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Abstract

In video recommendation, an ongoing effort is to satisfy users’ per-

sonalized information needs by leveraging their logged watch time.

However, watch time prediction suffers from duration bias, hinder-

ing its ability to reflect users’ interests accurately. Existing label-

correction approaches attempt to uncover user interests through

grouping and normalizing observed watch time according to video

duration. Although effective to some extent, we found that these

approaches regard completely played records (i.e., a user watches

the entire video) as equally high interest, which deviates from what

we observed on real datasets: users have varied explicit feedback

proportion when completely playing videos. In this paper, we in-

troduce the counterfactual watch time (CWT), the potential watch

time a user would spend on the video if its duration is sufficiently

long. Analysis shows that the duration bias is caused by the trun-

cation of CWT due to the video duration limitation, which usually

occurs on those completely played records. Besides, a Counterfac-

tual Watch Model (CWM) is proposed, revealing that CWT equals

the time users get the maximum benefit from video recommender

systems. Moreover, a cost-based transform function is defined to

transform the CWT into the estimation of user interest, and the

model can be learned by optimizing a counterfactual likelihood

function defined over observed user watch times. Extensive exper-

iments on three real video recommendation datasets and online

A/B testing demonstrated that CWM effectively enhanced video

recommendation accuracy and counteracted the duration bias.
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1 Introduction

The rising of video content platforms have attracted billions of

users and become more frequent in the daily use of users nowa-

days [12, 15, 24, 25]. To satisfy users’ information needs and en-

hance their engagement, developing accurate and personalized

video recommender systems is critical. It is essential to incorpo-

rate various feedback signals that reflect users’ interests to achieve

this goal. In the video scenario, watch time has been commonly

employed as an indicator of user interest and can be leveraged to

enhance the accuracy of video recommender systems [5, 12].

Like other implicit feedback signals (e.g., user click) in recom-

mender systems, directly inferring the user interest labels from

the watch time is also hurt by the bias problem. One crucial bias is

duration bias; that is, users’ watch time is not only related to their in-

terest but also affected by the duration (length) of the video [49, 53].

It has been observed that users naturally tend to watch for more

time on longer videos, making watch time no longer a faithful

reflection of the user’s interest.

Existing approaches like Play Completion Rate (PCR), Watch

Time Gain (WTG) [49] and Quantile-based method (D2Q) [53] re-

gard duration bias as a problem of inconsistent watch time scales

caused by the video duration. The longer the video duration, the

larger the watch time scale, resulting in a longer average watch

time. Therefore, these methods group and normalize the watch

time according to the video duration, which keeps the watch time

corresponding to different video duration consistent in scale. For
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Figure 1: Users’ explicit feedback proportion in completely

played records grouped by video duration of (a) KuaiRand

dataset (b) WeChat dataset.
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Figure 2: Comparison between counterfactualwatch time and

observed watch time. Users A and B have the same observed

watch time but different counterfactual watch times.

example, PCR directly divides the watch time according to the cor-

responding video duration and then normalizes the watch time into

intervals of 0 to 1. These normalized values are treated as estimated

labels of user interest in downstream tasks. Since these methods

mitigating bias via correcting labels, they can be categorised as

label-correction methods. In practice, both video ranking based

on user interest and accurately predicting watch time are crucial

tasks. The advantage of the label-correction method is that it can

not only provide an unbiased estimate of the user interest score

but also predict watch time through the inverse transformation

of the normalization function. In contrast, other existing methods,

such as the feature-based methods: DCR [20] and CVRDD [36],

primarily focus on the unbiased estimation of user interest scores.

While these methods have proven effective, they struggle to simul-

taneously estimate both watch time and user interest scores as

effectively as label-correction methods.

Although existing label-correction methods have shown effec-

tiveness in some extent, we argue that there are still limitations. In

existing methods, after the normalization, the completely played

records (i.e., the user watched the whole video) are usually treated

as the highest user interest, regardless of the video duration. Typi-

cally, records with explicit feedback can reflect user engagement

and interest to some extent. However, from the explicit user feed-

back signals provided in KuaiRand dataset1 and WeChat dataset 2,

we observed that user explicit feedback in these completely played

records does not align well with current methods. Specifically, Fig. 1

1https://kuairand.com/
2https://algo.weixin.qq.com/

shows the proportion of explicit positive feedback(i.e., like and for-

ward) received by those completely played records, grouped by

the video duration. In existing methods [49, 53], since the user has

fully watched the video, these completely played records should

be considered as indicating equally high interest. However, Fig. 1

clearly shows that, on both two datasets, longer completely played

videos have a higher proportion of positive feedback, even though

the short videos are also completely played.

The results in Fig. 1 suggest that even if users have watched the

entire video, these completely played records may reflect varying

levels of interest. Moreover, the shorter the video duration, the

lower the user interest level that a completely played record can

represent, as it corresponds to a lower explicit feedback proportion.

This inspires us to derive a novel interpretation of the duration

bias: There exists a potential watch time that faithfully reflects user

interest, which is truncated by the video’s duration, thereby resulting

in a duration bias.. As illustrated in Figure 2, let’s consider two users,

A and B, engaged in watching the same video with a 30s duration.

Both users have completely played the video, and their watch times

are recorded as 30s in the log data. However, after watching the

same video, User B exhibits a higher level of interest than User

A, thus appearing to be left wanting more. We then consider a

counterfactual question: How long will the user watch if the video

duration is sufficiently long? It becomes clear that User A is less

likely, or even unlikely, to extend her observed watch time. The

logged 30s watch time for user A can sufficiently reflect her interest.

Conversely, User B prefers exceeding her observed watch time.

Since her information needs are not fully satisfied after watching

this video, the logged 30s watch time cannot represent B’s interest.

To this end, we argue that there exists a counterfactual watch

time (CWT) corresponding to user interest, which is partially ob-

served due to the truncation by video duration. For incompletely

played records, the CWT equals its observed watch time, thus re-

flecting user interest. For completely played records, the CWT could

be longer than the observed watch time due to the truncation by

video duration. The user’s true interest level could be higher than

that directly inferred from the observed watch time.

The CWT can explain the results in Fig. 1 well: various CWT

are truncated by video duration in an entirely played video. There-

fore, the same observed watch time may correspond to various

CWT and thus cannot distinguish user interest level. Furthermore,

the completion of shorter videos occurs more easily than longer

ones, exacerbating the truncation of CWT. This results in a more

pronounced duration bias, impacting the accuracy of interest mea-

surement based on watch time.

To model the CWT and estimate user interests, we propose

a Counterfactual Watch Model (CWM) that adopts an economic

perspective to model users’ CWT. Specifically, CWM treats user

watching as a process of accumulating watching rewards, where the

marginal rewards are indicative of user interest, and the invested

watch time corresponds to the user watching cost. At the time point

where a user’s marginal cost equals the marginal rewards, the user

attains the maximum cumulative benefit, making her actively stop

watching. This time point corresponds to the aforementioned CWT.

Then, a cost-based transform function is derived to transform the

CWT to the estimated user interest. The duration-debiased recom-

mendation model can be learned by optimizing a counterfactual
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likelihood function defined over observed user watch times. In

summary, CWM attempts to model users’ consumption behavior,

specifically in video scenarios. Similar to the commonly used click

model [11], our CWM is beneficial for both relevance ranking and

watch time prediction via effectively modeling user behaviors.

The major contributions of this work are:

(1) We provide a novel concept called counterfactual watch time

(CWT) for interpreting the essence of duration bias;

(2) We propose a method named CWM for modeling CWT. We

further develop a cost-based transform function and counter-

factual likelihood function for learning a duration-debiased

recommendation model;

(3) We conduct experiments on three real video recommendation

datasets and onlineA/B testing. The result improvements demon-

strate the effectiveness of our CWM.

2 Related work

Video Recommendation. In the evolution from traditional video

recommendation to TV show, various methods have been devel-

oped to enhance the user experience and accuracy of recommenda-

tions. Park et al. [28] introduced a system that incorporates time

factors and user preferences using 4-dimensional tensor factoriza-

tion to improve recommendation accuracy. Cho et al. [10] presented

a recommendation method that accounts for user feedback within

specific watchable intervals to enhance user satisfaction with TV

show recommendations. Qin et al. [29] proposed a model that iden-

tifies and adapts to the behavior of multiple users interacting with

a TV system, thereby improving the personalization of recommen-

dations. Most research works have transferred from traditional

video to micro-video scenarios in the mobile internet era. Cov-

ington et al. [13] introduced the funnel architecture of YouTube

recommender system. They predicted the expected watch time

from training samples with weighted logistic regression, which

utilizes observed watch time as the weight of positive samples’

loss. Multi-task methods [6, 26, 35, 52] have been proposed to im-

prove metrics such as watch time prediction, relevance of user-item

pair, and number of video views together. Ma et al. [26] extend the

mixture-of-experts [21] architecture to multi-gate expert knowl-

edge integration. Tang et al. [35] proposed a shared learning struc-

ture to address the seesaw phenomenon. Chang et al. [6] proposed

a plug-and-play parameter and embedding personalized network

for a multi-domain and multi-task recommendation.

Counterfactual Information Retrieval. Most information re-

trieval systems consider users’ implicit feedback as a supervision

signal to infer their true interests. However, implicit feedback is

influenced not only by users’ interests but also by external factors.

Consequently, user interest signals are often concealed within im-

plicit feedback and remain unobserved. Researchers have drawn

inspiration from causal inference techniques [46] and developed

counterfactual information retrieval technology to address the bi-

ases inherent in implicit feedback. Previous work in counterfac-

tual IR primarily focuses on mitigating position bias [1, 9, 22, 48],

popularity bias [45, 50, 54] , and selection bias [32, 33, 43]. How-

ever, duration bias becomes a crucial concern when it comes to

video recommendation, which has been discussed in existing stud-

ies [20, 30, 36, 49, 53]. In contrast to our approach, current methods

for correcting duration bias cannot effectively explain and eliminate

duration bias.

