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ABSTRACT
Nowadays, many platforms provide users with both search and
recommendation services as important tools for accessing infor-
mation. The phenomenon has led to a correlation between user
search and recommendation behaviors, providing an opportunity
to model user interests in a fine-grained way. Existing approaches
either model user search and recommendation behaviors separately
or overlook the different transitions between user search and rec-
ommendation behaviors. In this paper, we propose a framework
named UniSAR that effectively models the different types of fine-
grained behavior transitions for providing users a Unified Search
AndRecommendation service. Specifically, UniSARmodels the user
transition behaviors between search and recommendation through
three steps: extraction, alignment, and fusion, which are respec-
tively implemented by transformers equipped with pre-defined
masks, contrastive learning that aligns the extracted fine-grained
user transitions, and cross-attentions that fuse different transitions.
To provide users with a unified service, the learned representations
are fed into the downstream search and recommendation models.
Joint learning on both search and recommendation data is employed
to utilize the knowledge and enhance each other. Experimental
results on two public datasets demonstrated the effectiveness of
UniSAR in terms of enhancing both search and recommendation
simultaneously. The experimental analysis further validates that
UniSAR enhances the results by successfully modeling the user
transition behaviors between search and recommendation.

CCS CONCEPTS
• Information systems → Recommender systems.

∗Corresponding author. Work partially done at Engineering Research Center of Next-
Generation Intelligent Search and Recommendation, Ministry of Education.
Work done when Teng Shi and Zihua Si were interns at Kuaishou.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’24, July 14–18, 2024, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0431-4/24/07
https://doi.org/10.1145/3626772.3657811

KEYWORDS
Recommendation; Search; Contrastive Learning

ACM Reference Format:
Teng Shi, Zihua Si, Jun Xu, Xiao Zhang, Xiaoxue Zang, Kai Zheng, Dewei
Leng, Yanan Niu, and Yang Song. 2024. UniSAR: Modeling User Transition
Behaviors between Search and Recommendation. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR ’24), July 14–18, 2024, Washington, DC, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3626772.3657811

1 INTRODUCTION
Search engines and recommender systems have become important
tools for users to access information. Many commercial platforms,
such as YouTube, TikTok, and Kwai, have provided both search and
recommendation (S&R) services in one app, blending the bound-
aries between users’ S&R behaviors. In these apps, usersmay further
search for related items after browsing their preferred items, or they
might explore similar items following a search for a specific item.
These phenomena indicate that understanding the user behavior
transitions between S&R services is highly beneficial for modeling
user interests.

Early studies like JSR [41, 42] optimize S&R models by a joint
training loss, where both models share item representations. Re-
cently, researchers have paid attention to modeling user behaviors
in two scenarios. SESRec [27] and UnifiedSSR [38] proposed to
capture user interests from S&R behaviors separately with distinct
encoders. Meanwhile, USER [40] proposed to mix the S&R his-
tories into one sequence according to timestamp and leverage a
single encoder.

Despite their effectiveness, existing studies have no mechanism
to handle the fine-grained user transitions between S&R explicitly.
The mixture of search and recommendation scenarios in one app
makes user behaviors much more complex than those of a single
search engine or recommender system. For example, users may
switch to search/recommendation services if the current recom-
mendation/search results cannot satisfy their needs well, leading to
a large number of transition behaviors. Specifically, as illustrated in
Figure 1, a typical user may exhibit four types of behaviors: (1) stay-
ing in the search scenario and issuing new queries (denoted as s2s);
(2) keeping browsing new items in the recommendation scenario
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Timeline

Forrest Gump Harry Potter Ⅱ Harry Potter Ⅲ Sherlock Ⅰ

Search 

History

Harry Potter Ⅰ Sherlock Ⅲ The Avengers Ⅳ Sherlock Ⅱ

Recommend 

History

r2s: User searched “Harry Potter Ⅱ” 

after she browsed “Harry Potter Ⅰ”

s2s: User searched “Harry Potter Ⅲ” 

after she searched “Harry Potter Ⅱ”

s2r: User browsed “Sherlock Ⅱ” 

after she searched “Sherlock Ⅰ”

r2r: User browsed “Sherlock Ⅲ” 

after she browsed “Sherlock Ⅱ”

Figure 1: An example of the user search and recommendation
history in an App with both search and recommendation
services. The user exhibits four types of transition behaviors,
as shown by four arrows.

(denoted as r2r); (3) searching for certain items after browsing rec-
ommended ones, driven by new information needs (transits from
recommendation to search, denoted as r2s); and (4) browsing the
recommended items after searching, as they align well with user
interests (transits from search to recommendation, denoted as s2r).

We conducted an analysis based onKuaiSAR [29] to showwhether
the information needs of a user also changed when she transits be-
tween search and recommendation. For example, given a randomly
sampled set of recommended and clicked items (current item), we
calculated the percentage that the immediate preceding clicked
item is correlated1, grouped by the preceding scenario (search or
recommendation). From the results of the left two columns of Fig-
ure 2, we can see that if the user’s preceding scenario is also the
recommendation (no scenario transition), the correlated percentage
is 7.99%. However, if the user’s preceding scenario is search (transit
from search to recommendation), the correlated percentage drops
to 4.86%. Similarly, given a clicked item in search, we also calcu-
lated the aforementioned two percentages, shown in the right two
columns of Figure 2. We can see that if the user preceding scenario
is the same (i.e., search), the correlated percentage is 17.14%. The
number drops to 3.67% if the preceding scenario is different (i.e.,
recommendation). From the analysis, we conclude that it has much
more possibility that a user has some new information needs if she
transits between S&R. The phenomenon motivates the necessity of
fine-grained modeling of user transition behaviors.

This paper proposes an approach named UniSAR which ex-
plicitly models different types of fine-grained user transition be-
haviors for both S&R. UniSAR primarily models user transitions
through three components: extraction, alignment, and fusion. (1) In
the extraction, the chronologically sorted S&R history is fed into a
transformer equipped with the mask mechanism. The mask mech-
anism enables attention calculations between different behaviors,
aiding in the extraction of r2s and s2r transitions. Additionally,
the S&R histories are separately inputted into two other transform-
ers to extract s2s and r2r transitions. (2) The alignment aims to
align transitions from the same scenarios with those from different
scenarios (more likely indicating new information needs) to en-
able the model to learn relationships between different transitions.

1Two items are considered correlated if they are within the same category.
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Figure 2: The percentage of the immediately preceding
clicked item correlates with the current item.

Specifically, contrastive learning is employed to align r2s with s2s
and s2r with r2r, enabling the model to comprehend relationships
between them. (3) The fusion utilizes the cross-attention to fuse
r2s and s2s, resulting in the representation of search. At the same
time, another cross-attention is used to fuse s2r and r2r, achieving
the representation of recommendation. The two representations
constitute the overall user representation.

