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ABSTRACT
Fair re-ranking aims to redistribute ranking slots among items more

equitably to ensure responsibility and ethics. The exploration of

redistribution problems has a long history in economics, offering

valuable insights for conceptualizing fair re-ranking as a taxation

process. Such a formulation provides us with a fresh perspective

to re-examine fair re-ranking and inspire the development of new

methods. From a taxation perspective, we theoretically demonstrate

that most previous fair re-ranking methods can be reformulated

as an item-level tax policy. Ideally, a good tax policy should be

effective and conveniently controllable to adjust ranking resources.

However, both empirical and theoretical analyses indicate that the

previous item-level tax policy cannot meet two ideal controllable

requirements: (1) continuity, ensuring minor changes in tax rates

result in small accuracy and fairness shifts; (2) controllability over

accuracy loss, ensuring precise estimation of the accuracy loss un-

der a specific tax rate. To overcome these challenges, we introduce

a new fair re-ranking method named Tax-rank, which levies taxes

based on the difference in utility between two items. Then, we

efficiently optimize such an objective by utilizing the Sinkhorn al-

gorithm in optimal transport. Upon a comprehensive analysis, Our

model Tax-rank offers a superior tax policy for fair re-ranking, the-

oretically demonstrating both continuity and controllability over

accuracy loss. Experimental results show that Tax-rank outper-

forms all state-of-the-art baselines on two ranking tasks.
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1 INTRODUCTION
Ranking tasks such as recommendation and advertising is important

in personalized information filtering for users [51]. However, recent

studies [12, 35] have revealed that prioritizing ranking accuracy will

lead to significant unfair exposures of items, threatening the ethics

and stability of ranking systems. Recently, many fair re-ranking

methods [12, 35] have been developed to redistribute ranking slots

among items more equitably by transforming the problem into a

resource redistribution problem [49].

The investigation of resource redistribution has a long history

in economics [19, 33], offering economic insights for examining

the task of fair re-ranking. For example, as shown in the left part

of Figure 1 (a), federal taxes are structured to redistribute subsidies

to the poor while aiming to minimize the sacrifice of social welfare.

Similarly, as shown in the right part of Figure 1 (a), the goal of

fair re-ranking is to redistribute items, aiming for a more equitable

distribution of ranking slots, without significantly compromising

ranking accuracy. Since both taxing and fair re-ranking are es-

sentially redistributing resources, we can examine fair re-ranking

from the view of taxation. Intuitively, fair re-ranking can be viewed

as taxing exposure from “rich” items (with more exposure) and

redirects it to “poor” items (have less exposure) in Figure 1 (a).

Viewing fair re-ranking as a taxation process provides a fresh per-

spective to re-examine previous fair re-ranking methods and inspire

new approaches. From a taxation perspective, we can theoretically

show that most previous fair re-ranking methods [15, 31, 35, 48, 49]

can be reformulated as an item-level tax policy, which imposes

an additional tax on each item (see Section 4.1). In economics, a

good tax policy should be effective and conveniently controllable

to adjust ranking resources [19, 33]. However, we observe that the

item-level tax policy derived from previous fair re-ranking methods
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(a) Taxation process V.S. Fair re-ranking

(b) Previous taxation process V.S. Our taxation process

Figure 1: Sub-figure (a) illustrates that fair re-ranking can be
viewed as a taxation process from an economic perspective1.
Sub-figure (b) illustrates that our taxation process exhibits
better continuity compared to previous ones.

fails to meet these two ideal controllability criteria for taxation:

(1) Continuity, implying that slight variations in tax rates lead to

minor shifts in performances. As shown in the left part of Fig-

ure 1 (b), When tax rates vary, previous methods exhibit numerous

breakpoints in fairness and accuracy performance, indicating poor

continuity. (2) Controllability over accuracy loss, ensuring an ac-

curate estimation of accuracy loss caused by a specific tax rate.

However, previous methods are uncertain about such accuracy loss

(refer to Section 4.2 for a more detailed theoretical analysis). These

two requirements are important for a tax policy since continuity

ensures the stability of the tax rate, while controllability over ac-

curacy loss ensures better management of the trade-off between

fairness and accuracy.

Tomeet the two aforementioned essential criteria for the taxation

process for fair re-ranking, in this paper, we introduce a novel fair

ranking method, termed Tax-rank. Differing from the item-level tax

policy, Tax-rank introduces a distinct fair re-ranking optimization

objective, which levies taxes based on the difference in utility (e.g.,
exposure) between two items. A detailed geometric explanation of

such a taxation process is in Section 5.2.1. Upon a comprehensive

analysis, our taxation process presents two key advantages: (1) Tax-

rank demonstrates greater effectiveness as it adheres to continuity

w.r.t. tax rates, as depicted in the right part of Figure 1 (b). (2) Tax-

rank offers enhanced controllability over accuracy loss, as we can

provide an upper bound, showcasing the maximum accuracy loss

across different tax rates. More detailed theoretical analyses are in

Section 5.2.2.

Meanwhile, we propose an effective algorithm to implement the

taxation process of Tax-rank efficiently. We first present an easily

solvable lower-bound function for the optimization objective of

1
Federal taxes of 2016 in the U.S. https://www.cbo.gov.

Tax-rank. However, the solution of the lower-bound function does

not satisfy the ranking constraint, which requires fixed-sized items

(i.e. Top-K ranking) for each user. To solve this issue, we utilize

the Sinkhorn algorithm [43] of optimal transport [37, 38] to project

non-compliant solutions onto solutions that satisfy the constraint.

We summarize the major contributions of this paper as follows:

(1) We re-conceptualize the fair re-ranking task as a taxation

process and re-examine the previous fair re-ranking methods from

a novel taxation perspective.

(2) We introduce a novel fair re-ranking method named Tax-

rank, incorporating a new optimization objective based on the

taxation process and utilizing the Sinkhorn algorithm for efficient

optimization. Theoretical evidence indicates that Tax-rank exhibits

superior continuity and systematic controllability.

(3) We conduct extensive experiments on two publicly available

recommendation and advertising datasets, demonstrating that Tax-

rank outperforms state-of-the-art baselines in terms of both fair

ranking performance and efficiency.

2 RELATEDWORK
Recently, fair re-ranking tasks have become a compelling and

pressing issue, driven by the need for a responsible and trust-

worthy ecosystem [12, 25, 27, 36]. Fairness concept in re-ranking

varies for multi-stakeholders settings [1], such as user-oriented

fairness [3, 24] and item-oriented fairness [35, 42, 47, 49]. The con-

cept of user fairness suggests that ranking models should avoid

delivering significantly disparate outcomes to users based on their

sensitive attributes [24, 30, 46]. On the other hand, item fairness

is more related to distributive justice [22, 45], which requires an

equitable reallocation of ranking results for items within a healthy

ecosystem. In this paper, our primary focus is on applying an eco-

nomic perspective to reconsider item-fair re-ranking tasks.