Click model in Information Retrieval. Modeling user behav-

iors plays a vital role in enhancing the performance of information

retrieval systems. The ability to accurately model user behaviors al-

lows a retrieval system better to fulfill users’ information needs [11].

To this end, many models have been proposed to explain or predict

user click behavior in various contexts: cascade model (CM) [14],

user browsing model (UBM) [16] and dynamic Bayesian network

(DBN) model [7] model users’ click behavior in desktop search-

ing with different assumption; mobile click model (MCM) [27] and

F-shape Click Model (FSCM) [17] further extend the understand-

ing of users’ click behaviors on mobile devices. Moreover, Borisov

et al. [4] and Chen et al. [8] develop the click model into neural

networks, which enable automatic dependency detection. Unlike

the above click models, the UWM proposed in this paper focuses

on modeling and explaining users’ watching behavior since it is a

better quantitative indicator of user preferences in video feeds.

3 Counterfactual watch time

In this section, we will first define the video recommendation prob-

lem and the counterfactual watch time (CWT); then we will provide

supporting evidences for our proposed CWT. We also present an

economic view of the user watch behavior based on the watch cost

and reward. Finally, we point out the current methods’ limitation

from the CWT viewpoint.

3.1 Definition of counterfactual watch time

The task of user interest and watch time prediction can be formal-

ized as follows: SupposeU andV are the sets of users and videos,

respectively. We can record user 𝑢 ∈ U’s watching behavior on

video 𝑣 ∈ V asD𝑢,𝑣 = {x𝑢,𝑣,𝑤𝑢,𝑣, 𝑑𝑣}, where x𝑢,𝑣 ∈ R
𝑘 represents

the feature vector of the sample pair and 𝑘 is the feature dimension.

𝑤𝑢,𝑣 ∈ R
+ denotes user 𝑢’s observed watch time on video 𝑣 (e.g., in

seconds), while 𝑑𝑣 ∈ R
+ is the duration of video 𝑣 .

Next, we will introduce a novel concept called counterfactual

watch time CWT, which is denoted as𝑤𝑐
𝑢,𝑣 . As we have discussed

before, the CWT can be defined as:

Definition 1 (counterfactual watch time). For user 𝑢 and

video 𝑣 , the CWT𝑤𝑐
𝑢,𝑣 ∈ R is defined as the time users want to watch

based on the user’s interest 𝑟𝑢,𝑣 if the video duration is sufficiently

long. There is no correlation between𝑤𝑐
𝑢,𝑣 and video duration 𝑑𝑣 .

The CWT 𝑤𝑐
𝑢,𝑣 corresponds to user interests. However, CWT

𝑤𝑐
𝑢,𝑣 does not always equal the observedwatch time𝑤𝑢,𝑣 since it can

be truncated by video duration 𝑑𝑣 in practice3. Their relationship

is formulated as follows:

𝑤𝑢,𝑣 = min(𝑤𝑐
𝑢,𝑣, 𝑑𝑣) ⇐⇒

{

𝑤𝑐
𝑢,𝑣 = 𝑤𝑢,𝑣, if 𝑤𝑢,𝑣 < 𝑑𝑣 ;

𝑤𝑐
𝑢,𝑣 ≥ 𝑤𝑢,𝑣, if 𝑤𝑢,𝑣 = 𝑑𝑣 ;

(1)

Eq. (1) indicate that observed watch time𝑤𝑢,𝑣 can be regarded as

the truncated variable of CWT𝑤𝑐
𝑢,𝑣 .

3CWT may also be truncated at 0, making it difficult to discern how much a user
dislikes the video. However, this study is more concerned with the videos users like
than those they dislike.
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Figure 3: The repeated play proportion and average repeated

play ratio in different duration bins of (a) KuaiRand dataset

(b) WeChat dataset.
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Figure 4: The bimodal distribution of watch time on (a)

KuaiRand dataset (b) WeChat dataset. The video duration is
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3.2 The existence of counterfactual watch time

Though the CWT is not directly observable from the data, we can

still find hints about the existence of CWT in real-world video

recommendation datasets. Next, we will use CWT to explain two

phenomena presented in real datasets: (i) users’ repeated playing

and (ii) the bimodal distribution of watch time.

3.2.1 Evidence 1: repeated playing. In real datasets, we found that

users may engage in repeated playing (for example, by rewinding

the video progress bar), leading to actual watch time that exceeds

the video duration. This phenomenon is often due to users’ high

interest level in the current video. However, the video’s duration is

insufficient to meet their needs, which is similar to our definition

of CWT. Since the definition of CWT necessitates a sufficiently

long video duration (Definition 1), in this study, we do not equate

repeat playing with CWT. In Fig. 3, we investigate the repeated

playing in both the KuaiRand and WeChat datasets. Specifically, we

focus on two metrics: (1) repeated play proportion, which represents

the proportion of repeat played records within the current video

duration, and (2) average repeat play ratio, which reflects the average

extent of repeat playing within the current video duration, defined

as (𝑤𝑢,𝑣 − 𝑑𝑣)/𝑑𝑣 . The results depicted in Fig. 3 indicate that both

the proportion of users’ repeat playing and the degree of repeat

playing are higher for shorter videos and decrease as video duration

increases.

3.2.2 Evidence 2: bimodal distribution. Another supporting evi-

dence is the bimodal distribution of users’ watch time. For the

overall distribution of all the video playing records, existing stud-

ies [47, 55] argue that logarithmic watch time obeys the Gaussian

distribution. However, when we focus on a given video duration

(e.g., 30s), the distribution of observed watch time turns out to

be bimodal, as shown in Fig. 4. The bimodal distribution reveals

that most users skip over the recommended video or completely

watch it, while only a few users stop watching in the middle of the

video playing [37, 51]. This abnormal distribution change is less

interpreted by existing studies but can be well explained by the

CWT.

3.2.3 Explanation from counterfactual watch time. Without loss of

generality, we assume that CWT𝑤𝑐
𝑢,𝑣 obeys a Gaussian distribution.

However, as we have mentioned in Eq. (1), all sampled𝑤𝑐
𝑢,𝑣 will be

truncated by duration 𝑑𝑣 . Meanwhile,𝑤𝑐
𝑢,𝑣 will also be truncated

to 0 since all recorded watch times have to be non-negative. The

truncated samples are assigned to𝑑𝑣 or 0, respectively. As illustrated

in Fig. 5(a), with the video duration increases, CWT experiences

less truncation on the right side, thereby reducing the tendency for

users to engage in repeat playing. Meanwhile, in Fig. 5(b), when the

original Gaussian distribution is truncated, it presents a bimodal

distribution, as we observed in the real-world dataset. Hence, CWT

can successfully interpret the above phenomenon, which in turn

supports its existence.

3.3 An economic view of user watching

To address the relationship between CWT and user interest, we

model the user’s watch behavior from an economic perspective.

The foundation of CWT within this framework is based on the

concepts of utility maximization [2] and rational choice [39].

This means users decide how much time to allocate to watching

videos based on the perceived utility (satisfaction) derived from the

content and their resource constraints. In accordance with these

economic principles, individuals allocate resourcesÐin this case,

timeÐto maximize their utility. Utility can be seen as the reward

minus the cost. For users, the reward for watching a video is the

information or pleasure derived from the video content, which is

determined by their interest to the video. However, users cannot

earn unlimited rewards, as they face resource constraints, such as

limited time. To illustrate the constraint, we introduce the concept
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Marginal Reward = Marginal Cost

(a) marginal watch cost/reward

Maximum Benefit 

(b) cumulative watch cost/reward

Figure 6: The economic view of user watching.

of watching cost, which refers to the overall effort and resources

required to watch a video, including not just the value of time

for the user but also the user’s mental energy and attention. This

watching cost highlights that watching a video requires users to

allocate their finite resources, which could have been spent on other

activities.

In summary, We assume that the user’s watching behavior fol-

lows the underlying assumptions:

• Diminishing marginal reward: When the user watches

a video, the enjoyment or satisfaction derived per second

decreases gradually, which is supported by the habituation

phenomenon in the psychology filed [38] and existing prac-

tice [47]. The initial marginal watch reward corresponds to

user interest.

• Constant marginal cost: Since the watching cost is mainly

influenced by context factors, we can mildly assume that

context factors are not significantly altered during the period

user watching video. Therefore, we consider the marginal

watch cost as a constant.

• Rational users: Users typically act rationally bymaximizing

their cumulative utility. Users will stop watching the video

when the marginal watch cost equals the reward.

Based on the three assumptions above, we draw the marginal

watch cost/reward curves in Fig. 6(a) and the cumulative watch

cost/reward curves in Fig. 6(b). The marginal curves are obtained

as derivatives of the cumulative curves. The figure shows that the

marginal watch reward decreases monotonically while the marginal

watch cost curve is constant. When these two curves meet, a user’s

marginal watch reward equals the marginal watch cost. At this

point, the cumulative utility (i.e., cumulative reward minus cumu-

lative cost) is maximized, as illustrated in Figure 6(b). Formally, we

refer to this time point as our proposed CWT. Our economic view

can interpret the phenomenon in Fig. 1 and Fig. 2: users interest

level in a video is reflected by the time when they receives their

maximum cumulative utility. When the video duration is too short

to achieve each user’s maximum cumulative utility point, users

with either high or low interest will completely play it.