These representations, along with candidate items and queries,
can be used to predict user preferences, as have been used in tra-
ditional search and recommendation models. As an example, we
jointly train UniSAR on S&R data, enabling its application in both
scenarios. MMoE [21, 31] is employed to alleviate the seesaw phe-
nomenon for multi-task training.

The major contributions of the paper are summarized as follows:
• UniSAR proposes three components of extraction, alignment,
and fusion, to effectively capture the fine-grained transitions be-
tween users’ S&R behaviors. We leverage different transformers
to extract four transitions and contrastive learning techniques to
align them. Cross-attention mechanisms are further used to fuse
different transitions.
• UniSAR is trained jointly on search and recommendation tasks
and can be applied to both scenarios, effectively utilizing knowledge
from each to enhance the other.
• Experiment results on two public datasets demonstrate the effec-
tiveness of UniSAR. UniSAR has outperformed not just the tradi-
tional models for a single scenario but also surpassed the existing
joint search and recommendationmodels, achieving state-of-the-art
(SOTA) performance.

2 RELATEDWORK
Sequential Recommendation. Sequential recommendation aims
to model user historical behaviors to capture users’ dynamic prefer-
ences. Early works [24] adopt the Markov Chain to learn item tran-
sition probability. With the advancement of deep learning, various
works have been proposed to model user historical behaviors using
neural networks, including methods based on Recurrent Neural
Network (RNN) [15, 18], Convolutional Neural Network (CNN) [32],
Transformer [16, 28], Multilayer Perceptron (MLP) [47], and Graph
Neural Networks (GNN) [5, 37], etc. In addition to employing better
neural network architectures, some studies have introduced addi-
tional self-supervised signals through contrastive learning [7, 12]
to help the training of recommendation models [8, 23, 39]. Unlike
these methods, we leverage search history to enhance S&R tasks.
Personalized Search. The goal of personalized search is to pro-
vide relevant items based on the user’s searched queries. Early
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works [1, 3] only considered the similarity between queries and
items, such as QEM [1] and DREM [3]. To better understand users’
search intent, the personalized search begins to incorporate user
profiles and their search histories [1, 2, 4, 9, 20]. HEM [2] introduces
user embeddings. It learns representations of users and items based
on reviews through a generative language model. AEM [1] further
incorporates user search histories. It employs an attention mecha-
nism to aggregate the user history. ZAM [1] builds upon AEM by
incorporating a zero vector to control the degree of personalization.
TEM [4] replaces the attention mechanism in AEM with a trans-
former. Unlike existing approaches, we introduce recommendation
history to perform both S&R tasks.
Joint Search and Recommendation. In recent years, there has
been a trend toward integrating S&R. These works primarily fall
into two categories: (a) Search enhanced recommendation [14, 25,
27, 30, 36]. This type of work utilizes search data as supplemen-
tary information to enhance the recommendation performance.
IV4Rec [25, 26] utilizes causal learning, treating user-searched
queries as instrumental variables to reconstruct user and item
embeddings. Query-SeqRec [14] is a query-aware model which
incorporates user queries to model users’ intent. SESRec [27] uses
contrastive learning to disentangle similar and dissimilar interests
between user S&R behaviors. (b) Unified S&R [11, 38, 40, 41, 43].
This kind of work performs joint learning of S&R to enhance the
model performance in both scenarios. JSR [41, 42] simultaneously
trains two models for S&R using a joint loss function. USER [40]
integrates user S&R behaviors and feeds them into a transformer
encoder. UnifiedSSR [38] proposes a dual-branch network to encode
the product history and query history in parallel. In this paper, we
develop a framework that utilizes a unified set of parameters to
handle both S&R tasks.

3 PROBLEM FORMULATION
Let U,I,Q denote the sets of users, items, and queries, respec-
tively. Each user 𝑢 ∈ U has a chronologically ordered interac-
tion history 𝑆𝑢 that encapsulates all her past S&R behaviors. 𝑆𝑢 =

{(𝑥1, 𝑏1), (𝑥2, 𝑏2), . . . , (𝑥𝑁 , 𝑏𝑁 )}, where 𝑁 stands for the number
of behaviors exhibited by user 𝑢. The variable 𝑏𝑡 ∈ {1, 0} signifies
the type of the 𝑡-th behavior, with 1 indicating a recommendation
and 0 indicating a search. Here, 𝑥𝑡 denotes the 𝑡-th behavior:

𝑥𝑡 =

{
𝑖𝑡 , if 𝑏𝑡 = 1 (recommendation),
⟨𝑞𝑡 ,𝐶𝑞𝑡 ⟩, if 𝑏𝑡 = 0 (search),

where 𝑖𝑡 ∈ I represents the 𝑡-th interacted item, and 𝑞𝑡 ∈ Q is the
𝑡-th searched query, 𝐶𝑞𝑡 = {𝑖1, 𝑖2, . . . , 𝑖𝑁𝑞𝑡

} are the 𝑁𝑞𝑡 items that
𝑢 clicked after issuing query 𝑞𝑡 . Please note that 𝐶𝑞𝑡 could be an
empty set, indicating that 𝑢 may not click any items (𝑁𝑞𝑡 = 0) after
issuing 𝑞𝑡 .

The unified S&R interactions, denoted asD = D𝑅
⋃D𝑆 , contain

the recommendation datasetD𝑅 = {(𝑢, 𝑖𝑁+1, 𝑞, 𝑆𝑢 , 𝑦𝑅𝑢,𝑖𝑁 +1,𝑞
)𝑘 }

|D𝑅 |
𝑘=1

and the search dataset D𝑆 = {(𝑢, 𝑖𝑁+1, 𝑞, 𝑆𝑢 , 𝑦𝑆𝑢,𝑖𝑁 +1,𝑞
)𝑘 }

|D𝑆 |
𝑘=1 . Here,

𝑦𝑅
𝑢,𝑖𝑁 +1,𝑞

and𝑦𝑆
𝑢,𝑖𝑁 +1,𝑞

are user𝑢’s preference score for the next item
𝑖𝑁+1 ∈ I after issuing query 𝑞 ∈ Q in recommendation and search
scenarios, respectively. It’s worth noting that 𝑞 is empty for the
recommendation scenario. The objective is to train on dataset D

to find the optimal function 𝑓Θ that predicts 𝑦𝑅
𝑢,𝑖𝑁 +1,𝑞

and 𝑦𝑆
𝑢,𝑖𝑁 +1,𝑞

based on the history 𝑆𝑢 . The function can be formulated as follows:[
𝑦𝑅𝑢,𝑖𝑁 +1,𝑞

, 𝑦𝑆𝑢,𝑖𝑁 +1,𝑞

]
= 𝑓Θ (𝑢, 𝑖𝑁+1, 𝑞, 𝑆𝑢 ),

where 𝑓Θ denotes our unified model with parameters Θ. It’s impor-
tant to note that 𝑓Θ have two outputs:𝑦𝑅

𝑢,𝑖𝑁 +1,𝑞
for recommendation

and 𝑦𝑆
𝑢,𝑖𝑁 +1,𝑞

for search.

