak rankers on the training
queries. Finally, AdaRank linearly combines the weak rankers as
the final ranking model.

4.2 Type Two Bound
Here, we introduce a new loss function.

m∑

i=1

max
π∗i ∈Π∗i ;πi∈Πi\Π∗i

((
E(π∗i , yi) − E(πi, yi)

) · �(F(qi,di, π
∗
i) ≤ F(qi,di, πi)

)�)
,

(6)

where ~·� is one if the condition is satisfied, otherwise zero.
The loss function measures the loss when the worst prediction is

made, specifically, the difference between the performance of the
perfect permutation (it equals one) and the minimum performance
of an incorrect permutation (it is less than one).

The following theorem holds with regard to the new loss function.

T 2. The basic loss function in (5) is upper bounded by
the new loss function in (6).

Proof of Theorem 2 can be found in the Appendix.
The loss function (6) is still not continuous and differentiable be-

cause it contains the 0-1 function ~·�, which is not continuous and
differentiable. We can consider using continuous, differentiable,
and even convex upper bounds on the loss function (6), which are
also upper bounds on the basic loss function (5).

1) The 0-1 function ~·� in (6) can be replaced with its upper
bounds, for example, hinge, exponential, and logistic functions,
yielding

m∑

i=1

max
π∗i ∈Π∗i ;πi∈Πi\Π∗i

(
E(π∗i , yi) − E(πi, yi)

)·e−(F(qi ,di ,π
∗
i)−F(qi ,di ,πi));

m∑

i=1

max
π∗i ∈Π∗i ;πi∈Πi\Π∗i

(
E(π∗i , yi) − E(πi, yi)

)·log2

(
1 + e−(F(qi ,di ,π

∗
i)−F(qi ,di ,πi))

)
;

m∑

i=1

max
π∗i ∈Π∗i ;πi∈Πi\Π∗i

(
E(π∗i , yi) − E(πi, yi)

)·[1−(F(qi,di, π
∗
i) − F(qi,di, πi)

)
]+;

109

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

x=F(q, d, π*) − F(q, d, π)

Lo
ss

0.5 × 0−1 loss

0.5 × e−x

0.5 × log
2
(1 + e−x)

0.5 × [1 − x]
+

[0.5 − x]
+

Figure 1: Type two bounds.

m∑

i=1

[
max

π∗i ∈Π∗i ;πi∈Πi\Π∗i

((
E(π∗i , yi) − E(πi, yi)

) − (
F(qi,di, π

∗
i) − F(qi,di, πi)

))]

+

,

where [·]+ denotes the hinge function.
Figure 1 shows the relationship between the loss function (6) and

its upper bounds, where E(π∗i , yi) − E(πi, yi) is set to 0.5. From the
figure, we can see that it is not possible to say which upper bound
is the tightest. Different upper bounds may be suitable for different
datasets.

2) The max function can also be replaced with its upper bound,
the sum function. This is because

∑
i xi ≥ maxi xi if xi ≥ 0 holds

for all i.
3) Relaxations 1 and 2 can be applied simultaneously.
For example, replacing ~·� with the hinge function and max with

sum, we obtain:
m∑

i=1

∑

π∗i ∈Π∗i ;πi∈Πi\Π∗i

(
E(π∗i , yi) − E(πi, yi)

) · [1 − (
F(qi,di, π

∗
i) − F(qi,di, πi)

)]
+ .

(7)

We can derive different algorithms by using the upper bounds as
surrogate loss functions. SVMmap and PermuRank are two exam-
ples.

SVMmap solves the following quadratic programming problem:

min
~w;ξ≥0

1
2
||~w||2 +

C
m

m∑

i=1

ξi (8)

s.t. ∀i,∀π∗i ∈ Π∗i ,∀πi ∈ Πi \ Π∗i :
F(qi,di, π

∗
i) − F(qi,di, πi) ≥ E(π∗i , yi) − E(πi, yi) − ξi,

where C is the coefficient for trade-off between total empirical loss
and model complexity, and ξi represents the empirical loss for qi.
One can easily verify that in the constraints the empirical loss ξi is
the maximum among all the losses of permutations for query qi.