3.4 Limitation of existing methods

Finally, we point out the limitation of current methods from the

viewpoint of CWT. We will prove that users’ true interest cannot

be inferred with only a transform function over the observed watch

time, as shown in the following theorem:

𝒙𝑢,𝑣𝑓𝜃 𝒙𝑢,𝑣 Ƹ𝑟𝑢,𝑣 𝑔 Ƹ𝑟𝑢,𝑣; 𝑐 ෝ𝑤𝑢,𝑣𝑐
𝑐

Rec. Model Transform Function𝒙𝑢,𝑣 𝑓𝜃 𝒙𝑢,𝑣 Ƹ𝑟𝑢,𝑣
𝑤𝑢,𝑣 𝑔−1 𝑤𝑢,𝑣; 𝑐𝑐 𝑟𝑢,𝑣′

Rec. Model

Transform Function

ℒ𝑐 Ƹ𝑟𝑢,𝑣 , 𝑟𝑢,𝑣′
Likelihood 

Function

Inference 

Stage

Training 

Stage

𝑑𝑣

𝑑𝑣 ෝ𝑤𝑢,𝑣𝑐𝑙𝑖𝑝

Figure 7: Computational flow of the proposed CWM.

Theorem 1 (observed watch time is not the indicator of in-

terest). For ∀W ⊆ R+, 𝑔 ∈ G, given 𝑔 : R →W, we have � 𝑔−1 :
W → R, whereW is the set of all observed watch time values, G is

the function space, R is the set of all interest probability values.

The proof of this theorem is presented in our Appendix A. This

theorem indicates that existing methods fail to uncover user inter-

est in those completely played records, especially when the video

duration is short. The failure of current methods motivates us to

develop a CWT-based approach to address this problem and better

understand user interest.

4 Our approach

For better modeling the CWT and estimating user interest, we

propose Counterfactual Watch Model (CWM). Fig 7 illustrates the

flow of CWM in the inference stage and training stage. At the

inference stage, a recommendation model 𝑓𝜃 (·), parameterized with

𝜃 , estimates the user interest 𝑟𝑢,𝑣 based on the feature vector x𝑢,𝑣 .

Then a transform function 𝑔(·), conditioned on user watch cost

𝑐 , converts the interest estimation into the CWT prediction 𝑤̂𝑐
𝑢,𝑣 .

The actual watch time prediction 𝑤̂𝑢,𝑣 is obtained by truncating it

through the video duration 𝑑𝑣 .

At the training stage, to estimate the parameters 𝜃 in 𝑓𝜃 (·), we
employ a set of user activity log D ⊆ {D𝑢,𝑣 = {x𝑢,𝑣,𝑤𝑢,𝑣, 𝑑𝑣} :
𝑢 ∈ U, 𝑣 ∈ V}. For each D𝑢,𝑣 ∈ D, the observed watch time𝑤𝑢,𝑣

is transformed into the supervision signal of user interest by the

inverse of the transform function, i.e., 𝑟 ′𝑢,𝑣 = 𝑔−1 (𝑤𝑢,𝑣 ; 𝑐). Although
we use observed watch time𝑤𝑢,𝑣 as the input of the inverse trans-

form function here, we will approximate it to CWT in optimization.

Then the predicted user interest 𝑟𝑢,𝑣 = 𝑓𝜃 (x𝑢,𝑣) is calculated with

current model parameters. For all D𝑢,𝑣 ∈ D, comparing 𝑟 ′𝑢,𝑣 and

𝑟𝑢,𝑣 jointly with duration 𝑑𝑣 derives the likelihood function L𝑐 (·).
Thus, the learning of the recommendation model can be performed

by optimizing L𝑐 (·).
Next, we will elaborate on the design of CWM’s key components:

(1) the transform function 𝑔(·) and (2) the likelihood function L𝑐 (·).

4.1 Cost-based transform function

As defined in Section 3.1, the CWT𝑤𝑐
𝑢,𝑣 reveals user interest level

𝑟𝑢,𝑣 . To estimate 𝑟𝑢,𝑣 from𝑤𝑐
𝑢,𝑣 , we first define the transform func-

tion between𝑤𝑐
𝑢,𝑣 and 𝑟𝑢,𝑣 .

Based on the economic view of the user’s watching process in

Section 3.3, we first formulate the cumulative watch reward and
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cumulative watch cost function as:

𝐹reward = 𝜔 (𝑟𝑢,𝑣) · log(𝑤
𝑐
𝑢,𝑣 + 1);

𝐹cost = 𝑐 ·𝑤𝑐
𝑢,𝑣,

where the 𝜔 (𝑟𝑢,𝑣) is the initial marginal reward that corresponds

to user interest level 𝑟𝑢,𝑣 , and 𝑐 is the user watch cost per second. It

is evident that the derivative function of 𝐹reward is monotonically

decreasing while that of 𝐹cost is constant, which satisfies the as-

sumptions in Section 3.3. When their derivative values are equal,

we can derive a time point (i.e., CWT) for the maximum cumulative

benefit:

d 𝐹reward
d𝑤𝑐

𝑢,𝑣
=

d 𝐹cost

d𝑤𝑐
𝑢,𝑣
⇒ 𝑤𝑐

𝑢,𝑣 =
𝜔 (𝑟𝑢,𝑣)

𝑐
− 1.

Now we will formulate the initial marginal reward function𝜔 (𝑟𝑢,𝑣).
Since 𝑟𝑢,𝑣 ∈ (0, 1), the 𝜔 (𝑟𝑢,𝑣) is expected to fulfill the following

conditions:(i) monotonically increasing.(ii) when 𝑟𝑢,𝑣 → 0(i.e., the

lowest interest level), the initial marginal reward 𝜔 (𝑟𝑢,𝑣) should
also tend to 0. (iii) when 𝑟𝑢,𝑣 → 1(i.e., the highest interest level),

the initial marginal reward 𝜔 (𝑟𝑢,𝑣) should tend to positive infinity.

To this end, we formulate that𝜔 (𝑟𝑢,𝑣) = 1/(− log 𝑟𝑢,𝑣), so the CWT

can be further written as:

𝑤𝑐
𝑢,𝑣 = 𝑔(𝑟𝑢,𝑣 ; 𝑐) =

1

−𝑐 log 𝑟𝑢,𝑣
− 1. (2)

Eq. (2) indicates how user interest 𝑟𝑢,𝑣 and users’ watch cost 𝑐 affect

their CWT. Since we aim to uncover user interest from the CWT

for training recommendation model, we can rewrite Eq. (2) to its

inverse function:

𝑟𝑢,𝑣 = 𝑔−1 (𝑤𝑐
𝑢,𝑣 ; 𝑐) = exp

(

1

−𝑐 (𝑤𝑐
𝑢,𝑣 + 1)

)

. (3)

Both Eq. (2) and Eq. (3) are the cost-based transform functions since

we introduce an extra cost parameter 𝑐 (as a hyper-parameter) for

controlling the conversion sensitivity from CWT to user interest

or vice versa. Then we can leverage them to estimate user interest

and predict the user’s actual watch time.

4.2 Counterfactual likelihood function

Although we have proposed the cost-based transform function to

describe the relationship between CWT and user interest, we still

face the problem that CWT is truncated when the record is com-

pletely played. We need to approximate the CWT by the observed

watch time to optimize our recommendation model.

4.2.1 Formulation of the counterfactual likelihood function. Inspired

by the solution of survival analysis [23], we regard the observed

watch time distribution as the truncated distribution of CWT. The

overall likelihood function of the truncated CWT can be written as:

𝑙 =
∏

𝑤𝑐
𝑢,𝑣<𝑑𝑣

Pr(𝑊 𝑐
= 𝑤𝑐

𝑢,𝑣,𝑊
𝑐
< 𝑑𝑣 | x𝑢,𝑣 )

∏

𝑤𝑐
𝑢,𝑣≥𝑑𝑣

Pr(𝑊 𝑐 ≥ 𝑑𝑣 | x𝑢,𝑣 )

=

∏

𝑤𝑢,𝑣<𝑑𝑣

Pr(𝑊 𝑐
= 𝑤𝑢,𝑣,𝑊

𝑐
< 𝑑𝑣 | x𝑢,𝑣 )

∏

𝑤𝑢,𝑣=𝑑𝑣

Pr(𝑊 𝑐 ≥ 𝑑𝑣 | x𝑢,𝑣 ),

(4)

where𝑊 𝑐 denotes the random variable of CWT. Based on Eq. (1),

we can replace all𝑤𝑐
𝑢,𝑣 by𝑤𝑢,𝑣 in the second line. Eq (4) contains

two parts: when𝑤𝑢,𝑣 < 𝑑𝑣 , the likelihood function equals the joint

probability that the counterfactual duration variable is equal to𝑤𝑢,𝑣

and CWT variable is not truncated. When𝑤𝑐
𝑢,𝑣 ≥ 𝑑𝑣 , the likelihood

function equals the probability that the CWT variable is truncated.

As discussed in Theorem 1, we cannot find a transform function

for indicating user interest from observed watch time. What we

know is only𝑤𝑐
𝑢,𝑣 ≥ 𝑑𝑣 , so we incorporate this prior in likelihood

function, allowing the models to determine the extent to which

𝑤𝑐
𝑢,𝑣 should exceed 𝑑𝑣 .
Maximizing Eq. (4) can reduce the duration bias caused by the

truncation of CWT. To estimate the user interest, we then equally
transform Eq. (4) into the likelihood function of user interest 𝑟𝑢,𝑣
via the transform function in Eq. (3):

𝑙 =
∏

𝑤𝑢,𝑣<𝑑𝑣

Pr(𝑅 = 𝑔−1 (𝑤𝑢,𝑣 ;𝑐 ), 𝑅 < 𝑔−1 (𝑑𝑣 ;𝑐 ) | x𝑢,𝑣 )

×
∏

𝑤𝑢,𝑣=𝑑𝑣

Pr(𝑅 ≥ 𝑔−1 (𝑑𝑣 ;𝑐 ) | x𝑢,𝑣 )

=

∏

𝑤𝑢,𝑣<𝑑𝑣

Pr(𝑅 = 𝑔−1 (𝑤𝑢,𝑣 ;𝑐 ) | x𝑢,𝑣 )
∏

𝑤𝑢,𝑣=𝑑𝑣

Pr(𝑅 ≥ 𝑔−1 (𝑑𝑣 ;𝑐 ) | x𝑢,𝑣 ),

(5)

where 𝑅 denotes the random variable of user interest probability.