4 OUR APPROACH
This section introduces the proposed method UniSAR. UniSAR’s
overall architecture is shown in Figure 3. UniSAR first converts the
input data into dense representations. Then, it employs three dis-
tinct transformers using the mask mechanism to separately extract
different transitions between user S&R behaviors. Subsequently,
contrastive learning is used to align different transitions to learn
the relationships between them. Cross-attentions are also used to
fuse these different transitions to obtain the final representations
of S&R histories. Following this, an attention mechanism is used to
aggregate the historical representations. Finally, UniSAR is jointly
trained on S&R data, enabling its application in both scenarios.
MMoE is employed to address the seesaw phenomenon for multi-
task training.

4.1 Embedding Module
4.1.1 Embedding Layer. We have three embedding tables:M𝑈 ∈
R |U |×𝑑 ,M𝐼 ∈ R | I |×𝑑 andM𝑊 ∈ R |W|×𝑑 for users, items, and the
words of all queries. Here, W is the set composed of all the words
included in the queries. 𝑑 is the embedding dimension. Given a user
and an item, through the lookup operation, we can get their embed-
dings: e𝑢 ∈ R𝑑 and e𝑖 ∈ R𝑑 . For each query 𝑞, it contains several
words {𝑤1,𝑤2, . . . ,𝑤 |𝑞 | } ⊆ W. Due to the infrequency of repeated
queries in the search data and the typically brief nature of each
query, lacking discernible sequential patterns as noted in [6, 38], we
derive the query embedding directly by performing mean pooling
over the word embeddings: e𝑞 = Mean(e𝑤1 , e𝑤2 , . . . , e𝑤|𝑞 | ) ∈ R𝑑 ,
where e𝑤𝑡

∈ R𝑑 refers to the ID embedding of the 𝑡-th word.
Regarding the embeddings of behaviors within the user history

𝑆𝑢 , we directly use the item embeddings as the embeddings for
recommendation behaviors. For search behaviors, we combine the
query embeddings with the mean pooling of clicked item embed-
dings to form the embeddings. The process is detailed below:

e𝑥𝑡 =

{
e𝑖𝑡 , if 𝑏𝑡 = 1 (recommendation),
e𝑞𝑡 +Mean(𝐶𝑞𝑡 ), if 𝑏𝑡 = 0 (search),

(1)

where Mean(𝐶𝑞𝑡 ) = Mean(e𝑖1 , e𝑖2 , . . . , e𝑖𝑁𝑞𝑡
). Following this, we

obtain the representation E𝑢 = [e1, e2, . . . , e𝑁 ]⊺ ∈ R𝑁×𝑑 for the
user history 𝑆𝑢 .

4.1.2 Query-Item Contrastive Learning. Search and recommenda-
tion behaviors exhibit distinct characteristics. Most notably, search
behavior includes queries, while recommendation does not. Merg-
ing these behaviors directly poses a challenge for the model to cap-
ture the transitions between S&R. Hence, we employ contrastive
learning to align the representations of queries and items into the
same space. This enables the model to capture the relationship
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Figure 3: The architecture of UniSAR. (a) Model workflow; (b) Prediction layer; (c) User transition modeling.

between S&R behaviors better. Moreover, this approach helps the
model comprehend the relevance between queries and items, which
is crucial for search performance.

For the ⟨𝑞,𝐶𝑞⟩ pairs specifically, we treat the query 𝑞 and items
in 𝐶𝑞 as positive samples, while randomly sampling other queries
and items as negative samples. The contrastive loss is:

LRel = −

∑︁
𝑖∈𝐶𝑞

log
exp(sim(e𝑞, e𝑖 )/𝜏1)∑

𝑖−∈Ineg exp(sim(e𝑞, e𝑖− )/𝜏1)

+
∑︁
𝑖∈𝐶𝑞

log
exp(sim(e𝑞, e𝑖 )/𝜏1)∑

𝑞−∈Qneg exp(sim(e𝑞− , e𝑖 )/𝜏1)

 ,
(2)

where 𝜏1 is a learnable temperature coefficient, Ineg and Qneg are
the set of randomly sampled negative items and queries, respec-
tively. Here, sim(a, b) = tanh(aWb𝑇 ) computes the similarity be-
tween a ∈ R𝑑 and b ∈ R𝑑 . The tanh is the activate function and
W ∈ R𝑑×𝑑 maps a and b to the representation space where the
contrastive loss is calculated.

4.2 Transition Modeling
In this section, we introduce the transition modeling module in
UniSAR, which explicitly models different types of fine-grained
user transition behaviors between S&R. It consists of three compo-
nents: (1) The extraction utilizes transformers equipped with mask
mechanism to extract different transitions; (2) The alignment em-
ploys contrastive learning to align different transitions to learn the
relationships between them; (3) The fusion uses cross-attention to
fuse different transitions to get the overall user representations.

4.2.1 Transition Extraction. Firstly, in order to model the transi-
tions of s2s and r2r, we extract the S&R sub-histories from 𝑆𝑢 ,
denoted as 𝑆𝑠 = {(𝑥1, 𝑥2, . . . , 𝑥𝑁𝑠

)} and 𝑆𝑟 = {(𝑥1, 𝑥2, . . . , 𝑥𝑁𝑟
)}.

These sub-histories, 𝑆𝑠 or 𝑆𝑟 , contain all chronologically ordered
search or recommendation behaviors within 𝑆𝑢 , respectively. Here,
𝑁𝑠 and 𝑁𝑟 represent the number of search and recommendation
behaviors within the user history 𝑆𝑢 , and they satisfy the condition
𝑁𝑠 + 𝑁𝑟 = 𝑁 . Then, according to Eq. (1), we derive their corre-
sponding representations: E𝑠 = [e1, e2, . . . , e𝑁𝑠

]⊺ ∈ R𝑁𝑠×𝑑 and
E𝑟 = [e1, e2, . . . , e𝑁𝑟

]⊺ ∈ R𝑁𝑟 ×𝑑 .