Equivalently, SVMmap minimizes the following regularized hinge
loss function

m∑

i=1

[
max

π∗i ∈Π∗i ;πi∈Πi\Π∗i

((
E(π∗i , yi) − E(πi, yi)

)

− (
F(qi,di, π

∗
i) − F(qi,di, πi)

))]
+ + λ ‖ ~w ‖2 .

(9)

Intuitively, the first term calculates the total maximum empirical
loss when selecting the best permutation for each of the queries.
Specifically, if the difference between the permutations F(qi,di, π

∗
i)−

F(qi,di, πi) is less than the difference between the corresponding

evaluation measures E(π∗i , yi) − E(πi, yi)), then there will be a loss,
otherwise not. Next, the maximum loss is selected for each query
and they are summed up over all the queries.

Since c · ~x ≤ 0� ≤ [c − x]+ holds for all c ∈ <+ and x ∈ <, it
is easy to see that the upper bound in (9) also bounds the basic loss
function in (5) (See also Figure 1). In [30], the authors have proved
this fact (see also [26]).

4.3 PermuRank
In principle, any type two bound can be optimized using opti-

mization techniques such as those in Perceptron, Support Vector
Machines, and Boosting. However, the sizes of permutation sets
Π∗i and Πi \ Π∗i are both of order O(n!), which makes the optimiza-
tion infeasible. Here n denotes the number of documents associated
with query qi.

In this paper, we propose a new direct optimization algorithm
which efficiently minimizes one of the type two bounds as loss
function in a greedy way. The algorithm is referred to as Permu-
Rank and is shown in Figure 2. The key idea in PermuRank is to
maintain a set of perfect permutations and a set of imperfect per-
mutations as working sets, in stead of using the entire set of perfect
permutations and the entire set of imperfect permutations.

PermuRank takes a training set S = {(qi,di, yi)}mi=1 as input and
takes an evaluation measure E and number of iterations T as pa-
rameters. PermuRank runs T rounds and at each round it creates a
ranking model Ft(t = 1, · · · ,T). Finally, it outputs a ranking model
F created during the last round.

At each round t, PermuRank maintains a set of perfect permuta-
tions and a set of imperfect permutations for each query qi, denoted
as Bt

i and Ct
i, respectively. These two sets are initialized with an

arbitrary perfect permutation π∗i ∈ Π∗i and an arbitrary imperfect
permutation πi ∈ Πi \ Π∗i . At each round, the two sets are updated
by adding the most violated perfect and imperfect permutations re-
spectively:

Bt+1
i ← Bt

i ∪ {arg min
πi∈Π∗i

Ft(qi,di, πi)},

Ct+1
i ← Ct

i ∪ {arg max
πi∈Πi\Π∗i

Ft(qi,di, πi)}.

At each round t, a ranking model Ft is created using the permu-
tation sets Bt

i and Ct
i, i = 1, · · · ,m created so far

Ft = arg max
F∈F

L(Bt
1,Ct

1, · · · ,Bt
m,Ct

m), (10)

where L(Bt
1,Ct

1, · · · ,Bt
m,Ct

m) is a type two bound, based on Bt
i and

Ct
i instead of Π∗i and Πi \ Π∗i .
In this paper, without loss of generality, we use the hinge loss

function of Equation (7). The total empirical loss L becomes

L(B1,C1, · · · ,Bm,Cm) =

m∑

i=1

l(Bi,Ci), (11)

where

l(Bi,Ci) =
1
|Bi|

∑

π∗i ∈Bi

∑

πi∈Ci

(E(π∗i , yi) − E(πi, yi))

· [1 − (F(qi,di, π
∗
i ; w) − F(qi,di, πi; w))]+.

In this paper, we employ the SVM technique to minimize the
regularized hinge loss function.

