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Abstract—With the popularity of online music services, per-
sonalized music recommendation has garnered much research
interest. Recommendation models are typically trained on datasets
constructed from user feedback, which includes both the active
feedback (e.g., clicking the Like or Skip buttons) and passive
feedback (e.g., auto-play), with passive feedback comprising
the majority. Due to the unavailability of user attention, the
massive amount of passive feedback is unreliable, significantly
compromising the quality of the training data. How to estimate
the user’s attention on the target music has become a critical
problem in music recommendation. Heuristic methods such as
exponential decay and negative sampling have been proposed.
However, they either neglect the sequential dependencies between
feedback actions or utilize only a small fraction of passive samples,
leading to inaccurate and biased attention estimation. In this
paper, we naturally propose modeling user attention prediction as
a positive-unlabeled (PU) learning problem, where active feedback
is treated as positive samples and passive feedback is treated as
unlabeled samples, as we can only ensure that the user’s attention
is focused when she provides active feedback. Then we propose an
extended PU-learning model with sequential dependencies, called
UAE, which contains an unbiased user attention estimator and
an unbiased propensity estimator. Subsequently, a joint learning
algorithm is developed in which the attention and propensity
estimators are optimized in alternating fashion. Theoretical
analysis shows the unbiasedness and variance of the attention
estimator and the propensity estimator. Extensive experiments
on two large-scale datasets demonstrate the proposed UAE’s
effectiveness and generality in enhancing downstream music
recommendation. One week online A/B testing on Huawei Music
App manifests that UAE can significantly increase the users’ play
count and time over 2%, further demonstrating the effectiveness
of UAE in real-world music recommendation products.

Index Terms—music recommendation, user attention modeling,
PU-learning, unbiased prediction

I. INTRODUCTION

Recently, music recommendation has attracted more and

more research interest from both academia and industry [1],

[2], [3], [4], [5]. Great amounts of research efforts have

been devoted to the model architecture design [6], [7], [8].

Meanwhile, little attention has been paid to the fine-grained

analysis and construction of the training data, even though its

quality plays an essential role in recommendation performance.

As shown in Figure 1, when a user accesses a music

recommender system, the system recommends a song playlist.

∗Corresponding author. Work partially done at Engineering Research Center
of Next-Generation Intelligent Search and Recommendation, Ministry of
Education.
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Fig. 1. Illustrating our motivation on why modeling user attention is pivotal for
music recommendation. When users actively provide feedback, their attention
is fully engaged, resulting in high-confidence active samples. However, when
users offer passive feedback, such as listening to music in the background while
focusing on other tasks, the reliability of this feedback diminishes significantly.

The user may give multiple types of active feedback during

her interaction with the recommended song list, including

clicking the “Like”, “Share”, “Download”, “Skip”, and “Dislike”

buttons. Meanwhile, since the music apps are designed to

automatically play the next songs, the system may also receive

passive feedback such as “Auto-play”. Currently, the training

data in music recommendation is constructed based on user

feedback with simple rules [3], [5], [9], [10]. For instance, the

“Like”, “Share”, “Download”, and auto-played songs are directly

considered as positive samples, while the “Skip” and “Dislike”

songs are negative samples. Though the active feedback clearly

reflects the user preference, the reliability of passive feedback

is much lower. The major reason is that the user’s attention

may not be on the target song when giving passive feedback.

For example, the user may listen to the songs as background

music or even not listen, while the songs are still auto-playing.

As a consequence, directly using passive feedback actions to

define sample labels is unreasonable due to the unavailability of

the user attention. The naively defined sample labels pose great

challenges to the recommendation performance with existing

models. How to accurately model the user attention on the

target music when she gave the passive feedback has become

a critical problem in industries and other data engineering

areas. The key difficulty lies in that we only have access to

a proportion of positive samples for modeling user attention.

That is, when a user gives active feedback, we are sure that

her attention is on the target music. When a user gives passive

feedback, however, we are uncertain whether her attention is
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Fig. 2. Statistics on the transition probabilities of user feedback types on Huawei Music App. ‘a’ denotes an active action and ‘p’ denotes a passive action. (a):
x-axis is the type of next feedback, and y-axis is the type of current feedback. The overall probabilities of appearing active and passive actions are 0.0876 and
0.9124, respectively. The number in each cell is the corresponding transition probability. (b): the probability of giving an active action w.r.t. different near
history feedback sequences of length 6; (c): the probability of giving an active action w.r.t. different lengths of near history active feedback sequences.

on the target music. These make attention prediction a natural

positive-unlabeled (PU) learning problem.
To model user attention, existing methods have predom-

inantly design heuristics to circumvent the unlabeled data

problem. For example, Spotify [11] assumed that user attention

exponentially decreases with time and first proposed an

exponential decay function to predict user attention. Zhang et
al. [12] proposed a learning-based model with a heuristic neg-

ative sampling method for attention prediction. The sampling

heuristic is, for example, a negative attention label is sampled

only when a user continues the passive actions for more than 10
songs. However, in real scenarios, users may lose their attention

at any time during the listening events [13]. Consequently, these

existing methods often suffer from bias, and their performance

may be suboptimal due to overlooking the positive-unlabeled

nature of user attention in music streaming services.
On the other hand, classical PU-learning method can not

be directly applied, since the uniform assumption1 does not

hold in the attention prediction task. We use some statistics

from Huawei Music App for illustration. Figure 2(a) shows the

transition probability of the active and passive user feedback.