To capture the sequential relationships, we further introduce po-
sitional embeddings: P𝑠 ∈ R𝑁𝑠×𝑑 , P𝑟 ∈ R𝑁𝑟 ×𝑑 , and P𝑢 ∈ R𝑁×𝑑 for
the sequences 𝑆𝑠 , 𝑆𝑟 and 𝑆𝑢 respectively. The final representations
of the three sequences are computed as follows:

Ê𝑠 = E𝑠 + P𝑠 , Ê𝑟 = E𝑟 + P𝑟 , Ê𝑢 = E𝑢 + P𝑢 .

For the transitions of s2s and r2r, they respectively model the
transition within the S&R sub-histories 𝑆𝑠 and 𝑆𝑟 . So we feed rep-
resentations Ê𝑠 and Ê𝑟 of 𝑆𝑠 and 𝑆𝑟 into two transformer [34] en-
coders for their modeling. Each encoder consists of a Multi-head
Self-Attention (MSA) layer and a Feed-Forward layer (FFN). For
s2s, MSA takes Ê𝑠 as the input, where Q = K = V = Ê𝑠 . For r2r,
MSA takes Ê𝑟 as its input. The details are as follows:
Hs2s = FFN𝑠 (MSA𝑠 (Ê𝑠 , Ê𝑠 , Ê𝑠 ) ), Hr2r = FFN𝑟 (MSA𝑟 (Ê𝑟 , Ê𝑟 , Ê𝑟 ) ), (3)

where Hs2s ∈ R𝑁𝑠×𝑑 and Hr2r ∈ R𝑁𝑟 ×𝑑 capture the transitions for
s2s and r2r, respectively.

For the transitions of r2s and s2r, they capture the cross-behavior
transitions between search and recommendation. Directly inputting
the mixed sequence 𝑆𝑢 into a transformer makes it challenging to
directly model these transitions because its output would not only
include r2s and s2r but also s2s and r2r, causing redundancy with
Hs2s and Hr2r. To disentangle different transitions and enable the
model to better capture different transitions separately, we intro-
duce a mask matrixM ∈ {0, 1}𝑁×𝑁 . The values ofM are as follows:

M𝑖 𝑗 =

{
0, if 𝑏𝑖 = 𝑏 𝑗 ,

1, if 𝑏𝑖 ≠ 𝑏 𝑗 .

We feed the representations Ê𝑢 of 𝑆𝑢 andM into a single transformer
encoder. Within this encoder, the MSA takes Ê𝑢 andM as inputs,
where Q = K = V = Ê𝑢 :

H𝑚 = FFN𝑚 (MSA𝑚 (Ê𝑢 , Ê𝑢 , Ê𝑢 ,M)) . (4)

With the incorporation of the mask matrixM in the input ofMSA𝑚 ,
the computation of the attention in MSA𝑚 is as follows:

Attention(Ê𝑢 , Ê𝑢 , Ê𝑢 ,M) = Softmax
(
Ê𝑢 Ê

⊺
𝑢 /

√︁
𝑑/ℎ ⊙ M

)
Ê𝑢 ,

where ⊙ denotes the Hadamard product, and ℎ denotes the number
of heads in the MSA𝑚 . Figure 4 further demonstrates the varied at-
tention computation methods in different MSA after incorporating
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masks. In Eq. (4), H𝑚 ∈ R𝑁×𝑑 captures transitions specific to r2s
and s2r, respectively. The mask matrix M ensures that attention
is computed exclusively among different behaviors within MSA𝑚 ,
thereby effectively capturing the transitions for r2s and s2r. Finally,
we extract the search and recommendation sub-sequences from
H𝑚 , yielding Hr2s ∈ R𝑁𝑠×𝑑 and Hs2r ∈ R𝑁𝑟 ×𝑑 . These matrices
encapsulate the transitions for r2s and s2r.

4.2.2 Transition Alignment. Based on the representations of these
four different types of transitions extracted, we further align the
varying representations of the same behavior types among users.
For example, Hs2s and Hr2s represent the transitions from search
and recommendation behaviors in the context of search history,
respectively. Considering that both of them contain information
related to the search history, we guide the model to bring their
semantics closer. We utilize contrastive learning to align transitions
from the same scenarios with those from different scenarios, en-
abling the model to learn the correlations between them. This can
facilitate a better fusion of various transitions, which is discussed
in Section 4.2.3.

Specifically, for Hs2s and Hr2s, they respectively involve transi-
tions from the same and different scenarios in terms of search
history. We treat them as positive samples for each other and
align them. Initially, we perform mean pooling on Hs2s and Hr2s
to obtain hs2s ∈ R𝑑 and hr2s ∈ R𝑑 , i.e., hs2s = Mean(Hs2s) and
hr2s = Mean(Hr2s). Then, we treat hs2s and hr2s as positive sam-
ples, while h−s2s and h

−
r2s from other users’ histories within the same

batch as negative samples. Then, the contrastive loss is:

L𝑆
Align = −

[
log

exp(sim(hs2s, hr2s)/𝜏2)∑
h−r2s∈Hr2s

neg
exp(sim(hs2s, h−r2s)/𝜏2)

+ log
exp(sim(hs2s, hr2s)/𝜏2)∑

h−s2s∈Hs2s
neg

exp(sim(h−s2s, hr2s)/𝜏2)

]
,

(5)

where 𝜏2 is a learnable temperature coefficient, H r2s
neg and H s2s

neg are
the set of in-batch negative samples, and the function sim(a, b) is
defined the same as in Eq. (2). Similarly, we obtain the contrastive
lossL𝑅

Align forHr2r andHs2r. The total contrastive loss for transition
alignment is:

LAlign = L𝑆
Align + L𝑅

Align . (6)

4.2.3 Transition Fusion. After extracting and learning the relation-
ships between different transitions, we fuse them to get the overall
user representation. Specifically, we fuse Hs2s with Hr2s as well as
Hr2r with Hs2r to derive the final representations for S&R histories.
Drawing inspiration from prior work onmulti-modal fusion [10, 19],
we utilize Multi-head Cross-Attention (MCA) for this fusion. For
search history, MCA takes Hs2s with Hr2s as the inputs for fusion,
where Q = Hr2s,K = V = Hs2s. While, for recommendation history,
MCA takes Hr2r with Hs2r as the inputs. The specific process is:

F𝑠 = MSA𝑠 (Hs2s,Hs2s,Hs2s ), V𝑠 = FFN𝑠 (MCA𝑠 (Hr2s, F𝑠 , F𝑠 ) ),
F𝑟 = MSA𝑟 (Hr2r,Hr2r,Hr2r ), V𝑟 = FFN𝑟 (MCA𝑟 (Hs2r, F𝑟 , F𝑟 ) ),

(7)

where V𝑠 ∈ R𝑁𝑠×𝑑 and V𝑟 ∈ R𝑁𝑟 ×𝑑 are the final representations
for S&R histories, respectively. The two representations constitute
the overall user representation.