Regarding item fair re-ranking, previous work can be divided

into two types: one is regularized methods, which used a multi-

task optimization approach with a linear combination of accuracy

and fairness loss functions, incorporating a trade-off coefficient

𝜆 [15, 31, 49]. Another approach employed constraint-based meth-

ods, formulating the task as a constrained optimization problem

to ensure that fairness metrics do not exceed a specified thresh-

old [9, 35, 48, 53]. Formeasuring fairness, both of themethods utilize

different fairness metrics: Ben-Porat and Tennenholtz [5], Biswas

et al. [9], Patro et al. [35] proposed the Shapley value to optimize fair-

ness; Do and Usunier [16] proposed to optimize Gini Index [16], Do

et al. [14], Xu et al. [49] proposed to optimize max-min fairness

function and Jiang et al. [20] suggested to use the variance (dis-

tance) of different item utilities tomeasure the item fairness. Despite

achieving significant performances, existing methods show poor

continuity and systematic controllability under a taxation perspec-

tive for fair re-ranking.

In the economic field, the resource is usually allocated through

first distribution and re-distribution process [21]. In the process

of redistribution, taxation is frequently employed as a mechanism

to redistribute wealth and tackle income inequality [19, 33]. There

are usually two types of taxation methods: (1) flat tax rates, such

as property tax [34], which are designed with different fixed rates

based on the varying amounts of property; (2) progressive tax, such

1495

https://www.cbo.gov


A Taxation Perspective for Fair Re-ranking SIGIR ’24, July 14–18, 2024, Washington, DC, USA

as income taxes [39] and payroll taxes [10], typically involve pro-

gressive tax rates that increase as a taxpayer’s earnings increase.

Process tax often is regarded as a more useful but complex tax-

ation method. Previous tax policies resemble a flat tax, whereas

Tax-rank adopts a closer resemblance to a progressive tax. Finally,

the Tax-rank policy is more closely related to 𝛼-fair optimization

in cooperative games [7, 8]. However, these approaches are not

suitable for fair re-ranking tasks.

3 PROBLEM FORMULATION
We first define some notations for the problem. For vector 𝒙 ∈ R𝑛 ,
let 𝒙𝑖 denote the 𝑖-th element of the vector. For vector 𝒙 ∈ R𝑛×𝑚 ,

let 𝒙𝑖, 𝑗 denote the element of 𝑖-th row and 𝑗-th column.

In this section, we will first formulate the ranking task. LetU
representing the set of users, and I representing the set of items.

When a user 𝑢 ∈ U arrives, the ranking system will give the user

𝑢 a ranking list 𝐿𝐾 (𝑢) ∈ I𝐾 , which has fixed-size 𝐾 items.

Then, we define the item utility in the ranking task. Let 𝒗𝑖 be the
utility of item 𝑖 . In the context of ranking, 𝒗𝑖 is typically defined

as the accumulated utilities of item 𝑖 across all ranking lists when

|U| users arrive (e.g., 𝒗𝑖 could be total exposure or click numbers of

item 𝑖 within a day). Formally, 𝒗𝑖 is defined as 𝒗𝑖 =
∑
𝑢∈U 𝑤𝑢,𝑖𝒙𝑢,𝑖 ,

where 𝒙𝑢,𝑖 = 1 denotes item 𝑖 is in the ranking list of user 𝑢 (i.e.,
𝑖 ∈ 𝐿𝐾 (𝑢)), otherwise, 𝒙𝑢,𝑖 = 0. If 𝒙𝑢,𝑖 = 1, the item 𝑖 will receive

an utility𝑤𝑢,𝑖 . Typically,𝑤𝑢,𝑖 has two possible definitions: (1) item

exposure [35, 49], which implies that if an item is exposed to a

user once, it will gain one unit of utility (i.e., 𝑤𝑢,𝑖 = 1). (2) item

click [28, 52], which implies that if an item is clicked by a user, it

will gain one unit of utility. Since we do not know whether a user

will click an exposed item, we utilize the estimated probability of

a user clicking on an item (i.e., click-through-rate (CTR) value) as
the value of𝑤𝑢,𝑖 ∈ [0, 1].

Finally, the goal of fair re-ranking 𝑓 is to balance the various

utilities of items more equitably. That is, on the one hand, 𝑓 aims

to maximize the weighted sum of their utilities (

∑
𝑖∈I 𝛾𝑖𝒗𝑖 ), where

𝛾𝑖 is the item weight or bidding value [52]. On the other hand, 𝑓

aims to achieve as even utilities (𝒗𝑖 ≈ 𝒗 𝑗 ,∀𝑖, 𝑗 ∈ I) as possible.

4 TAXATION PERSPECTIVE FOR FAIR
RE-RANKING

In this section, we utilize the taxation perspective to re-think the

fair re-ranking problem.

4.1 Fair Re-ranking as Tax Policy
Firstly, the objectives of the previous fair re-ranking can be mainly

divided into either regularization-based optimization [15, 31, 35,

49] or constraint-based optimization [9, 35, 48, 53]. Specifically,

the objectives of regularization-based and constraint-based are

formulated in Equation (1) and Equation (2), respectively:

𝑊1 (𝒙) = max

𝒙∈X
𝑔(𝒗; 𝜆1) =

∑︁
𝑖∈I

𝛾𝑖

∑︁
𝑢∈U

𝑤𝑢,𝑖𝒙𝑢,𝑖 + 𝜆𝑟 (𝒗) , (1)

𝑊2 (𝒙) = max

𝒙∈X
𝑔(𝒗;𝜋) =

∑︁
𝑖∈I

𝛾𝑖

∑︁
𝑢∈U

𝑤𝑢,𝑖𝒙𝑢,𝑖

s.t. 𝑟 (𝒗) ≤ 𝜋
, (2)

where 𝒗𝑖 =
∑
𝑢∈U 𝑤𝑢,𝑖𝒙𝑢,𝑖 , X = {𝒙 |𝒙𝑢,𝑖 = 0/1,∑𝑖∈I 𝒙𝑢,𝑖 = 𝐾} is

the feasible region of variable 𝒙 , 𝜆1 ∈ [0,∞] is a trade-off coefficient,

and 𝜋 is the pre-defined fairness threshold. The function 𝑟 (𝒗) is the
fairness function, which aims to measure the disparity of different

items’ utilities. Note that in previous literature, 𝑟 (𝒗) has many

forms: min𝑖∈I 𝒗𝑖 [9, 35, 49], −
∑
𝑖 |𝑣𝑖 − 𝑣 | [31, 44] and any other

forms [25].

Then, in Theorem 1, we will illustrate that both of the objec-

tives can be interpreted as a taxation process, which imposes an

additional tax rate 𝜆 and a taxation value 𝝁𝑖 on each item 𝑖 .

Theorem 1. Then optimal fair re-ranking result 𝒙 (𝜆) with specific
tax rate 𝜆 can be achieved as:

𝒙∗ (𝜆) = arg max

𝒙∈X

∑︁
𝑢∈U

∑︁
𝑖∈I

𝑠𝑢,𝑖𝒙𝑢,𝑖 , (3)

where 𝑠𝑢,𝑖 = 𝛾𝑖𝑤𝑢,𝑖 + 𝝁𝑖 , and

𝝁 = arg min

𝝁

[ ∑︁
𝑢∈U

𝐾∑︁
𝑘=1

𝑠𝑢,[𝑘 ] +max

𝒗

(
𝜆𝑟 (𝒗) − 𝝁⊤𝒗

) ]
.