Next, we will parameterize this likelihood function.

4.2.2 Parameterize and optimize the likelihood function. According

to the result in [23], Eq. (5) can be parameterized with a theoretical

guarantee if the random variable 𝑅 obeys Gaussian distribution.

For converting 𝑅 into a Gaussian-distributed random variable, we

employ an inverse function of the standard Gaussian-distributed

cumulative distribution function:

𝑔′ (·) = Φ
−1 [𝑔−1 (·)

]

.

Then we can parameterize Eq. (5) into our counterfactual likelihood

function:

L𝑐 =

∏

𝑤𝑢,𝑣<𝑑𝑣

𝜙

[

𝑔′ (𝑤𝑢,𝑣 ; 𝑐) − 𝑓𝜃 (x𝑢,𝑣)

𝜎

]

×
∏

𝑤𝑢,𝑣=𝑑𝑣

(

1 − Φ

[

𝑔′ (𝑑𝑣 ; 𝑐) − 𝑓𝜃 (x𝑢,𝑣)

𝜎

] )

,

(6)

where 𝜙 (·) and Φ(·)4 are the probability density function and cu-

mulative distribution function of standard Gaussian distribution,

respectively. 𝜎 is the standard deviation of the interest, which is

treated as a hyper-parameter in our method. And 𝑓𝜃 (x𝑢,𝑣) is the
recommendation model for predicting user interest, its parameter

is denoted as 𝜃 . Then the log-likelihood function is utilized in our

training:

log(L𝑐 ) =
∑︁

𝑤𝑢,𝑣<𝑑𝑣

−
(

𝑔′ (𝑤𝑢,𝑣 ; 𝑐) − 𝑓𝜃 (x𝑢,𝑣)
)2

2𝜎2

+
∑︁

𝑤𝑢,𝑣=𝑑𝑣

logΦ

[

𝑓𝜃 (x𝑢,𝑣) − 𝑔
′ (𝑑𝑣 ; 𝑐)

𝜎

]

.

(7)

Remark. Eq. (7) is derived from maximum likelihood estimation

(MLE): The optimal parameters are those that best describe the cur-

rently observed data. For the CWT, we observe that when the video

is not fully watched, the CWT equals to the actual watch time, this

is the MSE part of Eq. (7). However, for the video is fully watched,

4In practice, we approximate Φ( ·) via Sigmoid function follow [55].
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Table 1: Statistics of the datasets adopted in this study

Dataset #Users #Videos #Interactions Mean Complete Ratio(%)

KuaiRand 26,988 6,598 1,266,560 17.5%

WeChat 20,000 96,418 7,310,108 45.5%

Product 2,000,000 1,011,007 36,366,437 32.8%

the observation we only know is CWT may larger than the actual

watch time, this led to the amplification part of Eq. (7). This ap-

proach to modelling truncated data is also common in endogenous

problems [3] and survival analysis [40]. Although simply amplifies

predictions for fully watched videos cannot precisely model inter-

est, it can still enhance our interest predictions in a large margin,

which is verified in our experimental results.

The detailed derivation from Eq. (5) to Eq. (7) can be found in

our appendix. Finally, a duration-debiased recommendation model

can be obtained through maximizing Eq. (7):

𝜃∗ ← argmax
𝜃

log(L𝑐 ).

4.3 Online inference

In the inference stage, given a user-video pair (𝑢, 𝑣), the predicted
interest and watch time can be calculated by the unbiased recom-

mendation model 𝑓𝜃 ∗ parameterized by the learned parameter 𝜃∗:

𝑟𝑢,𝑣 = Φ
(

𝑓𝜃 ∗ (x𝑢,𝑣)
)

;

𝑤̂𝑢,𝑣 = clip

(

1

−𝑐 log 𝑟𝑢,𝑣
− 1, 0, 𝑑𝑣

)

,

where 𝑐𝑙𝑖𝑝 (𝑥, 𝑎, 𝑏) function means clipping the value of 𝑥 into [𝑎, 𝑏].

5 Experiments and Results

5.1 Experimental setting

We conducted experiments to verify the effectiveness of CWM

on two large-scale publicly available benchmarks and a dataset

collected from an industrial video product. More implementation

details can be found in Appendix B. More experimental results can

be found in Appendix D. The source code and dataset are available

at https://github.com/hyz20/CWM.git.

5.1.1 Datasets. The experiments were conducted on two public

real-world datasets: WeChat and KuaiRand. They are respectively

collected from two large micro-video platforms, Wechat Channels

and Kuaishou. We also conduct our evaluation in a large-scale prod-

uct dataset from our video platform, which has tens of billions of

daily active users. We list their statistic information in Table 1. Note

that we present each dataset’s completely played record percent-

age in the last column of Table 1. Since the duration bias usually

occurs on those completely played records, their percentages in all

records represent the severity of the duration bias of each dataset.

According to the statistics, WeChat has the most serious bias, while

KuaiRand has the least bias.

5.1.2 Evaluation. In this paper, we not only adopt our CWM for

ranking videos by user interest (i.e., relevance ranking) but also for

predicting users’ watch time. Both tasks are of great importance in

real video recommendation scenarios. As for the task of watch time

prediction, we utilize users’ actual watch time𝑤𝑢,𝑣 as the ground

truth,MAE(Mean Absolute Error) andXAUC [49] were used as the

evaluation measures. Note that XAUC evaluates if the predictions

of two samples are in the same order as their actual watch time.

Such pairs are uniformly sampled, and the percentile of samples

that are correctly ordered by predictions is XAUC. A larger XAUC

suggests better watch time prediction performance.

As for evaluating the task of relevance ranking according to user

interest, considering that the user interest labels are unobserved in

real-world datasets, we defined user interests based on CWT. Given

a (𝑢, 𝑣) pair, the user interest label is defined as:

𝑟𝑢,𝑣 =

{

1 if (𝑑𝑣 ≤ 𝑤0.7 ∧ 𝑤𝑢,𝑣 =𝑑𝑣 )∨ (𝑑𝑣 >𝑤0.7∧𝑤𝑢,𝑣 >𝑤0.7)

0 otherwise.
(8)

The𝑤0.7 indicates the 70% percentile of observed watch time, which

is considered as the threshold for CWT. When a user watches

beyond this time, we consider the user to be interested. The similar

user interest definition is also adopted in [18, 51]. We will discuss

the unbiasedness of 𝑟𝑢,𝑣 in Appendix C. The 𝑟𝑢,𝑣 is used as the

ground truth for evaluating the relevance ranking task, AUC and

nDCG@k are utilized as the evaluation metrics.

5.1.3 Baselines. In the experiments, we compared the proposed

method with the following baselines: Three duration debiased base-

lines: PCR, WTG [53],D2Q [49], D2Co [51] ; Two watch time-

weighted baselines:WLR [12] and NDT [47]; And a naive baseline:

VR (value regression) which directly fit the observed watch time.

For relevance ranking task, we also provide the result of Oracle,

which is trained directly with the label defined in Eq. (8) and de-

note the upper bound performance of relevance ranking. Most of

these methods are designed initially for relevance ranking or watch

time prediction via a transform function. For the relevance ranking

task, we directly rank the candidate videos via the predicted scores

output by the recommendation models trained by these methods.

For the watch time prediction task, we first transform the predic-

tion of recommendation models into the interval of watch time

via the inverse transform function of each method. Then we clip

the estimated watch time into 0 to 𝑑𝑣 as what we did in CWM.

Two exceptions are WLR and NDT, which are implemented by a

two-tower model and have no inverse transform function available.

Therefore, WLR is only used in watch time prediction, and NDT is

used only in relevance ranking.

To investigate the generalization of our method and the base-

lines, we integrate them with different backbone models. Specifi-

cally, we use recommendation models of FM [31], DCN [41] and

AutoInt [34] as the backbone models. These three backbone mod-

els respectively represent three types of feature interactions: inner

product, outer product, and attention mechanisms.

5.2 Overall performance

We compared our CWM with other baselines in the three datasets’

watch time prediction task and relevance ranking task, as shown

in Table 2 and Table 3, respectively. It can be seen that our CWM

obtains the best performance on almost all three datasets, all back-

bones and both tasks significantly. We also note that on WeChat,

those methods equipped with duration debiasing (e.g., WTG and

D2Q) perform even worse than the naive VR method. The reason is

that the WeChat dataset has much more completely played records
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Table 2: The watch time prediction performance of CWM and other baselines in KuaiRand, WeChat and Product. Boldface

means the best-performed methods, while underline means the second best-performed methods, superscripts †means the

significance compared to the second best-performed methods with 𝑝 < 0.05 of one-tailed 𝑡-test. ‘↓’ denotes that lower is better

for MAE, while higher is better for XAUC.