The learned ranking model Ft is then used to update Bt+1
i and

Ct+1
i for training the next ranking model Ft+1.
At each round, PermuRank checks whether the permutation sets

Bt
i and Ct

i are changed. If there is no change, the algorithm will
stop and return Ft as the final ranking model.

110

Input: S = {(qi,di, yi)}mi=1, parameters E and T
Initialize B1

i and C1
i , for all i = 1, · · · ,m.

For t = 1, · · · ,T
• Ft = arg maxF∈F L(Bt

1,Ct
1, · · · ,Bt

m,Ct
m).

• Update Bt+1
i and Ct+1

i , for all i = 1, · · · ,m.

• break if Bt+1
i = Bt

i and Ct+1
i = Ct

i, for all i = 1, · · · ,m.

End For
return Ft.

Figure 2: PermuRank algorithm.

4.4 Summary on Bounds
We give a summary of the upper bounds on the basic loss func-

tion. Figure 3 shows the relationship. There is a basic loss function
(5). On the left hand side is the type one bound. The upper bounds
of the exponential loss function, logistic loss function can be used.
On the right hand side is the type two bound. Equation (6) is the
loss function for type two bound, which also upper bounds the ba-
sic loss function. Furthermore, the upper bounds of exponential
loss function, logistic loss function, hinge loss functions, etc can
be considered.

5. EXPERIMENTS
We conducted experiments to test the performances of the learn-

ing to rank methods of SVMmap, AdaRank, PermuRank, Ranking
SVM, and RankBoost.

AdaRank and PermuRank can optimize any evaluation measure
in [0,+1]. In our experiments, we chose MAP as the evaluation
measure for them, denoted as AdaRank.MAP and PermuRank.MAP
respectively. For AdaRank, we utilized features as weak rankers.

As measures for evaluation, we actually used MAP and NDCG
at the positions of 1, 3, 5, and 10.

5.1 Experiment with Letor Data
In the first experiment, we used the Letor benchmark datasets

[18]: OHSUMED, TD2003, and TD2004.
Letor OHSUMED dataset consists of articles from medical jour-

nals. There are 106 queries in the collection. For each query, there
are a number of associated documents. The relevance degrees of
documents with respect to the queries are given by humans, on
three levels: definitely, possibly, or not relevant. There are 16,140
query-document pairs with relevance labels. In Letor, the data is
represented as feature vectors and their corresponding relevance la-
bels. Features in Letor OHSUMED dataset consists of ‘low-level’
features and ‘high-level’ features. Low-level features include term
frequency (tf), inverse document frequency (idf), document length
(dl), and their combinations. High-level features include BM25 and
LMIR scores. In total, there are 25 features.

Letor TD2003 and TD2004 datasets are from the topic distilla-
tion task of TREC 2003 and TREC 2004. TD2003 has 50 queries
and TD2004 has 75 queries. The document collection is a crawl of
the .gov domain. For each query, there are about 1,000 associated
documents. Each query document pair is given a binary judgment:
relevant or irrelevant. The features of Letor TD2003 and TD2004
datasets include low-level features such as term frequency (tf), in-
verse document frequency (idf), and document length (dl), as well
as high-level features such as BM25, LMIR, PageRank, and HITS.
In total, there are 44 features.

0

0.1

0.2

0.3

0.4

0.5

0.6

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

RankBoost

RankSVM

AdaRank.MAP

SVM-map

PermuRank.MAP

Figure 4: Ranking accuracies on Letor OHSUMED data.

We conducted 5-fold cross validation experiments, following the
guideline of Letor. Figure 4 shows the results on Letor OHSUMED
dataset in terms of MAP and NDCG, averaged over five trials. In
calculation of MAP, we viewed ‘definitely’ and ‘partially relevant’
as relevant. (We tried treating ‘partially relevant’ as ‘irrelevant’, it
did not work well for SVMmap). Figure 5 and Figure 6 show the
results on the Letor TD2003 and TD2004 datasets.