In simpler terms, the ranking score is like the original score 𝛾𝑖𝑤𝑢,𝑖
but with the addition of item-level taxation 𝝁𝑖 with the tax rate of
𝜆 ∈ [0,∞]. The tax rate 𝜆 is calculated as

𝜆 =

{
𝜆1, if𝑊1 (𝒙)
arg min𝜆2

[∑
𝑢∈U

∑𝐾
𝑘=1

𝑐𝑢,[𝑘 ] + 𝑟 (𝒗)𝜆2 − 𝜆2𝜋

]
, if𝑊2 (𝒙)

,

where 𝑐𝑢,𝑖 = 𝛾𝑖𝑤𝑢,𝑖 .

The proof of the Theorem 1 can be seen in Appendix A. From

Theorem 1, we can see that previous fair re-ranking methods can

be regarded as an item-level tax policy with the taxation value as

𝝁𝑖 for ranking score 𝑠𝑢,𝑖 . Meanwhile, we find that the tax policy is

a well-studied knapsack problem [41], where we can only choose

the top K items with the highest scores 𝑠𝑢,𝑖 .

4.2 Re-examine Fair Re-ranking
Through examination, we theoretically demonstrate that previous

item-level tax policies of fair re-ranking lack continuity and con-

trollability over accuracy loss.

4.2.1 Non-continuity. In Theorem 2, we will establish the non

Lipschitz continuous [18] of the optimization objective for the

existing taxation w.r.t. the tax rate 𝜆:

Theorem 2. When 𝑟 (𝑣) is not continuous,𝑊1 (𝒙, 𝜆) and𝑊2 (𝒙, 𝜆)
is non Lipschitz continuous wrt the tax rate 𝜆. Formally, ∃𝜀 > 0,∀𝛿 >

0, when |𝜆0 − 𝜆 | < 𝛿 , |𝑊∗ (𝒙, 𝜆) −𝑊∗ (𝒙, 𝜆0) | ≥ 𝜀, where ∗ = 1, 2.

The detailed proof of Theorem 2 can be seen in Appendix B.

Intuitively, the binary variable 𝒙𝑢,𝑖 under the item-level policy

and the non-differentiable property of some 𝑟 (𝒗) lead to the non-

continuity. The Theorem 2 tells us a slight change in tax rates 𝜆

leads to significant shifts in fair re-ranking performances.

4.2.2 Non-controllability over accuracy loss. we will establish the

definition of the price of taxation (POT) [7] as themaximum ranking

accuracy loss across various taxation levels, formulated as the ratio

of ranking accuracy loss to the maximum accuracy:

POT(𝜆) = Acc′ (0) − Acc′ (𝜆)
Acc′ (0) , (4)
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where Acc′ (𝜆) denotes the ranking accuracy (here, accuracy refers

to the overall user-item ranking scores that these items are exposed

to by users) under existing tax rate 𝜆, i.e.,

Acc′ (𝜆) =
∑︁
𝑢∈U

∑︁
𝑖∈I

𝛾𝑖𝑤𝑢,𝑖𝒙
∗ (𝜆)𝑢,𝑖 ,

and 𝒙∗ (𝜆) is the optimal result with specific tax rate 𝜆. Upon ex-

amining Equation (3), it becomes evident that the relationship

between the ranking result 𝒙∗ (𝜆) and the tax rate is non-linear

and non-continuous (refer to Theorem 2 and the non-linear of the

fairness function 𝑟 (𝒗) [35, 49]). Simultaneously, it is noteworthy

that Equation (3) represents a well-studied integral knapsack prob-

lem [41], and obtaining an upper bound for such a non-linear and

non-continuous knapsack problem remains a huge challenge [11].

Therefore, we are uncertain about the extent to which a specific

tax rate will incur accuracy losses.

4.3 Insights from Taxation Perspective
Through the lens of taxation, the fair re-ranking mechanism oper-

ates as a dynamic adjustment tool, adapting to various systematic

objectives during both periods of economic prosperity and down-

turn. During periods of prosperity in the ranking system, there is

typically a surge in user traffic, and providers are willing to offer a

greater variety of items. However, the increased competition during

such periods may result in unfairness, as it can lead to a long-tail

effect and the monopolization of specific items [2]. During such

periods, strategically increasing the tax rate can enhance fairness,

fostering a healthier ecosystem [49]. On the other hand, during

economic downturns in the ranking system, user traffic tends to

decrease, and providers may exhibit reduced enthusiasm for partic-

ipation. In such a period, appropriately reducing tax rates can in-

centivize provider competition, attracting more users to the system

and ensuring economic vitality. Therefore, a good fair re-ranking

method not only needs to be effective but also provide a conve-

niently controllable way to select an appropriate hyper-parameter

(e.g., tax rate) for regulating fairness degree.

5 TAX-RANK
To overcome the previous tax policy issues, we propose an improved

fair re-ranking method named Tax-rank.

5.1 Optimization Objective
In this section, we will first introduce the proposed taxation op-

timization objective of Tax-rank. Drawing inspiration from the

welfare function [8], we levy taxes based on the difference in utility

between two items: tax the higher utility of item 𝑖 and redirect to

the item 𝑗 (i.e., 𝑣𝑖 > 𝑣 𝑗 ) with the value as

𝛾 𝑗
𝛾𝑖
( 𝒗𝑖𝒗𝑗 )

𝑡
. Then the overall

optimization objective will be

𝒙∗ (𝑡) = arg max

𝒙∈X𝑠
𝑓 (𝒙 ; 𝑡) =

{∑
𝑖 𝛾𝑖𝒗

1−𝑡
𝑖
/(1 − 𝑡) if 𝑡 ≥ 0, 𝑡 ≠ 1∑

𝑖 𝛾𝑖 log(𝒗𝑖 ) if 𝑡 = 1

s.t. 𝒗𝑖 =
∑︁
𝑢∈U

𝑤𝑢,𝑖𝒙𝑢,𝑖 , ∀𝑖 ∈ I
, (5)

where X𝑠 = {𝒙 |x𝑢,𝑖 ∈ [0, 1],
∑
𝑖∈I x𝑢,𝑖 = 𝐾,∀𝑢 ∈ U} is the feasible

region of variable 𝒙 . Intuitively, to keep the social welfare function

Ranking Feasible Region

(a) optimal points (b) tax process in geometrics

𝒗𝟏 + 𝒗𝟐 = 𝟐. 𝟓

𝒎𝒊𝒏 𝒗𝟏, 𝒗𝟐 = 𝟏

𝒍𝒐𝒈 𝒗𝟏 + 𝒍𝒐𝒈 𝒗𝟐 = 𝟎. 𝟑

𝒗𝟏 = 𝒗𝟐

𝒗𝟐
𝒗𝟏

=
𝟓

𝟐

𝒗𝟏 + 𝒗𝟐 = 𝟐. 𝟓

Figure 2: Geometric explanation for our taxation process,
which imposes taxes based on between two items.