We can observe that a user has a marginal probability of 8.76%

to give an active action. However, the probability dramatically

increases to 55.88% if her last action is active, and decreases to

4.88% if the last is passive. Similar patterns can be found among

the passive feedback actions. Moreover, Figure 2(b) and 2(c)

further illustrate the sequential dependencies that the proba-

bility of giving an active action will increase if more active

actions occurred in the near history feedback sequence. This

phenomenon is caused by the fact that users are more likely to

focus on the music if they have done some active actions on

the music App in the past few songs. Therefore, user feedback

has complicated sequential dependencies. However, classical

PU-learning methods cannot characterize such fine-grained

sequential dependencies of the user feedback action, and thus

are unable to perform accurate user attention estimation.
In this paper, we aim to achieve an unbiased attention

1The uniform assumption is that the labeling mechanism of each instance
(i.e., the propensity of selecting a labeled positive example from the complete
set of positive examples) is a uniform distribution or only depends on its local
features [14], [15], [16], [17].

estimation, and apply it to improve the performance of the

downstream music recommendation tasks. We naturally propose

to formulate the attention prediction as a problem of sequential

PU-learning, where the active feedback actions are labeled

positive samples and the passive feedback actions are unlabeled

samples. In this task, the occurrence of active feedback

is not only influenced by the local features but also the

history of features and feedback actions. Thus, we propose an

Unbiased Attention Estimator (denoted as UAE) by extending

the Empirical-Risk-Minimization (ERM) based PU-learning

methods with sequential dependencies, which re-weights the

active actions (positive samples) with sequential propensities

and treats all the passive actions (unlabeled samples) as negative.

The remaining challenge is how to obtain sequential propensity

scores, as the true propensities are unknown in this task. From

a dual perspective, we further propose an unbiased propensity

estimator. To realize the above ideas, we design a GRU-based

architecture with two output logits to respectively estimate

the sequential propensities and user attention probabilities,

and develop an alternating optimization algorithm to learn the

model parameters. The learned attention model can be used

to quantify the reliability of the passive training samples for

the downstream music recommendation task, and thus can be

leveraged to improve a series of recommendation models.

The main contributions of the paper are concluded as follows:

(1) This is the first work that demonstrates the user attention

estimation problem from the viewpoint of PU-learning and

analyzes the sequential dependencies of user attention.

(2) We propose UAE, which is the first unbiased framework

for attention estimation based on ERM-based PU-learning. We

further design an alternating learning algorithm for optimizing

the two unbiased estimators in UAE.

(3) We provide a theoretical analysis of our proposed UAE

from expectation, variance, and bias perspectives.

(4) Extensive offline experiments on both large-scale indus-

trial and public datasets show that UAE significantly improves

SOTA recommender models and outperforms the baselines.

(5) Online A/B testing on Huawei Music App shows that

UAE can significantly enhance the user engagement in terms

of both play count and play time.
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Fig. 3. User feedback rates w.r.t. the play rank of the recommended playlist.
Statistics are conducted on a dataset collected from Huawei Music App.

II. RELATED WORK

A. User Modeling in Music Recommendation

With the rise of online streaming services [18], [19], music

recommender systems (MRS) have garnered significant interest

from both research and industry communities [1], [2], [4],

[5]. Extensive research has been dedicated to user modeling

in music recommendation, with a focus on analyzing and

modeling user behaviors within music services [20], [21],

[22], [23], [24]. Moreover, much research efforts have been

made to incorporate contextual information into user modeling,

encompassing user-related contexts, such as activity, emotional

state, and social relationships, as well as sensor data from

devices, including location, current time, weather, and temper-

ature, to further enhance recommendation performance [25],

[26], [27], [28]. Recently, researchers have highlighted that

in MRS, listening to music does not demand constant user

attention, which underscores the significance of modeling user

attention [13]. Spotify [11] was among the first to investigate

user attention levels in music streaming sessions, employing an

exponential decay attention model. Reza Aditya Permadi [29]

also addressed the issue of label noise caused by the loss of user

attention and proposed a heuristic cut-off method that considers

played songs after an active user action as positive training

samples. Dai et al. [10] proposed an adaptive label correction

method to mitigate the noise and bias in music recommendation.