We also conducted experiments to observe the training curve of
PermuRank.MAP in terms of MAP on OHSUMED. We found that,
in each fold of the cross validation, the training accuracy in terms
of MAP would converge after 40 ∼ 100 iterations. Equivalently,
the sizes of the working sets are also 40 ∼ 100, which is signifi-
cantly smaller than n!, where n denotes the number of documents
associated with the query. Similar results were also observed in the
experiments on TD2003 and TD2004.

On OHSUMED, the direct optimization methods of SVMmap,
AdaRank, and PermuRank almost always outperform the baselines
of Ranking SVM and RankBoost. We conducted t-tests on the im-
provements between the methods in terms of NDCG@1. The re-
sults show that on OHSUMED, the improvements of the direct op-
timization methods over the baselines are statistically significant
(p-value < 0.05). The t-test results also show that no statistically
significant difference exists among the performances of the direct
optimization methods.

However, on TD2003 and TD2004 all the t-tests show that there
is no statistically significant difference among the performances of
all the methods. This is because the numbers of queries in TD2003
and TD2004 are too small, which is a common problem for the
major publicly available datasets.

5.2 Experiment with WSJ and AP Data
In the second experiment, we made use of the WSJ and AP

datasets used in [27].
The WSJ and AP datasets are from the TREC ad-hoc retrieval

track. WSJ contains news articles by the Wall Street Journal, and
AP contains 158,240 news articles of Associated Press. 200 queries
are selected from the TREC topics (No.101 ∼ No.300). Each query
has a number of documents associated and they are labeled as ‘rel-
evant’ or ‘irrelevant’. As features, we adopted those used in docu-
ment retrieval [5] and [27]. They are tf (term frequency), idf (in-
verse document frequency), dl (document length), and BM25. De-
tails of the datasets and features can be found in [5, 27].

WSJ and AP data were split into four even subsets and 4-fold
cross-validation experiments were conducted. Figure 7 and Fig-

111

basic loss function

(Equation 5)

type one bound type two bound

exponential logistic

AdaRank

loss function as type two bound

(Equation 6)

logistic

exponential
hinge

r·[1 - x]+

hinge

[r - x]+

SVM
map

PermuRank

Figure 3: Relation between upper bounds.

0

0.1

0.2

0.3

0.4

0.5

0.6

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

RankBoost

RankSVM

AdaRank. MAP

SVM-map

PermuRank.MAP

Figure 5: Ranking accuracies on Letor TD2003 data.

0

0.1

0.2

0.3

0.4

0.5

0.6

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

RankBoost

RankSVM

AdaRank.MAP

SVM-map

PermuRank.MAP

Figure 6: Ranking accuracies on Letor TD2004 data.

ure 8 respectively show the results in terms of MAP and NDCG,
averaged over four trials.

The results show that the direct optimization methods of SVMmap

and PermuRank almost always outperform the baselines of Rank-
ing SVM and RankBoost on WSJ and AP. With the help of t-
test, we confirmed that the improvements of the SVMmap and Per-
muRank over the baselines are statistically significant (p-value <
0.05). Furthermore, SVMmap and PermuRank work equally well,
without statistically significant difference between their performances.
In addition, this time AdaRank does not perform as well as ex-
pected: its performance is similar to the baselines, and significantly
worse than SVMmap and PermuRank.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

RankBoost

RankSVM

AdaRank.MAP

SVM-map

PermuRank.MAP

Figure 7: Ranking accuracies on WSJ data.

0

0.1

0.2

0.3

0.4

0.5

0.6

MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

RankBoost

RankSVM

AdaRank.MAP

SVM-map

PermuRank.MAP

Figure 8: Ranking accuracies on AP data.

5.3 Summary of Results
Table 2 and Table 3 show the ranking accuracies of the five

methods on the datasets in terms of MAP and NDCG@3, respec-
tively. Ranks of the five methods based on their performances
on the datasets are also shown. The top ranked methods on the
five datasets are highlighted. Note that the results on TD2003 and
TD2004 are not statistically reliable; we list them here only for
reference. From the results, we can conclude that the direct opti-
mization methods of SVMmap, AdaRank, and PermuRank perform
better than the baselines. Also, we conclude that these direct opti-
mization methods themselves perform equally well.