Dataset
Backbone FM DCN AutoInt

Method VR PCR WLR D2Q WTG D2Co CWM VR PCR WLR D2Q WTG D2Co CWM VR PCR WLR D2Q WTG D2Co CWM

KuaiRand
MAE↓ 22.100 20.974 24.279 18.271 23.044 22.262 17.738† 21.698 21.910 21.044 18.131 21.318 21.564 17.420† 21.726 21.465 23.202 18.213 22.771 21.826 17.462†

XAUC 0.683 0.697 0.668 0.646 0.666 0.662 0.714† 0.692 0.696 0.680 0.649 0.695 0.693 0.715† 0.685 0.699 0.668 0.646 0.673 0.667 0.713†

WeChat
MAE↓ 9.404 8.920 9.653 8.778 9.637 10.200 8.001† 9.317 8.709 9.149 7.987 8.727 8.667 7.902 9.405 8.910 9.815 8.815 9.623 10.031 7.969†

XAUC 0.696 0.692 0.667 0.682 0.653 0.627 0.713† 0.703 0.717 0.684 0.721 0.718 0.718 0.717 0.700 0.693 0.661 0.679 0.653 0.634 0.714†

Product
MAE↓ 9.411 7.395 8.913 7.383 7.420 7.511 6.785† 9.384 7.320 8.887 7.374 7.398 7.443 6.648† 9.192 7.073 8.668 7.169 7.125 7.293 6.591†

XAUC 0.808 0.801 0.816 0.817 0.816 0.812 0.833† 0.808 0.803 0.817 0.823 0.820 0.817 0.841† 0.810 0.801 0.810 0.819 0.820 0.818 0.835†

Table 3: The relevance ranking performance of CWM and other baselines in KuaiRand, WeChat and Product.

Dataset
Backbone FM DCN AutoInt

Method Oracle VR PCR D2Q WTG NDT D2Co CWM Oracle VR PCR D2Q WTG NDT D2Co CWM Oracle VR PCR D2Q WTG NDT D2Co CWM

KuaiRand
AUC 0.738 0.661 0.686 0.679 0.684 0.668 0.688 0.735† 0.745 0.665 0.693 0.684 0.718 0.679 0.730 0.735 0.737 0.655 0.691 0.679 0.692 0.669 0.688 0.734†

nDCG@3 0.489 0.442 0.469 0.464 0.462 0.461 0.464 0.486† 0.497 0.448 0.469 0.466 0.471 0.464 0.480 0.484 0.490 0.444 0.469 0.466 0.466 0.459 0.464 0.484†

WeChat
AUC 0.711 0.639 0.651 0.645 0.602 0.629 0.573 0.703† 0.712 0.641 0.699 0.696 0.703 0.672 0.702 0.707 0.714 0.637 0.652 0.642 0.603 0.636 0.575 0.704†

nDCG@3 0.588 0.520 0.540 0.540 0.528 0.510 0.527 0.581† 0.589 0.517 0.581 0.577 0.576 0.527 0.570 0.584 0.590 0.519 0.542 0.540 0.534 0.512 0.532 0.583†

Product
AUC 0.669 0.605 0.593 0.623 0.624 0.640 0.629 0.660† 0.678 0.608 0.593 0.625 0.626 0.649 0.636 0.663† 0.672 0.610 0.593 0.629 0.631 0.644 0.634 0.663†

nDCG@3 0.589 0.556 0.472 0.513 0.523 0.553 0.531 0.582† 0.595 0.564 0.475 0.516 0.533 0.563 0.540 0.591† 0.591 0.558 0.479 0.514 0.527 0.559 0.533 0.585†
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Figure 8: The relative improvement of each methods to VR

on different duration bins of KuaiRand.

(45.5%) than that of KuaiRand (17.5%), showing that increasing

completely played records make current debiasing methods get

ineffective. In contrast, CWM improved more on WeChat than on

other datasets. The results also verified the motivation of this paper:

Current methods regard all completely played records as the same

high interest, violating real interest distribution in real data. There-

fore, when the dataset contains many completely played records

(i.e., records with truncated CWT), the performance of these meth-

ods gets worse. Instead, CWM can model users’ truncated CWT to

estimate user interest better and predict users’ actual watch time.

5.3 Effectiveness on duration debiasing

To investigate why our CWM is more effective on duration debi-

asing than other baselines, we divided the KuaiRand dataset into

ten equal parts with different duration ranges. Then we evaluate

each model on the subset of KuaiRand. The result is presented in

Fig. 8. Note that the evaluation metric has different value scales

among different subsets, so we report the relative improvement

of each method to VR to show the extent to which these methods

address duration bias. The relative improvement is Δ𝐼𝑚𝑝 =
𝑣𝑚−𝑣0
𝑣0

,

where 𝑣0 is the metric value of VR and 𝑣𝑚 is the metric value of

each method.
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Figure 9: Ablation study on CWM in both KuaiRand and

WeChat. Top two: watch time prediction task. Bottom two:

relevance ranking task.

Fig 8(a) illustrates the performance of each method on the watch

time prediction task, measured by Δ𝐼𝑚𝑝 on XAUC. Fig 8(b) illus-

trates the performance of each method on the relevance ranking

task, measured by Δ𝐼𝑚𝑝 on AUC. In both tasks, most baselines per-

form better than VR in short videos (i.e., duration<30s), indicating

their effectiveness on duration debiasing to some extent. However,

since they simply regard completely played records as equally high

interest, CWM performed better than them. We can find that these

baselines perform worse in longer videos on both tasks. This is also

because they regard short, completely played video recordings as

high interest, leading to underestimating user interest and watch

time prediction for longer videos. In contrast, CWM can model

the CWT and assign fairer interest estimates to videos of different

durations.

5.4 Comparison with more baselines

We have compared our CWM with other label-correction methods

before, but the superiority of CWM compared with other state-

of-the-art methods remains unclear. Therefore, we further imple-

mented CVRDD [36], DCR [20], and VLDRec [30]. CVRDD treats
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Table 4: The ranking performance of CWM and more state-

of-the-art baselines in KuaiRand, WeChat and Product.

Dataset KuaiRand WeChat Product

Backbone Method AUC nDCG@3 AUC nDCG@3 AUC nDCG@3

FM

Oracle 0.738 0.489 0.711 0.588 0.669 0.589

VLDRec 0.689 0.463 0.655 0.540 0.633 0.543

DCR 0.695 0.469 0.659 0.542 0.639 0.540

CVRDD 0.682 0.462 0.662 0.545 0.629 0.535

CWM 0.735† 0.486† 0.703† 0.581† 0.660† 0.582†

DCN

Oracle 0.745 0.497 0.712 0.589 0.678 0.595

VLDRec 0.701 0.468 0.679 0.547 0.647 0.543

DCR 0.716 0.480 0.681 0.559 0.649 0.554

CVRDD 0.684 0.473 0.687 0.556 0.630 0.535

CWM 0.735† 0.484 0.707† 0.584† 0.663† 0.591†

AutoInt

Oracle 0.737 0.490 0.714 0.590 0.672 0.591

VLDRec 0.698 0.472 0.661 0.546 0.638 0.550

DCR 0.699 0.475 0.662 0.547 0.643 0.546

CVRDD 0.683 0.470 0.664 0.555 0.639 0.536

CWM 0.734† 0.484 0.704† 0.583† 0.663† 0.585†

video duration as a mediation factor, DCR considers video duration

as a confounder, and VLDRec employs PCR as the label with pair-

wise learning, all primarily feature-based or data-based approaches.

In contrast, our label-correction method, CWM, consistently out-

performs these baselines in terms of AUC and nDCG@3 metrics,

as shown in Table 4. The superiority of CWM is consistent across

all datasets and backbone models. In conclusion, our CWM method

demonstrates superior performance in mitigating duration bias

by modeling counterfactual watch time (CWT), highlighting its

effectiveness in delivering more accurate and unbiased recommen-

dations in short video recommendation systems.

5.5 Ablation study

We also investigate how CWM’s two components benefit the CWM,

i.e., the cost-based transform function and the counterfactual likeli-

hood functions. The cost-based transform function estimates user

interest from the CWT, and the counterfactual likelihood function

optimizes the model unbiasedly using the observed watch time.

Specifically, we produce two variants for CWM. The first is denoted

as CWM-C, which removes the cost-based transform function

and directly applies the original watch time to the counterfactual

likelihood function. The second one is denoted as CWM-L, which

replaces the counterfactual likelihood function with a mean squared

error loss function.

Fig. 9 demonstrates the performance comparison between CWM

and its variants on two datasets and two tasks. On KuaiRand, CWM-

L obtains similar performances to CWM, while CWM-C has a sig-

nificant performance drop to CWM. We argue that when CWT is

less truncated (e.g., KuaiRand has only 17.5% completely played

records), how it is converted into an interest estimation can pri-

marily affect performance. On WeChat, CWM-C obtains a similar

performance to CWM, while CWM-L has a significant performance

drop to CWM. We argue that when CWT is heavily truncated (e.g.,

WeChat has 45.5% completely played records), how the observed

watch time is used to approximate the learning of CWT becomes

the performance bottleneck.

Table 5: Relative improvement of CWM to product baseline

for one-week online A/B testing.

MWT VV CTR

Product - - -

CWM +2.9% +2.5% +0.3%

5.6 Online A/B Testing

To verify the effectiveness of CWM in real-world recommendation

scenarios, we conducted online experiments in our commercial sys-

tem, a popular platform with tens of millions of active users every

day. The baseline is a highly-optimized multi-task model deployed

for the product.Both the baseline and CWMwere trained incremen-

tally on the same anonymous logging data, and each one serves

5% traffics, randomly selected from the same user group. As for

short video recommendations, improving customers’ mean watch

time (MWT) is the main target. Other metrics, such as average

valid viewing volume (VV) and click-through rate (CTR), are also

adopted. According to the online A/B testing results shown in Ta-

ble 5, we can see that CWM does help users to entertain themselves

and spend more time watching the short videos.

6 Conclusion

In this study, we aim to counteract the duration bias in video rec-

ommendation. We propose counterfactual watch time (CWT) for

interpreting the duration bias in video recommendation and point

out that the duration bias is caused by the truncation of the user’s

CWT by video duration. A Counterfactual Watch Model (CWM) is

then developed, revealing that the CWT equals the time users get

the maximum benefit from video recommender systems. A cost-

based correction function is defined to transform the CWT into

the user interest, and the unbiased recommendation model can be

learned by optimizing a counterfactual likelihood function defined

over observed user watch times. Experimental results on three of-

fline real datasets and online A/B testing indicate the superiority

of the proposed CWM.