𝑓 (𝒙 ; 𝑡) unchanged, for every additional unit of utility gained by the
“poor” item 𝑗 , the “rich” item 𝑖 has to pay the tax value of

𝛾 𝑗
𝛾𝑖
( 𝒗𝑖𝒗𝑗 )

𝑡

with their weight 𝛾𝑖 and 𝛾 𝑗 .

Note that, Tax-rank introduces a relaxation of the binary solution

for 𝒙 , transitioning it into a continuous version. Here, 𝒙𝑡 can be

interpreted as the recommendation probability assigned to each

item, allowing us to leverage a multi-nominal sample technique to

generate ranking lists. 𝑡 ∈ [0,∞) represents the tax rate, where a
higher value results in a more fair results.

When 𝑡 = 0, the optimization objective reduces to the accuracy-

first objective; When tax rate 𝑡 = 1, the objective can be reduced to

Nash solution [32], where the tax rate will make the item utilities

proportional to its weight, i.e., 𝒗𝑖 : 𝒗 𝑗 = 𝛾𝑖 : 𝛾 𝑗 ,∀𝑖, 𝑗 ∈ I. When 𝑡

approaches∞, the optimization objective reduces to max-min form

min𝑖∈I 𝒗𝑖 , leading to even utility for every item.

5.2 Optimization Objective Analysis
In this section, we will give a formal analysis of our optimization

objective in a geometric view and its controllable requirements.

5.2.1 Geometric explanation for our taxation process. To gain a

better understanding of Tax-rank, we visualize the geometric to

show our taxation process for taxing the difference in utility be-

tween two items. In Figure 2, the ranking system only has two items

and ranking size 𝐾 = 1. The x-axis 𝒗1 and y-axis 𝒗2 represent the

expected click numbers of items 1 and 2 (see Section 3). We set their

weight 𝛾1 = 𝛾2 = 1. The green area describes the feasible region of

all the possible values of 𝒗1 and 𝒗2 under ranking constraint. The

circle points are optimal solutions under different tax rates 𝑡 . The

line in Figure 2 (b) represents the tangent between the optimization

objective and the feasible region.

In Figure 2 (a), we observe that when 𝑡 = 0 (red points), prior-

itizing overall utility 𝒗1 + 𝒗2 = 2.5; at 𝑡 = 1 (yellow points), the

tax rate will make the item utilities proportional to its weight, i.e.,
𝒗1 : 𝒗2 = 2 : 5. At 𝑡 = ∞ (blue points), the two items will share

the same utility, i.e., 𝒗1 = 𝒗2. In Figure 2 (b), we give a geometric

explanation to show the optimal points change w.r.t. tax rate. From
Figure 2, the optimal points must stay in the boundary lines (i.e.,
Pareto frontier) of the ranking feasible region (see detailed proof

in [7]). Therefore, the optimal points should be the tangent points

between the contours of the optimization objective and the Pareto

front. Let’s consider the taxation process in two-dimensional space.
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For example, in Figure 2 (b), when 𝑡 = 0, the red point is the

tangent point between the red line 𝒗1+𝒗2 = 2.5 and the Pareto front.

When 𝑡 = 1, a tax of
𝒗2

𝒗1

is applied to from 𝒗2 to 𝒗1 along the red line

if 𝒗2 > 𝒗1, which means the slope
𝜕𝒗2

𝜕𝒗1

becomes
𝒗1

𝒗2

. When 𝒗1 > 𝒗2,

similar operation also make the slope
𝜕𝒗2

𝜕𝒗1

becomes
𝒗1

𝒗2

. Then the

taxation process leads to the optimization function of log 𝒗1 + log 𝒗2

(orange line). Similarly, 𝑡 = ∞, a tax of ( 𝑣2

𝑣1

)∞ is applied at each

point on the red line, resulting in a slope
𝜕𝒗2

𝜕𝒗1

of each point become

∞ and 0 for each point when 𝒗2 > 𝒗1 and 𝒗1 > 𝒗2, respectively.

Such taxation process leads to the objective becomes min(𝒗1, 𝒗2)
(blue line). Without loss of generality, tax the value as

𝛾 𝑗
𝛾𝑖
( 𝒗𝑖𝒗𝑗 )

𝑡
for

every 𝒗𝑖 > 𝒗 𝑗 will transform the objective into the Equation (5).

In summary, the tax process of imposing taxes based on the dis-

parity in utility between two items will determine the optimization

objective of Equation (5) by influencing the slope of each point in

the geometric perspective.

5.2.2 Controllable requirements. we demonstrate the optimization

objective meets two ideal controllable requirements: continuous

and controllability over the accuracy loss.

Continuity. Firstly, the Tax-rank policy 𝑓 (𝒙 ; 𝑡) adheres to the

Lipschitz continuity property [18] of the optimization objective

associated with the existing taxation concerning the tax rate 𝑡 . Be-

cause we can easily observe that 𝑓 (𝒙 ; 𝑡) takes an exponential form

w.r.t. 𝑡 , and their first-order derivatives are also continuous [23].

Meanwhile, transforming the binary solution of previous methods

to a continuous solution also ensures feasible region is continuous.

Controllability over accuracy loss. For the bound the maxi-

mum ranking accuracy loss across different taxation degrees under

varying tax rates 𝑡 , we will have the following Theorem:

Theorem 3. The price of taxation (POT) of Tax-rank is bounded:

POT =
Acc(0) − Acc(𝑡)

Acc(0) ≤ 1 −𝑂 ( |U|−
𝑡

1+𝑡 ), (6)

whereAcc(𝑡) denotes the accuracy under Tax-rank tax policy with tax
rate 𝑡 , i.e.,Acc(𝑡) = ∑

𝑢∈U
∑
𝑖∈I 𝛾𝑖𝑤𝑢,𝑖𝒙

∗ (𝑡)𝑢,𝑖 , 𝒙∗ (𝑡) is the optimal
fair re-ranking result with specific tax rate 𝑡 in Equation (5).

Detailed proof can be seen in Appendix C. As we can see from

Theorem 3: when increasing the tax rate 𝑡 in a ranking system, there

is a bound on the rate 1−𝑂 ( |U|−
𝑡

1+𝑡 ) at which ranking utilities will
decrease. The bound offers fair re-ranking systems a controllable

way to determine the appropriate tax rate 𝑡 .

5.3 Algorithm
The overall algorithm workflow can be seen in Algorithm 1. We

observe that directly optimizing the Equation (5) is NP-hard since it

is a non-linear, large-scale, and integral programming [6]. Therefore,

firstly, we construct an easy-solved standard programming (lines

1-2), which is the lower bound function of Equation (5). Then we

apply the OT projection to get the final result (lines 3-9).