112

Table 2: Ranking accuracies in terms of MAP
OHSUMED WSJ AP TD2003 TD2004

SVMmap 0.4456(2) 0.4406(2) 0.4208(3) 0.2554(3) 0.3804(2)

AdaRank 0.4419(4) 0.4287(3) 0.4233(2) 0.1373(5) 0.3308(5)

PermuRank 0.4495(1) 0.4617(1) 0.4527(1) 0.2768(1) 0.3636(3)

RankSVM 0.4469(3) 0.4218(4) 0.4144(4) 0.2564(2) 0.3505(4)

RankBoost 0.4403(5) 0.4203(5) 0.4081(5) 0.2125(4) 0.3835(1)

Table 3: Ranking accuracies in terms of NDCG@3
OHSUMED WSJ AP TD2003 TD2004

SVMmap 0.4669(4) 0.5867(1) 0.5415(2) 0.4014(1) 0.4586(2)

AdaRank 0.4803(1) 0.5547(3) 0.5010(3) 0.2912(4) 0.4017(5)

PermuRank 0.4764(2) 0.5846(2) 0.5765(1) 0.3823(2) 0.4467(3)

RankSVM 0.4649(5) 0.5069(5) 0.4653(5) 0.3787(3) 0.4092(4)

RankBoost 0.4726(3) 0.5362(4) 0.4902(4) 0.2704(5) 0.4640(1)

6. CONCLUSION AND FUTURE WORK
In this paper, we have studied the direct optimization approach

to learning to rank, in which one trains a ranking model that can
directly optimize the evaluation measures used in IR.

Previously several methods of direct optimization such as SVMmap

and AdaRank have been proposed. However, further theoretical
and empirical investigations on this approach are still needed. In
this paper we have tried to clarify many of the problems with re-
gard to the direct optimization approach. We believe that this is
extremely important for enhancing the state-of-the-art in learning
to rank.

We conducted a theoretical analysis on the direct optimization
approach. According to our study, the direct optimization approach
is one that minimizes the basic loss function defined on the IR mea-
sures. It turns out that existing methods of AdaRank and SVMmap

try to minimize two types of upper bounds upon the basic loss func-
tion, respectively called type one bound and type two bound in the
paper. With this analysis we are also able to derive a new direct
optimization algorithm, called PermuRank.

We have also conducted empirical studies on AdaRank, SVMmap,
and PermuRank using a number of benchmark datasets. Experi-
mental results show that the direct optimization methods of SVMmap,
AdaRank, and PermuRank can always perform better than the con-
ventional methods of Ranking SVM and RankBoost. Furthermore,
these direct optimization methods themselves can work equally well.

Future directions for this research include studying the tightness
of different upper bounds upon the basic loss function and improv-
ing the framework so that more algorithms can be analyzed and
compared.

7. ACKNOWLEDGMENTS
We thank Andrew Arnold, Lex Stein, Tao Qin, and Dwight Daniels

for their valuable comments and suggestions to this paper.

8. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information

Retrieval. Addison Wesley, May 1999.
[2] W. Banzhaf, F. D. Francone, R. E. Keller, and P. Nordin.

Genetic programming: an introduction: on the automatic
evolution of computer programs and its applications. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.

[3] C. Burges, R. Ragno, and Q. Le. Learning to rank with
nonsmooth cost functions. In Advances in Neural
Information Processing Systems 18, pages 395–402. MIT
Press, Cambridge, MA, 2006.

[4] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In Proceedings of the 22nd international
conference on Machine learning, pages 89–96, New York,
NY, USA, 2005.

[5] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon.
Adapting ranking SVM to document retrieval. In
Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information
retrieval, pages 186–193, New York, NY, USA, 2006.

[6] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to
rank: from pairwise approach to listwise approach. In
Proceedings of the 24th international conference on Machine
learning, pages 129–136, New York, NY, USA, 2007.

[7] D. Cossock and T. Zhang. Subset ranking using regression.
In Proceedings of the 19th Annual Conference on Learning
Theory, pages 605–619, 2006.