Acknowledgments

This work was funded by the National Key R&D Program of China

(2023YFA1008704), the National Natural Science Foundation of

China (No. 62377044), Beijing Key Laboratory of Big Data Manage-

ment and Analysis Methods, Major Innovation & Planning Interdis-

ciplinary Platform for the łDouble-First Classž Initiative, funds for

building world-class universities (disciplines) of Renmin University

of China, and PCC@RUC.

References
[1] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W. Bruce Croft. 2018. Un-

biased Learning to Rank with Unbiased Propensity Estimation. In The 41st In-
ternational ACM SIGIR Conference on Research Development in Information Re-
trieval (Ann Arbor, MI, USA) (SIGIR ’18). ACM, New York, NY, USA, 385ś394.
https://doi.org/10.1145/3209978.3209986

[2] Fuad Aleskerov, Denis Bouyssou, and Bernard Monjardet. 2007. Utility maxi-
mization, choice and preference. Vol. 16. Springer Science & Business Media.

[3] Takeshi Amemiya. 1984. Tobit models: A survey. Journal of econometrics 24, 1-2
(1984), 3ś61.

[4] Alexey Borisov, Ilya Markov, Maarten de Rijke, and Pavel Serdyukov. 2016. A Neu-
ral Click Model for Web Search. In Proceedings of the 25th International Conference
on World Wide Web (Montréal, Québec, Canada) (WWW ’16). International World

4463

https://doi.org/10.1145/3209978.3209986


KDD ’24, August 25–29, 2024, Barcelona, Spain Haiyuan Zhao et al.

Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
CHE, 531ś541. https://doi.org/10.1145/2872427.2883033

[5] Qingpeng Cai, Zhenghai Xue, Chi Zhang, Wanqi Xue, Shuchang Liu, Ruohan
Zhan, Xueliang Wang, Tianyou Zuo, Wentao Xie, Dong Zheng, Peng Jiang, and
Kun Gai. 2023. Two-Stage Constrained Actor-Critic for Short Video Recommen-
dation. In Proceedings of the ACM Web Conference 2023, WWW 2023, Austin, TX,
USA, 30 April 2023 - 4 May 2023. ACM, 865ś875.

[6] Jianxin Chang, Chenbin Zhang, Yiqun Hui, Dewei Leng, Yanan Niu, Yang Song,
and Kun Gai. 2023. PEPNet: Parameter and Embedding Personalized Network
for Infusing with Personalized Prior Information. CoRR abs/2302.01115 (2023).

[7] Olivier Chapelle and Ya Zhang. 2009. A Dynamic Bayesian Network Click Model
for Web Search Ranking. In Proceedings of the 18th International Conference
on World Wide Web (Madrid, Spain) (WWW ’09). Association for Computing
Machinery, New York, NY, USA, 1ś10. https://doi.org/10.1145/1526709.1526711

[8] Jia Chen, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma. 2020. A
Context-Aware Click Model for Web Search. In Proceedings of the 13th In-
ternational Conference on Web Search and Data Mining (Houston, TX, USA)
(WSDM ’20). Association for Computing Machinery, New York, NY, USA, 88ś96.
https://doi.org/10.1145/3336191.3371819

[9] Mouxiang Chen, Chenghao Liu, Jianling Sun, and Steven C.H. Hoi. 2021. Adapt-
ing Interactional Observation Embedding for Counterfactual Learning to Rank.
In Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval (Virtual Event, Canada) (SIGIR ’21). As-
sociation for Computing Machinery, New York, NY, USA, 285ś294. https:
//doi.org/10.1145/3404835.3462901

[10] Kyung-Jae Cho, Yeon-Chang Lee, Kyungsik Han, Jaeho Choi, and Sang-Wook Kim.
2019. No, that’s not my feedback: TV show recommendation using watchable
interval. In 2019 IEEE 35th International Conference on Data Engineering (ICDE).
IEEE, 316ś327.

[11] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. 2016. Click Models for
Web Search and Their Applications to IR: WSDM 2016 Tutorial. In Proceedings
of the Ninth ACM International Conference on Web Search and Data Mining (San
Francisco, California, USA) (WSDM ’16). Association for Computing Machinery,
New York, NY, USA, 689ś690. https://doi.org/10.1145/2835776.2855113

[12] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems (Boston, Massachusetts, USA) (RecSys ’16). Association for
Computing Machinery, New York, NY, USA, 191ś198. https://doi.org/10.1145/
2959100.2959190

[13] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems, Boston, MA, USA, September 15-19, 2016. ACM, 191ś198.

[14] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. 2008. An Exper-
imental Comparison of Click Position-Bias Models. In Proceedings of the 2008
International Conference on Web Search and Data Mining (Palo Alto, California,
USA) (WSDM ’08). Association for Computing Machinery, New York, NY, USA,
87ś94. https://doi.org/10.1145/1341531.1341545

[15] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet,
Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, and Dasarathi
Sampath. 2010. The YouTube Video Recommendation System. In Proceedings of
the Fourth ACM Conference on Recommender Systems (Barcelona, Spain) (RecSys
’10). Association for Computing Machinery, New York, NY, USA, 293ś296. https:
//doi.org/10.1145/1864708.1864770

[16] Georges E. Dupret and Benjamin Piwowarski. 2008. A User Browsing Model to
Predict Search Engine Click Data from Past Observations.. In Proceedings of the
31st Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (Singapore, Singapore) (SIGIR ’08). Association for Comput-
ing Machinery, New York, NY, USA, 331ś338. https://doi.org/10.1145/1390334.
1390392

[17] Lingyue Fu, Jianghao Lin, Weiwen Liu, Ruiming Tang, Weinan Zhang, Rui Zhang,
and Yong Yu. 2023. An F-Shape Click Model for Information Retrieval on Multi-
Block Mobile Pages. In Proceedings of the Sixteenth ACM International Conference
on Web Search and Data Mining (Singapore, Singapore) (WSDM ’23). Association
for Computing Machinery, New York, NY, USA, 1057ś1065. https://doi.org/10.
1145/3539597.3570365

[18] Chongming Gao, Shijun Li, Yuan Zhang, Jiawei Chen, Biao Li, Wenqiang Lei,
Peng Jiang, and Xiangnan He. 2022. KuaiRand: An Unbiased Sequential Rec-
ommendation Dataset with Randomly Exposed Videos. In Proceedings of the
31st ACM International Conference on Information and Knowledge Management
(Atlanta, GA, USA) (CIKM ’22). 5 pages. https://doi.org/10.1145/3511808.3557624

[19] Yunjun Gao, Yuntao Du, Yujia Hu, Lu Chen, Xinjun Zhu, Ziquan Fang, and Baihua
Zheng. 2022. Self-Guided Learning to Denoise for Robust Recommendation. In
Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval (Madrid, Spain) (SIGIR ’22). Association for
Computing Machinery, New York, NY, USA, 1412ś1422. https://doi.org/10.1145/
3477495.3532059

[20] Xiangnan He, Yang Zhang, Fuli Feng, Chonggang Song, Lingling Yi, Guohui Ling,
and Yongdong Zhang. 2023. Addressing Confounding Feature Issue for Causal

Recommendation. ACM Trans. Inf. Syst. 41, 3, Article 53 (feb 2023), 23 pages.
https://doi.org/10.1145/3559757

[21] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton.
1991. Adaptive Mixtures of Local Experts. Neural Comput. 3, 1 (1991), 79ś87.

[22] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased
Learning-to-Rank with Biased Feedback. In Proceedings of the Tenth ACM Interna-
tional Conference on Web Search and Data Mining (Cambridge, United Kingdom)
(WSDM ’17). ACM, New York, NY, USA, 781ś789. https://doi.org/10.1145/3018661.
3018699

[23] Yan Li, Kevin S. Xu, and Chandan K. Reddy. 2016. Regularized Parametric
Regression for High-dimensional Survival Analysis. In Proceedings of the 2016
SIAM International Conference on Data Mining, Miami, Florida, USA, May 5-7,
2016, Sanjay Chawla Venkatasubramanian and Wagner Meira Jr. (Eds.). SIAM,
765ś773. https://doi.org/10.1137/1.9781611974348.86

[24] Shang Liu, Zhenzhong Chen, Hongyi Liu, and Xinghai Hu. 2019. User-Video
Co-Attention Network for Personalized Micro-Video Recommendation. In The
World Wide Web Conference (San Francisco, CA, USA) (WWW ’19). Association
for Computing Machinery, New York, NY, USA, 3020ś3026. https://doi.org/10.
1145/3308558.3313513

[25] Yiyu Liu, Qian Liu, Yu Tian, Changping Wang, Yanan Niu, Yang Song, and Chen-
liang Li. 2021. Concept-Aware Denoising Graph Neural Network for Micro-Video
Recommendation. In Proceedings of the 30th ACM International Conference on In-
formation Knowledge Management (Virtual Event, Queensland, Australia) (CIKM
’21). Association for Computing Machinery, New York, NY, USA, 1099ś1108.
https://doi.org/10.1145/3459637.3482417

[26] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H. Chi. 2018.
Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-
of-Experts. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018.
ACM, 1930ś1939.

[27] Jiaxin Mao, Cheng Luo, Min Zhang, and Shaoping Ma. 2018. Constructing Click
Models for Mobile Search. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval (Ann Arbor, MI, USA) (SIGIR
’18). Association for Computing Machinery, New York, NY, USA, 775ś784. https:
//doi.org/10.1145/3209978.3210060

[28] Yoojin Park, Jinoh Oh, and Hwanjo Yu. 2017. RecTime: Real-time recommender
system for online broadcasting. Information Sciences 409 (2017), 1ś16.