5.3.1 Lower Bound Function Construction.

Algorithm 1: Learning algorithm of Tax-rank

Input: User setU, item set I, ranking size 𝐾 , tax rate 𝑡 , OT
coefficient 𝜆𝑜𝑡 , item weight 𝛾𝑖 ,∀𝑖 ∈ I, user-item ranking score

𝑤𝑢,𝑖 ,∀𝑢 ∈ U,∀𝑖 ∈ I
Output: The ranking result 𝐿𝐾 (𝑢),∀𝑢 ∈ U
1: Get the optimal averaged exposure 𝒆∗ from Equation (7).

2: Initialize 𝒎 = 𝐾1, 𝒏 = 𝒆∗,

𝑪𝑢,𝑖 = 𝛾𝑖𝑤𝑢,𝑖 ,∀𝑢 ∈ U,∀𝑖 ∈ I,𝑩 = 𝑒
−𝐶
𝜆𝑜𝑡

3: for 𝑡 = 1, · · · ,𝑇 do
4: 𝒎 = 𝐾1 ⊘ 𝑩𝒏, 𝒏 = 𝒆∗ ⊘ 𝑩𝒎
5: end for
6: 𝒙̃ = diag(𝒎)𝑩diag(𝒏)
7: 𝐿𝐾 (𝑢) = Sample𝑆⊂{1,2,..., | I | }, |𝑆 |=𝐾 𝒙̃𝑢 , ∀𝑢 ∈ U

Lemma 1. There exists 𝜏 > 0, s.t. we have

𝑓 (𝒙 ; 𝑡) ≥ 𝑓 (𝒙 ; 𝑡) = max

𝒆

∑︁
𝑖

𝛾𝑖𝜂𝑖𝑔(𝒆; 𝑡)

s.t.
∑︁
𝑖∈I

𝒆𝑖 = 𝐾, 0 ≤ 𝒆𝑖 ≤ 1, 𝜂𝑖 = 𝜏
∑︁
𝑢∈U

𝑤𝑢,𝑖 ,∀𝑖 ∈ I

𝑔(𝒆; 𝑡) =
{∑

𝑖 𝒆
1−𝑡
𝑖
/(1 − 𝑡) if 𝑡 ≥ 0, 𝑡 ≠ 1∑

𝑖 log(𝒆𝑖 ) if 𝑡 = 1

,

(7)

This lemma can be easily achieved when

∑
𝑢∈U

∑
𝑖∈I 𝑤𝑢,𝑖𝒙𝑢,𝑖 ≥∑

𝑖∈I 𝜂𝑖
∑
𝑢∈U 𝒙𝑢,𝑖 . Let 𝒆∗ be the optimal value of the variable 𝒆,

which represents the accumulated exposure of items over all users.

Then we will apply the Sinkhorn algorithm [38] to project the

averaged exposure 𝒆∗ to recommendation decision variable 𝒙 ∈ X𝑠
discussed in Section 3.

5.3.2 Optimal Transport Projection. We obtain the final ranking re-

sult by utilizing the following sample process, where 𝒙̃ (i.e. ranking

score distribution) is derived from the OT projection process.

𝐿𝐾 (𝑢) = Sample𝑆⊂{1,2,..., | I | }, |𝑆 |=𝐾 𝒙̃𝑢 , ∀𝑢 ∈ U, (8)

where it implies sampling𝐾 non-repeated items to user𝑢 according

to the recommended probability 𝒙̃𝑢,𝑖 ∈ [0, 1] of item 𝑖 .

We construct a matrix 𝑪 = R |U |× |I | , where the element 𝑪𝑢,𝑖 =
𝛾𝑖𝑤𝑢,𝑖 . An OT problem can be formulated as:

𝒙̃ = arg min

𝒙≥0

⟨𝒙,−𝑪⟩ + 𝜆𝑜𝑡𝐻 (𝒙) s.t. 𝒙1 = 𝐾1, 1⊤𝒙 = 𝒆∗ ,

(9)

where 1 denotes a vector of ones, 𝒆∗ denotes the optimal value

of Equation (7) and 𝜆𝑜𝑡 is the coefficient of entropy regularizer.

⟨𝒙,−𝑪⟩ results transport plan lies on the Pareto frontier and𝐻 (𝒙) =∑
𝑢∈U

∑
𝑖∈I 𝒙𝑢,𝑖 log(𝒙𝑢,𝑖 ), which forces the variable 𝒙𝑢,𝑖 into the

feasible region [0, 1]. The constraint condition ensures that the

ranking satisfies the limitation that each user can only be ranked

among the top 𝐾 items, and it also guarantees that the exposure of

each item aligns optimally with the predefined exposure vector 𝒆∗.
This problem can be efficiently solved by the Sinkhorn algo-

rithm [43], where the solution of the form 𝒙̃ = diag(𝒎)𝑩diag(𝒏),
where diag(·) denote the generating diagonalmatrix from vector,𝑩 =

𝑒
−𝐶
𝜆 , and 𝒎 ∈ R |U | , 𝒏 ∈ R | I | , which iteratively computes 𝒎 ←

𝐾1 ⊘ 𝑩𝒏, 𝒏← 𝒆∗ ⊘ 𝑩𝒎, where ⊘ denotes element-wise division.
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Figure 3: Pareto frontier with different top-K ranking under CTR-based settings (i.e.,𝑤𝑢,𝑖 is the CTR value of user-item pair).
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Figure 4: Pareto frontier with different top-K ranking under exposure-based settings (i.e.,𝑤𝑢,𝑖 = 1).

6 EXPERIMENT
Weevaluate Tax-rank using two publicly available ranking datasets

2
.

6.1 Experimental settings
Dataset. The experiments were based on two large-scale, pub-

licly available ranking applications, including: Yelp3: a large-scale
businesses recommendation dataset. It has 154543 samples, which

contain 17034 users, 11821 items. Ipinyou [26]
4
: a large-scale ad-

vertising dataset. We only use the clicked data, which contains

18588 samples, which contains 18565 users, and 149 advertisements.

During the pre-processing step, users and items that had interac-

tions with fewer than 5 items or users were excluded from the

entire dataset to mitigate the issue of extreme sparsity.

Evaluation. As for the evaluation metrics, the performances of

the models were evaluated from two aspects: ranking accuracy, and

fairness degree. As for the ranking accuracy, following the practices

in [48, 50, 52], we utilize excepted Click/Exposure Number (eCN) for

recommendation and expected Cost PerMile (eCPM) for advertising

under top-𝐾 ranking.:

eCN@K =
1

|U|
∑︁
𝑖∈I

𝒗𝑖 , eCPM@K =
1

|U|
∑︁
𝑖∈I

bid𝑖𝒗𝑖 , (10)

where, 𝑏𝑖𝑑𝑖 denotes the bidding price of an advertisement, while 𝒗𝑖
is calculated using Equation 5, which is dependent on the 𝐾 .