[8] H. M. de Almeida, M. A. Gonçalves, M. Cristo, and
P. Calado. A combined component approach for finding
collection-adapted ranking functions based on genetic
programming. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 399–406, New
York, NY, USA, 2007.

[9] W. Fan, P. Pathak, and L. Wallace. Nonlinear ranking
function representations in genetic programming-based
ranking discovery for personalized search. Decis. Support
Syst., 42(3):1338–1349, 2006.

[10] Y. Freund, R. D. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research, 4:933–969, 2003.

[11] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

[12] G. Fung, R. Rosales, and B. Krishnapuram. Learning
rankings via convex hull separation. In Advances in Neural
Information Processing Systems 18, pages 395–402. MIT
Press, Cambridge, MA, 2006.

[13] R. Herbrich, T. Graepel, and K. Obermayer. Large Margin
rank boundaries for ordinal regression. MIT Press,
Cambridge, MA, 2000.

[14] K. Jarvelin and J. Kekalainen. IR evaluation methods for
retrieving highly relevant documents. In Proceedings of the
23rd annual international ACM SIGIR conference on
Research and development in information retrieval, pages
41–48, New York, NY, USA, 2000.

[15] T. Joachims. Optimizing search engines using clickthrough
data. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 133–142, New York, NY, USA, 2002.

[16] J. Lafferty and C. Zhai. Document language models, query
models, and risk minimization for information retrieval. In
Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information
retrieval, pages 111–119, New York, NY, USA, 2001.

[17] Q. Le and A. Smola. Direct optimization of ranking
measures. Technical report, 2007.

[18] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor:
Benchmark dataset for research on learning to rank for
information retrieval. In Proceedings of SIGIR 2007
Workshop on Learning to Rank for Information Retrieval
(LR4IR 2007), 2007.

113

[19] D. Metzler. Direct maximization of rank-based metrics.
Technical report, CIIR Technical Report, 2005.

[20] J. M. Ponte and W. B. Croft. A language modeling approach
to information retrieval. In Proceedings of the 21st annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 275–281, New
York, NY, USA, 1998.

[21] T. Qin, X.-D. Zhang, D.-S. Wang, T.-Y. Liu, W. Lai, and
H. Li. Ranking with multiple hyperplanes. In Proceedings of
the 30th annual international ACM SIGIR conference on
Research and development in information retrieval, pages
279–286, New York, NY, USA, 2007.

[22] S. E. Robertson and D. A. Hull. The TREC-9 filtering track
final report. In Proceedings of the 9th Text REtrieval
Conference, 2000.

[23] M. Taylor, J. Guiver, S. Robertson, and T. Minka. Softrank:
Optimising non-smooth rank metrics. In Proceedings of
SIGIR 2007 Workshop on Learning to Rank for Information
Retrieval (LR4IR 2007), 2007.

[24] A. Trotman. Learning to rank. Inf. Retr., 8(3):359–381, 2005.
[25] M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y. Ma.

Frank: a ranking method with fidelity loss. In Proceedings of
the 30th annual international ACM SIGIR conference on
Research and development in information retrieval, pages
383–390, New York, NY, USA, 2007.

[26] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large margin methods for structured and interdependent
output variables. J. Mach. Learn. Res., 6:1453–1484, 2005.

[27] J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 391–398, New
York, NY, USA, 2007.

[28] J.-Y. Yeh, J.-Y. Lin, H.-R. Ke, and W.-P. Yang. Learning to
rank for information retrieval using genetic programming. In
Proceedings of SIGIR 2007 Workshop on Learning to Rank
for Information Retrieval (LR4IR 2007), 2007.

[29] H. Yu. SVM selective sampling for ranking with application
to data retrieval. In Proceeding of the eleventh ACM
SIGKDD international conference on Knowledge discovery
in data mining, pages 354–363, New York, NY, USA, 2005.

[30] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support
vector method for optimizing average precision. In
Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information
retrieval, pages 271–278, New York, NY, USA, 2007.