R S RS…

R S RS…

(b) MSA𝑚(a) MSA𝑟

R S RS…

R S RS…

(c) MSA𝑠

R S RS…

R S RS…

Figure 4: The attention computation methods differ across
various MSA (Multi-head Self-Attention) modules within
UniSAR. InMSA𝑟 orMSA𝑠 , attention is specifically computed
within recommendation or search behaviors to extract r2r
or s2s, respectively, as detailed in Eq. (3); MSA𝑚 computes
attention exclusively between different behaviors, outlined
in Eq. (4), thereby extracting r2s and s2r.

4.3 Model Prediction and Training
4.3.1 History Aggregation. After obtaining representations V𝑠 and
V𝑟 in Eq. (7) for S&R histories, when predicting whether the next
item 𝑖 will be clicked, we aggregate the history using attention
mechanism to extract user interest from the transitions concerning
the target item 𝑖 . The calculation of the attention is as follows:

v𝑠 = V⊺𝑠 Softmax(V𝑠W𝑠e𝑖 ), v𝑟 = V⊺𝑟 Softmax(V𝑟W𝑟 e𝑖 ) (8)

where W𝑠 ∈ R𝑑×𝑑 and W𝑟 ∈ R𝑑×𝑑 are learnable parameters,
v𝑠 ∈ R𝑑 and v𝑟 ∈ R𝑑 are the aggregated representations for S&R
histories. The attention mechanism in Eq. (8) computes the similar-
ities between the target item and historical behaviors; the higher
the similarities, the greater the influence of historical behaviors on
the transition to the target item.

4.3.2 Prediction. UniSAR adopts a unified model for S&R tasks.
Building on the previous modules’ modeling of user transition
behaviors, we can predict two tasks separately. In the field of infor-
mation retrieval, a multi-task framework [21, 31, 35] is commonly
used to predict different tasks. Considering that direct making
predictions faces challenges due to the differences in data distribu-
tions between S&R, we employ a multi-task approach to separately
predict the two tasks, incorporating behavior-shared and behavior-
specific modules.

UniSAR employs a single model to predict both S&R tasks. We
introduce a learnable query 𝑞𝜙 ∈ R𝑑 for the recommendation
scenario to unify the input for predictions between S&R. Firstly,
we concatenate representations of users, items, queries, and the
S&R histories to obtain a shared bottom representation, denoted as
X𝑏 = Concat(e𝑢 , e𝑖 , e𝑞, v𝑠 , v𝑟 ), where X𝑏 ∈ R𝑑𝑏 . Here 𝑑𝑏 = 5 × 𝑑 .
Next, to balance the relationship between different tasks, we exploit
the Multi-gated Mixture of Experts (MMoE) [21, 31] technique. We
denote the shared and specific expert sets for S&R as O𝑚 , O𝑠 , and
O𝑟 , where the number of experts for each is represented by 𝑛𝑚 , 𝑛𝑠 ,
and 𝑛𝑟 , respectively. The output of the MMoE module consists of
two scores, corresponding to S&R, calculated as follows:

𝑦𝑆𝑢,𝑖,𝑞 =
∑︁
𝑜∈O𝑠

𝑔𝑠𝑜 (X𝑏 )𝑜 (X𝑏 ) +
∑︁

𝑜∈O𝑚

𝑔𝑠𝑜 (X𝑏 )𝑜 (X𝑏 ),

𝑦𝑅𝑢,𝑖,𝑞 =
∑︁
𝑜∈O𝑟

𝑔𝑟𝑜 (X𝑏 )𝑜 (X𝑏 ) +
∑︁

𝑜∈O𝑚

𝑔𝑟𝑜 (X𝑏 )𝑜 (X𝑏 ),
(9)

where 𝑔𝑠 (X𝑏 ) = Softmax(W𝑠X𝑏 ) and 𝑔𝑟 (X𝑏 ) = Softmax(W𝑟X𝑏 )
are the gating networks for S&R, W𝑠 ∈ R(𝑛𝑠+𝑛𝑚 )×𝑑𝑏 and W𝑟 ∈
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Table 1: Comparison of different joint S&R methods. "Ex-
plicit" denotes whether the model explicitly considers the
differences between different transitions. "One Model" refers
to whether a unified set of parameters is used to simultane-
ously serve both search and recommendation scenarios.

Methods Transition Modeling Task One Model
r2r s2s r2s s2r Explicit R. S.

JSR [41] % % % % % " " %

SESRec [27] " " % % % " % "

UnifiedSSR [38] " " % % % " " %

USER [40] " " " " % " " %

UniSAR (ours) " " " " " " " "

R(𝑛𝑟+𝑛𝑚 )×𝑑𝑏 are used for linear transformation. Here 𝑜 (·) denotes
the expert networks, Multi-Layer Perceptrons (MLPs) in our imple-
mentation. 𝑔𝑠𝑜 and 𝑔𝑟𝑜 are the weights of expert 𝑜 (·) generated by
the gating network for S&R.

4.3.3 Training. Following previous works [27, 45, 46], we utilize
binary cross-entropy loss to optimize our model:

L𝑆
Click = − 1

|D𝑆 |
∑︁

(𝑢,𝑖,𝑞) ∈D𝑆

𝑦𝑆𝑢,𝑖,𝑞 log(�̂�𝑆𝑢,𝑖,𝑞 ) + (1 − 𝑦𝑆𝑢,𝑖,𝑞 ) log(1 − �̂�𝑆𝑢,𝑖,𝑞 ),

L𝑅
Click = − 1

|D𝑅 |
∑︁

(𝑢,𝑖,𝑞) ∈D𝑅

𝑦𝑅𝑢,𝑖,𝑞 log(�̂�𝑅𝑢,𝑖,𝑞 ) + (1 − 𝑦𝑅𝑢,𝑖,𝑞 ) log(1 − �̂�𝑅𝑢,𝑖,𝑞 ),

(10)
where L𝑆

Click and L𝑅
Click are the click loss for S&R respectively.

The total loss for S&R includes the click loss in Eq. (10) and the
contrastive loss in Eq. (2) and Eq. (6):

L𝑆 = L𝑆
Click + 𝛼LRel + 𝛽LAlign,

L𝑅 = L𝑅
Click + 𝛼LRel + 𝛽LAlign,

(11)

where 𝛼 and 𝛽 are the hyper-parameters for contrastive loss. Finally,
the overall loss for joint training of S&R is:

LTotal = L𝑅 + 𝛾L𝑆 + 𝜆 | |Θ| |2, (12)

where 𝛾 controls the trade-off between S&R, Θ denotes the param-
eters of UniSAR, and 𝜆 controls the 𝐿2 regularization.