As for the fairness degree, we utilize the Gini Index [14, 16],

which is the most common measure of item utility inequality under

2
The source codes have been shared in https://github.com/XuChen0427/Tax-rank

3
https://www.yelp.com/dataset

4
http://contest.ipinyou.com/

top-𝐾 ranking. Formally, it is defined as:

Gini@K =

∑
𝑖

∑
𝑗 |𝛾𝑖𝒗𝑖 − 𝛾 𝑗𝒗 𝑗 |

2|I |∑𝑖 𝛾𝑖𝒗𝑖 , (11)

where it ranges from 0 to 1, with 0 representing perfect equality (ev-

ery item has the same utility), and 1 representing perfect inequality

(one item has all the utility, while every item else has none).

Baselines. The following representative item fairness models

were chosen as the baselines: FairRec [35] and FairRec+ [9] pro-

posed to ensure Max-Min Share (𝑡-MMS) of exposure for the items.

P-MMF [49] utilized the mirror descent method to improve the

worst-off item’s utility. Moreover, we also compare Welf [14],

which also used the Frank-Wolfe algorithm to optimize a similar

exponential form of optimization objective for two-sided fairness.

Implementation details. Following [49], CTR-based settings,

we use BPR [40] model to compute the CTR value𝑤𝑢,𝑖 ∈ [0, 1] of
each user-item pair (𝑢, 𝑖). For the item weight 𝛾𝑖 , a value of 1 is

assigned for recommendation applications, while for advertising

applications, 𝛾𝑖 = log(bid𝑖 ).
As for the hyper-parameters in all models, the trade-off coeffi-

cient (𝜆𝑜𝑡 ) for OT was tuned among [0.1, 2], and we implemented

Tax-rank utilizing cvxpy [13] to conduct optimization.

6.2 Experimental Results
Figure 3 and Figure 4 shows the Pareto frontiers [49] of Gini Index

(abbreviated as Gini.) and eCN/eCPM on two application datasets

with different ranking size 𝐾 . Figure 3 is generated using CTR-

based settings, as described in Section 3, where the item utilities

are defined as the expected number of clicks within a specified time

period. On the other hand, Figure 4 is generated using exposure

settings (also see Section 3), where the item utilities are defined as

1499

https://github.com/XuChen0427/Tax-rank
https://www.yelp.com/dataset
http://contest.ipinyou.com/


A Taxation Perspective for Fair Re-ranking SIGIR ’24, July 14–18, 2024, Washington, DC, USA

the expected number of exposures. The Pareto frontiers [29] are

constructed by systematically adjusting various parameters of the

models and then selecting the points with the best performance

in terms of both Gini@K and eCN@K/eCPM@K, resulting in an

optimized trade-off between item fairness and total utilities.

Firstly, it is evident that a trade-off exists between ranking ac-

curacy metrics (eCN@K or eCPM@K) and item fairness metric

(Gini@K) w.r.t. the tax rate 𝑡 . As the tax rate approaches 0, FairTax

tends to prioritize ranking accuracy, and as the tax rate increases,

FairTax tends to emphasize item fairness.

Moreover, compared with the baseline methods, it becomes evi-

dent that the proposed Tax-rank method consistently outperforms

the baseline methods under both CTR-based and exposure-based

settings (as indicated by the Tax-rank curves occupying the up-

per right corner). This Pareto dominance signifies that, for a given

eCN@K or eCPM@K level, Tax-rank achieves superior Gini@K

values, and for a given Gini@K level, it attains better eCN@K or

eCPM@K performance. These results highlight that Tax-rank sig-

nificantly outperforms the baseline methods.

6.3 Experimental Analysis
We also conducted experiments to analyze our proposed Tax-rank

on Yelp dataset for top-10 ranking. Similar phenomena can be ob-

served in other datasets and with different top-k settings.

6.3.1 Continuity. Firstly, we experiment to assess the continuity

of the proposed Tax-rank and other baseline methods by adjusting

the tax rate 𝑡 or other parameters related to fairness. As shown in

Figure 5, we draw the Lorenz Curve [17] of three best-performing

baselines and our model Tax-rank under different tax rate 𝑡 or other

parameters. Since Lorenz Curve is a graphical representation that

vividly illustrates income or wealth distributionwithin a population,

providing insights into the level of inequality in economics.

Figure 5 shows the proportion of overall exposure percentage

assumed by the bottom𝑥% items. In simpler terms, the Lorenz Curve

reveals the percentage (y%) of the total exposures accumulated

by the worst-off 𝑥% of items in the distribution. From Figure 5,

it is evident that as the tax rate changes from 0 to ∞, Tax-rank
exhibits superior continuity. This is observed by the nearly averaged

increase in the colored area between the two Lorenz Curves (can

also be viewed as the fairness increasing value when increasing

tax rate 𝑡 ). It indicates a more consistent response to a tenfold

increase in the tax rate. On the contrary, as the tax rate changes,

baselines, exhibit either minimal alterations (P-MMF) or an uneven

increase (Welf and FairRec) in the colored area. This implies that a

minor adjustment in the fair-aware parameter will result in a more

significant performance alteration compared to Tax-rank.

6.3.2 Controllability over accuracy loss. Then, we experiment Fig-

ure 7 (a) to demonstrate how the price fairness of the taxation (POT)

changes of Tax-rank and baseline P-MMF w.r.t. variations in the

tax rate 𝑡 , ranging from 0 to 1. Since P-MMF is a represented and

best-performing tax policy in Theorem 1.

From the curve, it is evident that as we increase the tax rate 𝑡 ,

our proposed Tax-rank and P-MMF approach leads to a reduction

in the total ranking accuracy. Firstly, it is evident that the POT

achieved by Tax-rank is notably lower compared to that of P-MMF,

highlighting the effectiveness of the Tax-rank approach. Secondly,

we can also observe that the POT of Tax-rank obeys a smooth

form, as the theoretical analysis results in Theorem 3. However, the

previous ranking tax policies exhibit a more complex POT function

form, resulting in poor systematic controllability.

6.3.3 Inference time. We conduct experiments to investigate the

total inference time of the Tax-rank method compared to other

item fairness baselines. In our analysis, our objective is to assess the

total inference time across various user sizes |U|, within real-world

ranking applications. Therefore, we conducted tests to measure

the total inference time of various models in terms of the varying

number of users, all while keeping the number of items constant.

Figure 7 (b) reports the curves of total inference time (s) w.r.t.

user size |U|. It is worth noting that the Tax-rank method demon-

strates remarkably low inference times, typically taking less than

ten million seconds across different user sizes. Furthermore, when

compared to other baseline methods, the inference time of these

alternatives tends to increase either linearly or exponentially with

changing user sizes, whereas Tax-rank consistently maintains a

low inference time.

This is attributed to the fact that the CP solver process (Equa-

tion (7)) along with Tax-rank reduces the variable size from |U||I|
to |I | and employs the OT algorithm to efficiently map the so-

lution to each user. Therefore, Tax-rank method involves matrix

operations with limited sensitivity to changes in user size.

6.3.4 Visualizing fair re-ranking results. In Figure 6, we visualize

the Tax-rank recommendation results under the tax rate of 0, 1, 3.