[29] Jiarui Qin, Jiachen Zhu, Yankai Liu, Junchao Gao, Jianjie Ying, Chaoxiong Liu,
Ding Wang, Junlan Feng, Chao Deng, Xiaozheng Wang, et al. 2023. Learning to
distinguish multi-user coupling behaviors for tv recommendation. In Proceedings
of the Sixteenth ACM International Conference on Web Search and Data Mining.
204ś212.

[30] Yuhan Quan, Jingtao Ding, Chen Gao, Nian Li, Lingling Yi, Depeng Jin, and Yong
Li. 2023. Alleviating Video-length Effect for Micro-video Recommendation. ACM
Trans. Inf. Syst. 42, 2, Article 44 (nov 2023), 24 pages. https://doi.org/10.1145/
3617826

[31] Steffen Rendle. 2012. Factorization Machines with LibFM. ACM Trans. Intell. Syst.
Technol. 3, 3, Article 57 (may 2012), 22 pages. https://doi.org/10.1145/2168752.
2168771

[32] Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata.
2020. Unbiased Recommender Learning from Missing-Not-At-Random Implicit
Feedback. In Proceedings of the 13th International Conference on Web Search and
Data Mining (Houston, TX, USA) (WSDM ’20). Association for Computing Ma-
chinery, New York, NY, USA, 501ś509. https://doi.org/10.1145/3336191.3371783

[33] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and
Thorsten Joachims. 2016. Recommendations as treatments: Debiasing learning
and evaluation. In international conference on machine learning. PMLR, 1670ś
1679.

[34] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,
and Jian Tang. 2019. AutoInt: Automatic Feature Interaction Learning via
Self-Attentive Neural Networks. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management (Beijing, China) (CIKM
’19). Association for Computing Machinery, New York, NY, USA, 1161ś1170.
https://doi.org/10.1145/3357384.3357925

[35] Hongyan Tang, Junning Liu, Ming Zhao, and Xudong Gong. 2020. Progres-
sive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for
Personalized Recommendations. In RecSys 2020: Fourteenth ACM Conference on
Recommender Systems, Virtual Event, Brazil, September 22-26, 2020. ACM, 269ś278.

[36] Shisong Tang, Qing Li, Dingmin Wang, Ci Gao, Wentao Xiao, Dan Zhao,
Yong Jiang, Qian Ma, and Aoyang Zhang. 2023. Counterfactual Video Rec-
ommendation for Duration Debiasing. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (<conf-loc>, <city>Long
Beach</city>, <state>CA</state>, <country>USA</country>, </conf-loc>) (KDD
’23). Association for Computing Machinery, New York, NY, USA, 4894ś4903.
https://doi.org/10.1145/3580305.3599797

[37] Shisong Tang, Qing Li, Dingmin Wang, Ci Gao, Wentao Xiao, Dan Zhao, Yong
Jiang, QianMa, and Aoyang Zhang. 2023. Counterfactual Video Recommendation
for Duration Debiasing. In Proceedings of the 29th ACM SIGKDD Conference

4464

https://doi.org/10.1145/2872427.2883033
https://doi.org/10.1145/1526709.1526711
https://doi.org/10.1145/3336191.3371819
https://doi.org/10.1145/3404835.3462901
https://doi.org/10.1145/3404835.3462901
https://doi.org/10.1145/2835776.2855113
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/1341531.1341545
https://doi.org/10.1145/1864708.1864770
https://doi.org/10.1145/1864708.1864770
https://doi.org/10.1145/1390334.1390392
https://doi.org/10.1145/1390334.1390392
https://doi.org/10.1145/3539597.3570365
https://doi.org/10.1145/3539597.3570365
https://doi.org/10.1145/3511808.3557624
https://doi.org/10.1145/3477495.3532059
https://doi.org/10.1145/3477495.3532059
https://doi.org/10.1145/3559757
https://doi.org/10.1145/3018661.3018699
https://doi.org/10.1145/3018661.3018699
https://doi.org/10.1137/1.9781611974348.86
https://doi.org/10.1145/3308558.3313513
https://doi.org/10.1145/3308558.3313513
https://doi.org/10.1145/3459637.3482417
https://doi.org/10.1145/3209978.3210060
https://doi.org/10.1145/3209978.3210060
https://doi.org/10.1145/3617826
https://doi.org/10.1145/3617826
https://doi.org/10.1145/2168752.2168771
https://doi.org/10.1145/2168752.2168771
https://doi.org/10.1145/3336191.3371783
https://doi.org/10.1145/3357384.3357925
https://doi.org/10.1145/3580305.3599797


Counteracting Duration Bias in Video Recommendation via Counterfactual Watch Time KDD ’24, August 25–29, 2024, Barcelona, Spain

on Knowledge Discovery and Data Mining (Long Beach, CA, USA) (KDD ’23).
Association for Computing Machinery, New York, NY, USA, 4894ś4903. https:
//doi.org/10.1145/3580305.3599797

[38] Richard F Thompson and William A Spencer. 1966. Habituation: a model phe-
nomenon for the study of neuronal substrates of behavior. Psychological review
73, 1 (1966), 16.

[39] Nicolaas J Vriend. 1996. Rational behavior and economic theory. Journal of
Economic Behavior & Organization 29, 2 (1996), 263ś285.

[40] Ping Wang, Yan Li, and Chandan K Reddy. 2019. Machine learning for survival
analysis: A survey. ACM Computing Surveys (CSUR) 51, 6 (2019), 1ś36.

[41] Ruoxi Wang, Bin Fu, Gang Fu, and MingliangWang. 2017. Deep & Cross Network
for Ad Click Predictions. In Proceedings of the ADKDD’17 (Halifax, NS, Canada)
(ADKDD’17). Association for Computing Machinery, New York, NY, USA, Article
12, 7 pages. https://doi.org/10.1145/3124749.3124754

[42] Wenjie Wang, Fuli Feng, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. 2021.
Denoising Implicit Feedback for Recommendation. In Proceedings of the 14th
ACM International Conference on Web Search and Data Mining (Virtual Event,
Israel) (WSDM ’21). Association for Computing Machinery, New York, NY, USA,
373ś381. https://doi.org/10.1145/3437963.3441800

[43] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.
Learning to Rank with Selection Bias in Personal Search. In Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (Pisa, Italy) (SIGIR ’16). ACM, New York, NY, USA, 115ś124.

[44] Yu Wang, Xin Xin, Zaiqiao Meng, Joemon M Jose, Fuli Feng, and Xiangnan
He. 2022. Learning Robust Recommenders through Cross-Model Agreement. In
Proceedings of the ACMWeb Conference 2022 (Virtual Event, Lyon, France) (WWW
’22). Association for Computing Machinery, New York, NY, USA, 2015ś2025.
https://doi.org/10.1145/3485447.3512202

[45] Tianxin Wei, Fuli Feng, Jiawei Chen, Ziwei Wu, Jinfeng Yi, and Xiangnan He.
2021. Model-Agnostic Counterfactual Reasoning for Eliminating Popularity
Bias in Recommender System. In Proceedings of the 27th ACM SIGKDD Con-
ference on Knowledge Discovery Data Mining (Virtual Event, Singapore) (KDD
’21). Association for Computing Machinery, New York, NY, USA, 1791ś1800.
https://doi.org/10.1145/3447548.3467289

[46] Peng Wu, Haoxuan Li, Yuhao Deng, Wenjie Hu, Quanyu Dai, Zhenhua Dong,
Jie Sun, Rui Zhang, and Xiao-Hua Zhou. 2022. On the Opportunity of Causal
Learning in Recommendation Systems: Foundation, Estimation, Prediction and
Challenges. In Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI-22. 5646ś5653. Survey Track.

[47] Ruobing Xie, LinMa, Shaoliang Zhang, Feng Xia, and Leyu Lin. 2023. Reweighting
Clicks with Dwell Time in Recommendation. In Companion Proceedings of the
ACMWeb Conference 2023 (Austin, TX, USA) (WWW ’23 Companion). Association
for Computing Machinery, New York, NY, USA, 341ś345. https://doi.org/10.
1145/3543873.3584624

[48] Bowen Yuan, Yaxu Liu, Jui-Yang Hsia, Zhenhua Dong, and Chih-Jen Lin. 2020. Un-
biased Ad Click Prediction for Position-Aware Advertising Systems. In Fourteenth
ACM Conference on Recommender Systems (Virtual Event, Brazil) (RecSys ’20).
ACM, New York, NY, USA, 368ś377. https://doi.org/10.1145/3383313.3412241

[49] Ruohan Zhan, Changhua Pei, Qiang Su, Jianfeng Wen, Xueliang Wang, Guanyu
Mu, Dong Zheng, Peng Jiang, and Kun Gai. 2022. Deconfounding Duration Bias
in Watch-Time Prediction for Video Recommendation. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (Washington
DC, USA) (KDD ’22). Association for Computing Machinery, New York, NY, USA,
4472ś4481. https://doi.org/10.1145/3534678.3539092

[50] Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei, Chonggang Song, Guohui
Ling, and Yongdong Zhang. 2021. Causal Intervention for Leveraging Popularity
Bias in Recommendation. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval (Virtual Event,
Canada) (SIGIR ’21). ACM, New York, NY, USA, 11ś20. https://doi.org/10.1145/
3404835.3462875

[51] Haiyuan Zhao, Lei Zhang, Jun Xu, Guohao Cai, Zhenhua Dong, and Ji-Rong Wen.
2023. Uncovering User Interest from Biased and Noised Watch Time in Video
Recommendation. In Proceedings of the 17th ACMConference on Recommender Sys-
tems (Singapore, Singapore) (RecSys ’23). Association for Computing Machinery,
New York, NY, USA, 528ś539. https://doi.org/10.1145/3604915.3608797

[52] Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews,
Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, and Ed H. Chi.
2019. Recommending what video to watch next: a multitask ranking system. In
Proceedings of the 13th ACM Conference on Recommender Systems, RecSys 2019,
Copenhagen, Denmark, September 16-20, 2019. ACM, 43ś51.