Although S&R tasks are related, they have fundamental distinc-
tions. Training a single model for two tasks is not trivial. Joint
training may lead to a seesaw effect, where an improvement in one
task’s performance may lead to a decline in the other (see (4) in
Section 5.3). Our introduction of the MMoE module is crucial for
model convergence during training.

4.4 Discussion
Table 1 summarized the ability of UniSAR and existing joint S&R
models in terms of modeling user S&R histories in user modeling.
JSR [41, 42] neglects the transitions between users’ different be-
haviors. SESRec [27] and UnifiedSSR [38] separately input the S&R
histories into two encoders, modeling the transitions of s2s and
r2r. USER [40] mixes the user S&R histories into one sequence
and implicitly captures the transitions through a single encoder.
In USER, different transitions are modeled in the same manner.
UniSAR explicitly models fine-grained user transitions in different
ways, which considers the differences between various transitions.

Table 2: Statistics of the datasets used in this paper.

Dataset #Users #Items #Queries #Action-S #Action-R

KuaiSAR 25,877 6,890,707 453,667 5,059,169 14,605,716
Amazon 68,223 61,934 4,298 934,664 989,618

Furthermore, JSR employs two sets of parameters that are jointly
trained by sharing the item set. SESRec utilizes search as supple-
mentary information to enhance recommendations. USER and Uni-
fiedSSR derive two parameter sets for S&R tasks via pre-training
and fine-tuning. In this paper, we leverage MMoE to achieve op-
timal performance in both S&R tasks using a single unified set of
parameters, reducing parameter redundancy. In summary, UniSAR
is more efficient and effective.

5 EXPERIMENTS
We conducted experiments on two public datasets to evaluate the
performance of UniSAR. The source code is available at https://
github.com/TengShi-RUC/UniSAR.

5.1 Experimental Setup
5.1.1 Dataset. The experiments were conducted on the following
publicly available datasets. The statistics of these datasets are shown
in Table 2.

KuaiSAR2 [29]: The dataset offers authentic user S&R behaviors.
As for pre-processing, we only kept users who exhibited both S&R
behaviors and filtered data of the last two days due to their sparse
search behaviors. Within the remaining data, following [16, 47], we
filtered items and users with fewer than five interaction records.
Following [44], we used the data from the last day for testing, the
second last day for validation, and the rest for training.

Amazon3 [13, 22]: We also adopted a widely accepted semi-
synthetic dataset. Following previous works [1, 2, 27, 41], we gen-
erated synthetic search behaviors for this recommendation dataset.
We adopt the “Kindle Store” subset of the five-core Amazon dataset
that covers data in which all users and items have at least five
interactions. We strictly adhered to the established practices, as
mentioned in [27], for data construction and the leave-one-out
strategy to split the dataset.

5.1.2 Evaluation Metrics. Following previous works [27, 28, 47],
we utilize the ranking metrics, Hit Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG). We report HR at positions
{1, 5, 10} and NDCG at positions {5, 10}. Following the common
strategy [16, 27, 47], we pair the ground-truth item with 99 ran-
domly sampled negative items that the user has not interacted with.

5.1.3 Baselines. In this work, we compare UniSAR with the fol-
lowing state-of-the-art methods.

Firstly, we compare our methods with the following sequen-
tial recommendation models that do not utilize search data,
including (1) DIN [46] uses a local activation unit to adaptively
learn the representation of user interests; (2) GRU4Rec [15] ap-
plies GRUs to model users’ interaction history. (3) SASRec [16]
is a unidirectional Transformer-based model; (4) BERT4Rec [28]

2https://kuaisar.github.io/
3http://jmcauley.ucsd.edu/data/amazon/
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Table 3: Comparisons of the overall recommendation performance of different methods on both datasets. The best and the
second-best methods are highlighted in bold and underlined fonts, respectively. “*” indicates that improvements over the
second-best methods are statistically significant (𝑡-test, 𝑝-value< 0.01).

Datasets Metric Sequential Recommendation Joint Search and Recommendation

DIN GRU4Rec SASRec BERT4Rec FMLP-Rec NRHUB Query-SeqRec SESRec JSR USER UnifiedSSR UniSAR

KuaiSAR

HR@1 0.1629 0.1097 0.1249 0.1061 0.1370 0.1243 0.1166 0.1827 0.1754 0.1489 0.1225 0.1990*
HR@5 0.4509 0.3764 0.4065 0.3699 0.4292 0.3862 0.3920 0.4956 0.4791 0.4086 0.3981 0.5169*
HR@10 0.6179 0.5788 0.6007 0.5885 0.6159 0.5610 0.5890 0.6643 0.6453 0.5627 0.5939 0.6792*
NDCG@5 0.3104 0.2435 0.2671 0.2381 0.2851 0.2572 0.2552 0.3432 0.3315 0.2820 0.2617 0.3632*
NDCG@10 0.3643 0.3087 0.3298 0.3083 0.3453 0.3136 0.3186 0.3978 0.3853 0.3318 0.3249 0.4158*

Amazon
(Kindle Store)

HR@1 0.2159 0.1725 0.2059 0.2481 0.1991 0.1889 0.2186 0.2726 0.2346 0.2361 0.2013 0.3010*
HR@5 0.5170 0.4949 0.5295 0.5311 0.5356 0.4988 0.5401 0.5623 0.5467 0.5441 0.5196 0.5874*
HR@10 0.6525 0.6548 0.6772 0.6658 0.6879 0.6503 0.6860 0.6864 0.6779 0.6854 0.6707 0.7020*
NDCG@5 0.3726 0.3388 0.3747 0.3954 0.3739 0.3487 0.3859 0.4245 0.3970 0.3964 0.3662 0.4513*
NDCG@10 0.4165 0.3907 0.4225 0.4390 0.4232 0.3977 0.4333 0.4648 0.4396 0.4422 0.4151 0.4885*

uses a cloze objective loss for sequential recommendation by the
bidirectional Transformer; and (5) FMLPRec [47] is an all-MLP
model with learnable filters;

Secondly, we compare our methods with the following person-
alized search models that do not utilize recommendation data,
including (6) QEM [1] only considers the matching scores between
items and queries; (7)HEM [2] is a latent vector-based personalized
model; (8) AEM [1] is an attention-based personalized model that
aggregates the user’s historical interacted items with the current
query; (9) ZAM [1] improves AEM by concatenating a zero vector
to the item list. (10) TEM [4] upgrades the attention layer in AEM
with transformer encoder; and (11) CoPPS [9] uses contrastive
learning techniques;

Finally, we compare our methods with the following two classes
of joint S&R models: (a) search enhanced recommendation:
(12) NRHUB [36] is a news recommendation model leveraging
heterogeneous user behaviors; (13) Query-SeqRec [14] is a query-
aware sequential model which incorporates queries into user be-
haviors using transformers; (14) SESRec [27] learns disentangled
search representation for recommendation using contrastive learn-
ing; (b) unified S&R: (15) JSR [41] is a general framework which
optimizes a joint loss. Following [25], the recommendation model
in JSR is implemented using DIN in our experiment; (16)USER [40]
integrates the user’s behaviors in S&R into a heterogeneous behav-
ior sequence. (17) UnifiedSSR [38] jointly learns the user behavior
history in both S&R scenarios.