In Figure 6, we visualize the ranking result matrix 𝒙̃ , where the
elements 𝒙̃𝑢,𝑡 denotes the probability of recommending item 𝑖 to

user𝑢 in Equation (9). We also visualize the utility vector 𝒗, which is
the amortized value for the columns value of 𝒙̃ (i.e., 𝒗 =

∑
𝑢∈U 𝒙̃𝑢,𝑖 ).

The utility vector 𝒗𝑖 represents the utility value associated with the

ownership of item 𝑖 .

The results clearly demonstrate that the accuracy-first solution

consistently ranks the most popular items highly for users, thereby

enhancing overall utility but potentially leading to market dom-

inance by a few top items. Regarding 𝑡 = 1, Tax-rank tends to

distribute rankings to items in proportion to their contribution to

the market. For 𝑡 = 3, Tax-rank method strives to provide equal

exposure and similar utilities to every item in the ranking. The

experiment also served as validation that Tax-rank method can

effectively adapt to various fairness principles as intended.

6.4 Ablation Experiments
In this section, we aim to conduct ablation experiments for Tax-

rank. To better investigate the performance of our model under

different parameter settings, we also conduct a series of ablation

experiments on the Yelp dataset under ranking size 𝐾 = 10. Similar

experiment results are also observed on other datasets and other

ranking sizes 𝐾 .

6.4.1 OT regularizer coefficient 𝜆𝑜𝑡 . In this section, we first con-

duct the ablation study for the OT regularizer coefficient 𝜆𝑜𝑡 (Equa-

tion (9), which trade-off the entropy loss to force the variable 𝒙𝑢,𝑖
into the feasible region. Figure 8 illustrates how the ranking accu-

racy (eCN) and fairness metric (Gini) w.r.t. 𝜆𝑜𝑡 from 0.1 − 2.0.
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(a) FairRec (b) P-MMF (c) Welf (d) Tax-rank

Figure 5: Lorenz Curve [17] of three best-performing baselines FairRec, P-MMF, Welf, and our model Tax-rank. The distinct
curves in each figure are plotted by adjusting various tax rates 𝑡 or different parameters.
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Figure 6: Visualization of Tax-rank results under different
tax rate 𝑡 = 0, 1, 3. The utility vector 𝒙 is computed as the
amortized value along the columns of the matrix.

0.0 0.5 1.0
taxing rate t

0.0

0.5

P
O

T

Tax-rank

P-MMF

(a) Price of taxation

0 200 400
User size |U |

0

5

10

In
fe

re
n

ce
ti

m
e(

s)

FairRec

FairRec+

Welf

Tax-rank

(b) Inference time comparison

Figure 7: Sub-figure (a) illustrates the price of taxation change
w.r.t tax rate 𝑡 . Sub-figure (b) describes online inference items
for Tax-rank and other baselines w.r.t user size |U|.

Figure 8: eCN and Gini changew.r.t. the coefficient of entropy
regularizer 𝜆𝑜𝑡 in OT under different tax rate 𝑡 .

Specifically, from Figure 8 (a), we can observe that when the tax

rate 𝑡 is small (𝑡 < 1), the accuracy increases as 𝜆𝑜𝑡 becomes larger.

When the tax rate 𝑡 is large (𝑡 ≥ 1), the accuracy will decrease as

𝜆𝑜𝑡 becomes larger. From Figure 8 (b), We can observe that Gini

remains relatively stable across the different 𝜆𝑜𝑡 . Moreover, as the

tax rate 𝑡 increases, Tax-rank begins to prioritize fairness among

items more prominently, resulting in a decrease in Gini.

The reason is the trade-off between the smoothness and convex-

ity of the exposure probability distribution among items by tuning

the parameter 𝜆𝑜𝑡 . A higher 𝜆𝑜𝑡 will emphasize more on the smooth-

ness of the probability distribution, implying a reduced disparity in

exposure among items. When tax rate 𝑡 is relatively small (𝑡 < 1),

a slight reduction in the difference in exposure probability among

items allows some items with lower 𝑤𝑢,𝑖 to gain more exposure,

resulting in an increase in eCN. However, when 𝑡 becomes larger,

the increased smoothness of probability distributions results in a

decrease in eCN consequently.

7 CONCLUSION
In this paper, we re-conceptualize the fair re-ranking task by fram-

ing it as a taxation process from an economic perspective. In theory,

we reformulate previous fair re-ranking architectures as a tax pro-

cess, which imposes an additional tax on each item. However, we

find that previous fair re-ranking methods fail to satisfy two crucial

taxation attributes: continuity and controllability over accuracy

loss. To address this challenge, we introduce a novel fair re-ranking

model named Tax-rank, whose objective levies taxes based on the

difference in utility between two items. For optimization, we in-

troduce a highly effective and efficient algorithm to optimize the

objective, employing the Sinkhorn algorithm in optimal transport.

Theoretical evidence shows that Tax-rank has superior continu-

ity and systematic controllability compared to existing methods.

Through extensive experiments on two publicly available datasets,

it is evident that Tax-rank outperforms state-of-the-art baselines in

terms of both fair ranking performance and efficiency.
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APPENDIX
A PROOF OF THEOREM 1

Proof. Let 𝒂 [𝑖 ] denotes the 𝑖-th largest element of 𝒂. Firstly,
we will prove Equation (2) can be written as the same form of

Equation (1). By utilizing the Lagrange multiplier method, we can

write the objective of Equation (2) as

𝑊2 (𝒙) = min

𝜆2≥0

max

𝒙∈X

∑︁
𝑖∈I

𝛾𝑖

∑︁
𝑢∈U

𝑤𝑢,𝑖𝒙𝑢,𝑖 + 𝜆2 (𝑟 (𝒗) − 𝜋),

where optimal value is arg min𝜆2

[∑
𝑢∈U

∑𝐾
𝑘=1

𝑐𝑛,[𝑘 ] + 𝑟 (𝒗)𝜆2 − 𝜆2𝜋

]
,

𝑐𝑛,𝑖 = 𝛾𝑖𝑤𝑢,𝑖 . Therefore, we can only analyze the form of Equa-

tion (1). Then following Balseiro et al. [4], Xu et al. [49], we can also

utilize the Lagrangian condition to break the relationship between

𝒗 and

∑
𝑢∈U

∑
𝑖∈I 𝑠𝑡,𝑖𝑥𝑡,𝑖 :𝑊1 (𝒙) = max𝒙∈X

∑
𝑢∈U

∑
𝑖∈I 𝑠𝑡,𝑖𝒙𝑢,𝑖 +

𝑔(𝜇∗), where 𝑠𝑡,𝑖 = 𝛾𝑖𝑤𝑢,𝑖 + 𝝁∗𝑖 , 𝑔(𝜇) = max𝑣

(
𝜆𝑟 (𝒗) +∑𝑖∈I 𝝁𝑖𝒗𝑖 )

and

𝜇∗ = arg min

𝝁
max

𝒙∈X

∑︁
𝑢∈U

∑︁
𝑖∈I
(𝛾𝑖𝑤𝑢,𝑖 + 𝝁𝑖 )𝒙𝑢,𝑖 + 𝑔(𝜇).