[53] Yu Zheng, Chen Gao, Jingtao Ding, Lingling Yi, Depeng Jin, Yong Li, and Meng
Wang. 2022. DVR: Micro-Video Recommendation Optimizing Watch-Time-Gain
under Duration Bias. In Proceedings of the 30th ACM International Conference on
Multimedia (Lisboa, Portugal) (MM ’22). Association for Computing Machinery,
New York, NY, USA, 334ś345. https://doi.org/10.1145/3503161.3548428

[54] Yu Zheng, ChenGao, Xiang Li, XiangnanHe, Yong Li, andDepeng Jin. 2021. Disen-
tangling User Interest and Conformity for Recommendation with Causal Embed-
ding. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21).

ACM, New York, NY, USA, 2980ś2991. https://doi.org/10.1145/3442381.3449788
[55] Tengfei Zhou, Hui Qian, Zebang Shen, Chao Zhang, Chengwei Wang, Shichen

Liu, and Wenwu Ou. 2018. JUMP: a joint predictor for user click and dwell time.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence.
AAAI Press. 3704ś3710.

A Proof of theorem 1

Proof. As we have analyzed before, the CWT𝑤𝑐
𝑢,𝑣 corresponds

to user interests 𝑟𝑢,𝑣 , i.e., 𝑤
𝑐
𝑢,𝑣 = 𝑔(𝑟𝑢,𝑣). Based on Eq. (1), we can

obtain the functions of𝑤𝑢,𝑣 on 𝑟𝑢,𝑣 :

𝑤𝑢,𝑣 = min(𝑔(𝑟𝑢,𝑣), 𝑑𝑣), 𝑟𝑢,𝑣 ∈ R, 𝑤𝑢,𝑣 ∈ W

Next, we need to prove that the above function does not always have

an inverse function, w.r.t any 𝑤𝑢,𝑣 . Similar to Eq. (1), we rewrite

the above function as a segmented function:

𝑟𝑢,𝑣 = 𝑔−1 (𝑤𝑢,𝑣), if 𝑤𝑢,𝑣 < 𝑑𝑣 ;

𝑟𝑢,𝑣 ≥ 𝑔−1 (𝑤𝑢,𝑣), if 𝑤𝑢,𝑣 = 𝑑𝑣 ;

Note that when 𝑤𝑢,𝑣 = 𝑑𝑣 (i.e., completely play a video), we can

only obtain an inequality between𝑤𝑢,𝑣 and 𝑟𝑢,𝑣 , thus proving that

there is no such an inverse function 𝑟𝑢,𝑣 = 𝑔−1 (𝑤𝑢,𝑣) for all𝑤𝑢,𝑣 ∈
W. □

B Detailed Experimental Setting

In our paper, we briefly described the dataset used in our papers

and the baselines due to the limitation of pages. Now, we put a

more detailed experimental setting in this appendix.

WeChat. This dataset is released by WeChat Big Data Challenge

2021, containing the WeChat Channels logs within two weeks. Fol-

lowing the practice in [53], we split the data into the first 10 days,

the middle 2 days, and the last 2 days as training, validation, and

test set. We noticed that there is an unusually high proportion of

60s videos among the dataset (17.3%), so our experiments were con-

ducted on a subset of 60s videos that were excluded (i.e., the duration

range is [5s,59s] in the subset). The adopted input features include

userid,feedid,device,authorid,bgm_song_id,bgm_singer_id,user_type.

KuaiRand [18]. KuaiRand is a newly released sequential recom-

mendation dataset collected from KuaiShou. As suggested in [18],

we utilized one of the subsets KuaiRand-pure in this study. To

mitigate the sparsity problem, we selected data from which the

video duration is up to 400s. We split the data into the first 14

days, the middle 7 days, and the last 10 days as training, validation,

and test set. The adopted input features include user_id, video_id,

author_id, music_id, follow_user_num_range,register_days_range,

fans_user_num_range, friend_user_num_range, user_active_degree,

most_popular_tag, video_type,upload_type,tab.

Product. We collect the product dataset from the server log of

our video platform, which samples the log data from June 19, 2023

to June 25, 2023. Due to the data imbalance, we intercepted the

records below 42 seconds as the final training set. We trained our

model on this dataset and tested them in the last two hours of server

log data. The pretrained ID embedding and side information are

used as feature inputs for all methods.

In this study, we implement WLR following the details in [49].

For D2Q, the group number is set to 60 in KuaiRand, 30 in WeChat,

and 10 in our Product dataset. For NDT, we set its hyper-parameters

as the author suggested in their paper [47]. For D2Co, the window

size and sensitivity-controlled term are set as suggested in their
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Figure 11: The parameter sensitivity of CWM on KuaiRand

dataset where the backbone model is FM.
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Figure 12: The true and estimated watch time distribution

on KuaiRand dataset.
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Figure 10: (Left) The proportion of user interest labels 𝑟𝑢,𝑣
and (Right) The proportion of explicit feedback when 𝑟𝑢,𝑣 = 1

grouped by video duration on (a) KuaiRand and (b) WeChat.

paper [51]. We utilize Adam as the optimizer and set the initial

learning rate as 5𝑒−4 for all methods. The batch size is set as 512. For

all the backbone models, we set their latent embedding dimension

to 10. For all methods with neural networks, the hidden units are

set to 64 while the dropout ratio is set to 0.2. The value of user cost

𝑐 and 𝜎 in our CWM is set to (1/40, 2) in the KuaiRand dataset,

(1/40, 20) in theWeChat dataset, and (1/5, 5) in the Product dataset.
We tune our hyperparameters on the validation set while evaluating

the performance on the test set.

C The Unbiasedness of Interest Labels

To evaluate the performance of relevance ranking tasks in this study,

we need an unbiased indicator of user interest first. However, the

user interest labels are unobserved in real-world datasets. Although

explicit feedback can reflect user interest and is not affected by

duration bias, it suffers from severe selection bias and noise [19, 42,

44]: this indicates that users might not provide explicit feedback

for videos they like and might mistakenly provide explicit feedback

for videos they dislike. Therefore, using explicit feedback as a label

for evaluating relevance ranking tasks is inappropriate. To this end,

we defined user interests based on CWT in Eq. (8). However, the

unbiasedness of this interest label still needs to be discussed.

To achieve duration unbiased, the user interest indicator 𝑟𝑢,𝑣
needs to fulfill two characteristics: (1) it should be independent

of video duration, and (2) when 𝑟𝑢,𝑣 = 1, user explicit feedback

should be equivalent across all video duration (thus mitigating the

issue described in Fig 1). To verify whether our interest indicator

defined in Eq. (8) satisfies the above characteristics, we calculate the

proportion of user interest labels 𝑟𝑢,𝑣 and the proportion of explicit

feedback when 𝑟𝑢,𝑣 = 1 grouped by video duration. Note that since

videos shorter than𝑤0.7 cannot achieve a watch time of𝑤0.7, we

exclude these videos from our analysis. The results are presented in

Fig 10. It is evident that our defined 𝑟𝑢,𝑣 roughly satisfies the above

two characteristics on both the KuaiRand and WeChat datasets,

thus indicating its unbiasedness.

D More Experimental results

D.1 Parameter sensitivity

There are two hyper-parameters in the proposed CWM: one is the

user watch cost 𝑐 in the cost-based transform function (Eq. (3)). The

larger the 𝑐 , the more sensitive users are to watch time; Another

is the variance term 𝜎 of user interest in counterfactual likelihood

function (Eq (6)). The larger the value of 𝜎 , the more dispersed the

user’s interest distribution is. Fig. 11 illustrates the performance

changes of recommendation with different values of 𝑐 and 𝜎 . For

watch time prediction (Fig. 11(a)), the best hyper-parameter is 𝜎 ∈
(1.0, 2.0) ∧ 𝑐 ∈ (1/40, 1/20); For relevance ranking (Fig. 11(b)), the

best hyper-parameters is 𝜎 ∈ (2.0, 5.0) ∧𝑐 ∈ (1/80, 1/60). Note that
the best hyper-parameters of two tasks may not be the same. In

practice, it is necessary to adjust the hyper-parameters to make

CWM perform best.

D.2 Better fit to the true watch time distribution

We examine whether CWM can fit the true watch time distribution.

As a comparison, we also present the estimated watch time distribu-

tion by PCR, which is representative of existing debiasing methods.

Fig 12(a) shows the true and estimated watch time distribution on

videos with less than 100s duration on KuaiRand. We can find that

the estimated watch time distribution by PCR is more flattening

than the true distribution. It overestimates higher watch time (i.e.,

>10s). In contrast, our CWM can fit the true distribution even better.

Fig 12(b) shows the true and estimated watch time distribution on

videos with 30s duration on KuaiRand. It can be found that PCR

only estimates a single-peaked distribution which differs signifi-

cantly from the true bimodal distribution. In comparison, CWM

can estimate a similar bimodal distribution to the true distribution,

demonstrating CWM’s effectiveness in watch time prediction.

4466


	Abstract
	1 Introduction
	2 Related work
	3 Counterfactual watch time
	3.1 Definition of counterfactual watch time
	3.2 The existence of counterfactual watch time
	3.3 An economic view of user watching
	3.4 Limitation of existing methods

	4 Our approach
	4.1 Cost-based transform function 
	4.2 Counterfactual likelihood function
	4.3 Online inference

	5 Experiments and Results
	5.1 Experimental setting
	5.2 Overall performance
	5.3 Effectiveness on duration debiasing
	5.4 Comparison with more baselines
	5.5 Ablation study
	5.6 Online A/B Testing

	6 Conclusion
	Acknowledgments
	References
	A Proof of theorem 1
	B Detailed Experimental Setting
	C The Unbiasedness of Interest Labels
	D More Experimental results
	D.1 Parameter sensitivity
	D.2 Better fit to the true watch time distribution