5.1.4 Implementation Details. All hyper-parameters for the base-
lines are searched according to the settings in the original papers.
The embedding dimension 𝑑 is set to 64 for both the KuaiSAR and
Amazon datasets. For both datasets, the maximum length for S&R
histories is set to 30. The numbers of shared and specific experts,
𝑛𝑚 , 𝑛𝑠 , and 𝑛𝑟 in Section 4.3.2, are both set to 4. The tempera-
ture parameters, 𝜏1 in Eq. (2) and 𝜏2 in Eq. (6), are tuned among
[0.1 : +0.1 : 1.0]. The weight 𝛼 and 𝛽 in Eq. (11) are tuned among
{1𝑒-1, 1𝑒-2, 1𝑒-3, 1𝑒-4, 1𝑒-5}. The weight𝛾 in Eq. (12) is tuned among
[0.01, 1.0]. The batch size is set as 1024. We train all the models
with 100 epochs and adopt early-stopping to avoid over-fitting.
Adam [17] is used to conduct the optimization. The learning rate is
tuned among {1𝑒-3, 1𝑒-4, 1𝑒-5}, and 𝜆 in Eq. (12) is searched from
{1𝑒-4, 1𝑒-5, 1𝑒-6}.

5.2 Experimental Results
Tables 3 and 4 report the results on two datasets of S&R tasks,
respectively. From the experimental results, we can observe that:
• Firstly, compared to existing joint S&R models, UniSAR has
achieved optimal results on all datasets. Overall, UniSAR outper-
forms the SOTA models, passing the significance test (𝑝-value
< 0.01) in most cases. This demonstrates the effectiveness of mod-
eling various user transitions and introducing MMoE to facilitate
joint training.
• Secondly, compared to existing models for sequential recommen-
dation or personalized search, UniSAR has consistently yielded
superior results. This demonstrates that the integration of S&R
in UniSAR benefits both tasks. Furthermore, we can observe that
not all models combining S&R yield better results than typical
sequential recommendation or personalized search models. For in-
stance, NRHUB and Query-SeqRec don’t exhibit this trend. This
indicates that simply blending S&R data doesn’t suffice. Instead, a
fine-grained consideration of transitions between user S&R behav-
iors is necessary.
• Finally, on KuaiSAR data, the model jointly trained for S&R sig-
nificantly outperforms the personalized search model that only
considers search history. This is because, as indicated by the statis-
tics in Table 2, the KuaiSAR search data is extremely sparse. Joint
training allows the utilization of recommendation information to
alleviate the sparsity of search data, thus leading to a substantial
improvement in search performance.

5.3 Ablation Study
We conducted an ablation study on KuaiSAR datasets to investigate
the effectiveness of different modules in UniSAR.

(1) Transition Extraction: UniSAR extracts four types of tran-
sitions from S&R behaviors, and we removed each transition indi-
vidually to verify its role. After removing a transition, we remove
its corresponding alignment loss and modify some module inputs to
keep the architecture’s consistency. For instance, the variant ‘w/o
r2r’ removes L𝑅

Align in Eq. (6) and replaces Hr2r with Hs2r in Eq. (7).
The first four rows in Table 5 show that removing any transition
leads to decreased performances, verifying that each transition is
beneficial for both tasks.

To further validate the effectiveness of our design in extracting
two types of cross-behavior transitions (i.e., r2s& s2r), we removed
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Table 4: Comparisons of the overall search performance of different methods on both datasets. The best and the second-best
methods are highlighted in bold and underlined fonts, respectively. “*” indicates that improvements over the second-best
methods are statistically significant (𝑡-test, 𝑝-value< 0.01).

Datasets Metric Personalized Search Joint Search and Recommendation

QEM HEM AEM ZAM TEM CoPPS JSR USER UnifiedSSR UniSAR

KuaiSAR

HR@1 0.2944 0.3337 0.2703 0.2815 0.3045 0.3117 0.4543 0.4628 0.4389 0.5282*
HR@5 0.6020 0.6505 0.5956 0.6117 0.6502 0.6616 0.7162 0.7304 0.7377 0.7476*
HR@10 0.7182 0.7653 0.7182 0.7344 0.7632 0.7707 0.7961 0.8149 0.8320 0.8369*
NDCG@5 0.4575 0.5029 0.4415 0.4560 0.4887 0.4977 0.5962 0.6069 0.5991 0.6417*
NDCG@10 0.4953 0.5400 0.4812 0.4959 0.5254 0.5331 0.6221 0.6342 0.6297 0.6708*

Amazon
(Kindle Store)

HR@1 0.2772 0.2497 0.2916 0.2954 0.4090 0.4052 0.3176 0.4123 0.3663 0.5343*
HR@5 0.7100 0.6778 0.7095 0.7109 0.8185 0.8169 0.7038 0.7631 0.7744 0.8190
HR@10 0.8186 0.8267 0.8443 0.8468 0.9051 0.9051 0.8225 0.8697 0.8812 0.8977
NDCG@5 0.5066 0.4736 0.5114 0.5147 0.6303 0.6281 0.5173 0.6000 0.5847 0.6875*
NDCG@10 0.5422 0.5221 0.5554 0.5590 0.6587 0.6570 0.5563 0.6348 0.6196 0.7132*

Table 5: Ablation study on the KuaiSAR dataset. “w/o” indi-
cates the corresponding module in UniSAR is removed.