□

B PROOF OF THEOREM 2
Proof. According the Theorem 1, we can know the Equation (2)

and Equation (1) is equivalent. Therefore, we mainly analyze the

continuity of regularizer-based form in Equation (1):𝑊1 (𝒙; 𝜆) =
max𝒙∈X

∑
𝑢∈U

∑
𝑖∈I 𝑛𝑢,𝑖𝒙𝑢,𝑖 +𝑟 (𝒗)𝜆. Then we will prove𝑊1 is not

continuous w.r.t. tax rate 𝜆.
We can observe that the binary ranking solution 𝒙𝑢,𝑖 also leads

to non-continuity. We can see that if the function𝑊1 (𝒙 ; 𝜆) changes,
it implies that there exists an item 𝑖𝑟 being removed from a 𝑢’s

ranking list, while simultaneously a new item 𝑖𝑘 is introduced and

added to that 𝑢’s ranking list. Then the tax rate 𝜆’s changing value

𝛿𝜆 rate should be at least

𝛿𝜆 >
|𝑛𝑢,𝑖𝑟 − 𝑛𝑢,𝑖𝑘 |
|𝛿𝑟 (𝒗) |

to result a different recommendation results, where 𝛿𝑟 (𝒗) is the
change value of fairness value when item 𝑖𝑟 is replaced with item

𝑖𝑘 . Since the 𝑟 (𝒗) is also often non-continuous, such as max-min

form [49], therefore, we have ∃𝑀 > 0, 𝛿𝑟 (𝒗) > 𝑀 .

□

C PROOF OF THEOREM 3
Lemma 2. Given the vector 𝒙 ∈ R𝑁 , ∑𝑁𝑖=1

𝑤𝑖𝒙1−𝑡
𝑖
≥ 𝐶 , for any

𝑡 > 0,𝑤𝑖 > 0, 𝒙𝑖 > 0, 𝜎 = min𝑖 𝒙 𝒊 we have

𝑁∑︁
𝑖=1

𝑤𝑖𝒙𝑖 ≥ 𝐶𝜎𝑡𝑁 −
𝑡

1+𝑡 , (12)

Proof. We apply Hölder inequality, we have when
1

1+𝑡 +
𝑡

1+𝑡 = 1,

𝐶 ≤
𝑁∑︁
𝑖=1

𝑤𝑖𝒙𝑖 ∗
1

𝒙𝑡
𝑖

≤ (
𝑁∑︁
𝑖=1

𝑤1+𝑡
𝑖 𝒙1+𝑡

𝑖 )
1

1+𝑡 (
𝑁∑︁
𝑖=1

1

𝒙1+𝑡
𝑖

)
𝑡

1+𝑡 . (13)

Also, we have (∑𝑁𝑖=1
𝑤𝑖𝒙𝑖 )1+𝑡 ≥

∑𝑁
𝑖=1

𝑤1+𝑡
𝑖

𝒙1+𝑡
𝑖
, therefore, we

have (∑𝑁𝑖=1
𝑤1+𝑡
𝑖

𝒙1+𝑡
𝑖
)

1

1+𝑡 ≤ ∑𝑁
𝑖=1

𝑤𝑖𝒙𝑖 Let 𝜎 = min𝑖 𝒙𝑖 , we have

(
𝑁∑︁
𝑖=1

1

𝒙1+𝑡
𝑖

)
𝑡

1+𝑡 ≤ 𝑁
𝑡

1+𝑡

𝜎𝑡
. (14)

Then combining Equation (14) and Equation (13) becomes:

𝑁∑︁
𝑖=1

𝑤𝑖𝑥𝑖 ≥ 𝐶𝜎𝑡𝑁 −
𝑡

1+𝑡 .

□

Then we will give a formal proof of Theorem 3.

Proof. From Lemma 1, we can also write :

𝑓 (𝒙 ; 𝑡) ≥ 𝑓 (𝒙 ; 𝑡)max

𝒆∈E

∑︁
𝑖

𝑚𝑖
𝒆1−𝑡
𝑖

1 − 𝑡 , (15)

where E = {𝒆 |∑𝑖 𝒆𝑖 = 𝐾, 0 ≤ 𝒆𝑖 ≤ 1}, the input 𝒆 optimal value

is 𝒛, which represents be the best allocation under the 𝑡-fairness

criterion.We briefly let Ãcc(𝑡) denotes the accuracy value of 𝑓 (𝒙 ; 𝑡).
Firstly, we will bound the Ãcc(𝑡): without generality, we assume:

𝑚1𝒛1 ≥ 𝑚2𝒛2 ≥ · · · , ≥ 𝑚 | I |𝒛 | I | . (16)

The necessary first-order condition for the optimality of 𝒆 can be

expressed as:

∇𝑓 (𝒛; 𝑡) (𝒆 − 𝒛) ≤ 0,∀𝒆 ∈ E,
The equation can be equivalently written as:

𝒈⊤𝒆 ≤ 1,∀𝒆 ∈ E, (17)

where 𝒈𝑖 =
𝑚𝑖𝒛−𝑡𝑖∑
𝑖𝑚𝑖𝒛1−𝑡

𝑖

. We observe the Equation (17), which is a

well-studied knapsack problem [41], with the best solution:∑𝐾
𝑘=1

𝑚 | I |−𝑘+1𝒛
−𝑡
| I |−𝑘+1∑

𝑖𝑚𝑖𝒛
1−𝑡
𝑖

≤ 1, (18)

since according the Equation (16), we have

𝑚1𝒛
−𝑡
1
≤ 𝑚2𝒛

−𝑡
2
≤ · · · , ≤ 𝑚 | I |𝒛−𝑡| I | .

From the Equation (18) , exists 0 < 𝜆 < 1, we have:∑︁
𝑖

𝑚𝑖𝒛
1−𝑡
𝑖 ≥ 𝜆Acc(0)𝒛−𝑡

1
, (19)

𝐾∑︁
𝑘=1

𝑚 | I |−𝑘+1𝒛
−𝑡
| I |−𝑘+1 ≥ 𝒛−𝑡

1
𝜆

𝐾∑︁
𝑘=1

𝑚 [𝑘 ] = 𝜆Acc(0)𝒛−𝑡1
,

where𝑚 [𝑘 ] denotes the 𝑘-th largest element of𝑚𝑖 .

Taking the Equation (19) into Lemma 2, we have

Ãcc(𝑡) =
| I |∑︁
𝑖

𝑚𝑖𝒛𝑖 ≥ 𝜆Acc(0) (
𝒛 | I |
𝒛1

)𝑡𝑁 −
𝑡

1+𝑡 . (20)

Therefore,

POT =
Acc(0) − Acc(𝑡)

Acc(0) ≤ Acc(0) − Ãcc(𝑡)
Acc(0)

≤ 1 − 𝜆(
𝒛 | I |
𝒛1

)𝑡𝑁 −
𝑡

1+𝑡 = 1 −𝑂 (𝑁 −
𝑡

1+𝑡 ) .

□
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