[31] Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and
G. Sun. A general boosting method and its application to
learning ranking functions for web search. In Advances in
Neural Information Processing Systems 20, pages
1697–1704. MIT Press, Cambridge, MA, 2008.

Appendix
Proof of Theorem 1.

P. Without loss of generality, assume that we have a query
q with n associated documents d1, d2, · · · , dn.

With the use of model f , the relevance scores of the n documents
become s1 = f (q, d1) = w>φ(q, d1), s2 = f (q, d2) = w>φ(q, d2), · · · , sn =

f (q, dn) = w>φ(q, dn).

With the use of F and the features defined in Equation (2), F(q,d, π)
can be written as

F(q,d, π) = w>
1

n(q) · (n(q) − 1)

∑

k,l:k<l

[zkl(φ(q, dk) − φ(q, dl))]

=
1

n(q) · (n(q) − 1)

∑

k,l:k<l

[
zkl(w>φ(q, dk) − w>φ(q, dl))

]

=
1

n(q) · (n(q) − 1)

∑

k,l:k<l

[zkl(sk − sl)],

(12)

where zkl = +1 if π(k) < π(l), and zkl = −1 otherwise. Since π
is only related to the variables zkl’s in the equation, the equation is
maximized w.r.t. π, if and only if all the terms in the summation
are not negative.

Next, we prove that the permutation given by model f is equiva-
lent to the permutation given by model F, and vice versa.

1. τ is obtained by sorting documents in descending order with
f (q, di)(i = 1, · · · , n). We have τ(k) < τ(l) ⇒ sk ≥ sl, for
k, l = 1, · · · , n. According to the definition of zkl, we have
zkl(sk − sl) = |sk − sl| ≥ 0 for all k, l = 1, · · · , n, given τ.
Since all the terms in the summation of Equation (12) are not
negative, F is maximized: τ = arg maxτ∈Π F(q,d, τ) = σ.

2. σ is obtained by maximizing F: σ = arg maxσ∈Π F(q,d, σ).
Based on the analysis above, we know the maximum is achieved
when all of the terms in the summation are not negative: zkl(sk−
sl) = |sk−sl| for all k, l = 1, · · · , n. According to the definition
of zkl, for all k, l = 1, · · · , n, we have: (a) sk > sl ⇒ σ(k) <
σ(l); and (b) sk = sl ⇒ σ(k) < σ(l) or σ(k) > σ(l). (a) and
(b) mean σ can also be obtained by ranking the documents
according to their relevance scores, i.e., τ = σ.

Summarizing 1 and 2, we conclude that with the same parameter
vector w, the ranking models f and F generate the same ranking
result.

Proof of Theorem 2.
P. Let

l(qi) = max
π∗i ∈Π∗i ;πi∈Πi\Π∗i

(
E(π∗i , yi) − E(πi, yi)

) · �(F(qi,di, π
∗
i) − F(qi,di, πi)

) ≤ 0
�
,

and r(qi) = 1 − E(σi, yi), where σi is the permutation selected for
query qi by model F. There are two cases:

Case 1 σi ∈ Π∗i : If σi ∈ Π∗i , E(σi, yi) = E(π∗i , yi) = 1, it is obvious
that r(qi) = 1 − E(σi, yi) = 0 and l(qi) ≥ 0. Thus we have
l(qi) ≥ 0 = r(qi).

Case 2 σi < Π∗i : Sinceσi = arg maxσ∈Πi F(q,d, σ), we have F(q,d, π∗i)−
F(q,d, σi) ≤ 0. Thus

l(qi) ≥ max
π∗i ∈Π∗i

(
E(π∗i , yi) − E(σi, yi)

) · �(F(qi,di, π
∗
i) − F(qi,di, σi)

) ≤ 0
�

= max
π∗i ∈Π∗i

(
E(π∗i , yi) − E(σi, yi)

)

= r(qi).

Summarizing case 1 and case 2, we obtain
m∑

i=1

l(qi) ≥
m∑

i=1

r(qi).

114