Model
Recommendation Search

NDCG@5 NDCG@10 NDCG@5 NDCG@10

UniSAR 0.3632 0.4158 0.6417 0.6708
w/o r2r 0.3258 0.3798 0.6007 0.6319
w/o r2s 0.3606 0.4136 0.6376 0.6690
w/o s2r 0.3512 0.4036 0.6292 0.6584
w/o s2s 0.3399 0.3941 0.6404 0.6706
w/o mask M 0.3503 0.4024 0.6217 0.6507
w/o LAlign 0.3458 0.3956 0.6069 0.6381
w/o LRel 0.3472 0.3988 0.6177 0.6465
w/o MCA𝑟 0.3384 0.3924 0.6094 0.6397
w/o MCA𝑠 0.3561 0.4091 0.6257 0.6545
w/o MMoE 0.3132 0.3692 0.6143 0.6438
w/o Joint Training 0.3569 0.4105 0.5850 0.6167

the mask matrix M in Eq. (4). The fifth row’s results in Table 5
confirm the effectiveness of separate and fine-grained modeling
cross-behavior transitions and the other two types of transitions.

(2) Transition Alignment: We investigated the impact of
transition alignment in Eq. (6) by removing the alignment loss
LAlign. We observed that removing LAlign would lead to a decrease
in the performance of both S&R. This indicates thatLAlign can assist
the model in learning the correlations between different transitions,
leading to an effective fusion of transitions.

Additionally, we investigated the impact of LRel in Eq. (2). Re-
moving LRel also leads to a decrease in S&R performance. This is
because LRel helps the model learn the relevance between different
queries and items, which forms the basis for the model’s semantic
alignment of different transitions.

(3) Transition Fusion: We explore the effects of cross-attention
in Section 4.2.3, which are used for transition fusion to get the
overall user representations. The results are shown in the lower
part of Table 5. ‘w/o MCA𝑟 ’ indicates that we replace this module
with an element-wise addition ofHs2s withHr2s. Similar operations
are done for ‘w/o MCA𝑠 ’. From the results, we observed that the
model’s performance declined on both tasks, demonstrating the
rationality of using cross-attention for fusion.

(4) Multi-task Training: We explore the impact of MMoE and
the joint training of two tasks. The results are presented in the
bottom part of Table 5. ‘w/o MMoE’ means that we directly remove
the MMoE module, and employ two separate MLPs to predict S&R
tasks, respectively. Two tasks share most model parameters except
these two MLPs. ‘w/o Joint Training’ denotes the separate training
of S&R, resulting in two sets of model parameters dedicated to each
task. Since each set of parameters handles a single task, MMoE is
no longer necessary and hence removed. The performance of these
two variants was significantly lower than UniSAR, indicating that
removing MMoE or removing joint training adversely affects the
model performance.

Further, by comparing these two variants, we observed a seesaw
phenomenon in model performance when training on both tasks.
‘w/o MMoE’ leads to a significant improvement in search and a
large decline in recommendation compared to ‘w/o Joint Training’.
This means that joint training improves the performance of one
task but reduces that of the other. This is because, in KuaiSAR, the
volume of interactions in recommendation data is much greater
than that in search data. There is a trade-off between two tasks.
Incorporating MMoE helps us overcome this issue.

5.4 Experimental Analysis
5.4.1 Impact of LAlign on the Learned Transitions. To further ex-
plore the impact of the contrastive learning in Section 4.2.2 on
the learned representations of different transitions, we computed
the cosine similarity between hr2s and hs2s, as well as between
hs2r and hr2r, with and without introducing the contrastive loss.
Figure 5 depicts the distributions of the cosine similarities. With-
out the loss LAlign, the similarity was primarily distributed around
zero, indicating the lack of correlation between different transitions.
However, the similarity increased after integrating the contrastive
loss LAlign. This phenomenon indicates that LAlign enables the
model to capture similarities between different transitions.

We additionally employed t-SNE [33] to visualize the represen-
tations of different transitions, as shown in Figure 6. Without intro-
ducing the contrastive loss, we can observe that different transitions
were relatively scattered, with transitions like s2r and s2s unable
to cluster effectively. However, after incorporating the contrastive
loss, various transitions were clustered more densely and compactly.
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Figure 5: The histogramof the cosine similarities between the
hidden representations, with andwithout introducingLAlign.
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Figure 6: The t-SNE visualization of different transitions’
hidden representations.

Specifically, representations of s2r and r2r became closer. Since s2r
and r2s originate from the same transformer, their representations
tend to be closer. Overall, the inclusion of LAlign facilitates a better
understanding and learning of different transitions.

5.4.2 Impact of Hyper-parameters. We analyzed the effects of vary-
ing 𝛼 and 𝛽 on the S&R performance, as depicted in Figure 7. While
adjusting one parameter, the other remained constant at 1e-3 for 𝛼
and 1e-1 for 𝛽 . Figure 7(a) illustrates that an increase in the weight 𝛼
of LRel corresponds to improved search performance but decreased
recommendation performance. This is because LRel tends to bring
the query closer to its corresponding item, enabling the model to
better learn their relevance. Search performance heavily relies on
the relevance between queries and items. Regarding recommen-
dation, LRel can augment performance to some extent. However,
an excessively large 𝛼 may hinder the optimization of click losses
as defined in Eq. (11), consequently leading to a decline in overall
performance. Concerning the weight 𝛽 of LAlign, optimal S&R per-
formance is achieved at a value of 1e-1. When 𝛽 is too small, the
model cannot effectively learn the similarity of different transitions,
failing to efficiently fuse them.

We further investigated the impact of 𝛾 in Eq. (12) on the S&R
performance, as illustrated in Figure 8. It can be observed that
without MMoE for joint training, an increase in 𝛾 enhances search
performance while diminishing recommendation effectiveness. Ad-
ditionally, in this scenario, the recommendation performance falls
below that of a model trained solely on recommendation data. This
signifies the seesaw phenomenon between S&R, highlighting the
difficulty of effectively handling both tasks simultaneously through
direct joint training without using MMoE. With the introduction
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Figure 7: The recommendation and search performance with
different values of 𝛼 and 𝛽 in Eq. (11)
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Figure 8: The recommendation and search performance with
different values of 𝛾 in Eq. (12)

of MMoE, UniSAR manages to achieve better results in most cases
compared to models trained separately on S&R data. This further
demonstrates the significance of MMoE in learning shared and spe-
cific information between S&R, thereby simultaneously enhancing
the performance of both tasks.

6 CONCLUSION
In this paper, we propose UniSAR which models fine-grained tran-
sitions between user S&R behaviors. UniSAR employs different
transformers equipped with the mask mechanism to extract four
transitions between S&R and utilizes contrastive learning tech-
niques to align them to learn the relationships between different
transitions. Additionally, cross-attentions are employed to fuse dif-
ferent transitions to get the user representations. UniSAR is jointly
trained on S&R tasks usingMMoE and can be applied to both scenar-
ios, effectively utilizing knowledge from each to enhance the other.
Results on two public datasets validate the effectiveness of UniSAR.
The experimental analysis further illustrates the importance of each
module within UniSAR.
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