Zhang et al. [12] introduced NDB, which aims to tackle biased

online bandit feedback in music recommendation by modeling

user attention. However, NDB relies on strong assumptions

and results in biased attention estimation. In this paper, we aim

to achieve an unbiased attention estimator and further use the

estimated attention score as confidence for unreliable passive

data to enhance the downstream music recommendation.

B. ERM-based PU-learning

Positive-unlabeled (PU) learning is a crucial branch of semi-

supervised learning that focuses on training binary classifiers

using only positive and unlabeled data, where the unlabeled

samples could belong to either the positive or negative class

[30], [31], [32], [33], [34]. Within PU learning, Empirical-Risk-

Minimization (ERM) based methods play a significant role,

aiming to obtain an unbiased empirical risk by incorporating

appropriate weighting strategies [14], [15], [35], [36]. A series

of works have been proposed under the ERM-based PU-

learning framework, each making different assumptions. A

TABLE I
RELATION AMONG THE VARIABLES IN THE PRESENCE OF MODELING USER

ATTENTION IN MUSIC RECOMMENDATION.

User feedback Feedback type e User attention a Feedback label y
Skip 1 (Active)

1 (Positive) 0 (Negative)
Dislike 1 (Active)
Like 1 (Active)

1 (Positive) 1 (Positive)Share 1 (Active)
Download 1 (Active)
Auto-play 0 (Passive) ? (Unknown) 1 (Postive ?)

common assumption is the Selected Completely At Random

(SCAR) setting, where labeled examples are assumed to be

selected completely at random and independently from their

local features [15], [37]. Another assumption is the Selected

At Random (SAR) setting, as proposed by Bekker et al.[38],

which considers labeled examples with propensity depending

on their local features. Recently, Saito et al.[39] extended

PU-learning to address the missing-not-at-random problem

for implicit feedback in the recommender system. Chang et
al. [40] applied PU-learning to capture the temporal dynamics

of negative samples from unlabeled data for link prediction.

However, these existing assumptions may not be suitable for

our attention estimation task, especially when dealing with

sequential dependencies. Despite the power and extensive

research on PU learning under various assumptions, how to

adapt it to attention estimation in music recommendation is

still an unsolved challenge.

III. PRELIMINARIES

As illustrated in Figure 1, we are confident about the

user preference conveyed by the active feedback. For passive

feedback, however, the confidence is very low because of

the shift in user attention. Figure 3 shows the number of

active/passive feedback w.r.t. the play rank. We can see: (1) the

rate of active feedback decreases with the increase of the rank,

showing that the users gradually lose their attention on the

music App with time; (2) there are much more passive feedback

actions than those active ones at all of the time. To realize the

full potential of the large amounts of passive samples in music

recommendation, it is necessary to model user attention.

A. Problem Formulation

Formally, suppose we have a set of users U and

a set of songs V . The interactions between the users

and songs are collected and represented as a set

S = {(x1
i , e

1
i , y

1
i ), · · · , (xt

i, e
t
i, y

t
i), · · · , (xli

i , e
li
i , y

li
i )}Ni=1,

where each element is a chronologically ordered interaction

session for a user and li is the length of the i-th session.

(xt
i, e

t
i, y

t
i) denotes the t-th listening event for the i-th session,

xt
i ∈ X ⊂ R

d denotes the feature vector for each event, includ-

ing features from user ui, song vti and contexts. eti ∈ {0, 1}
is an observable random variable indicating the ui’s feedback

type on vti , where eti = 0 means passive feedback and eti = 1
is active feedback. The feedback label yti ∈ {0, 1}, where

yti = 1 means ui gave positive feedback on song vti (including

passive feedback of auto-play and active feedback of like, share,
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TABLE II
A SUMMARY OF NOTATIONS USED IN THIS PAPER.

Symbol Description
N Number of sessions in the dataset S
li The length of the i-th session
xti The feature vector of a sample, containing user information, item information and context information
Xt

i Xt
i := [x1

i ,x
2
i , · · · ,xt

i] is the sequence of history and current features
eti eti ∈ {0, 1} is an observable random variable indicating user’s feedback type, where eti = 0 means passive feedback and 1 active

Et−1
i Et−1

i := [e1i , e
2
i , · · · , et−1

i ] is the sequence of user history observed feedback
yti yti ∈ {0, 1} is feedback label where yti = 1 means user gave positive feedback on the recommended song, and yti = 0 negative
αt
i αt

i := Pr(ati = 1|Xt
i ) is the true user attention

pti pti := Pr(eti = 1|Xt
i , E

t−1
i , ati = 1) is the sequential propensity score

·̂ An estimate for ·

and download), and yti = 0 means ui gave negative feedback

(including active feedback of skip and disklike). Please note

that here we abstract multiple types of feedback with two

binary variables eti and yti . Table I shows the feedback actions

and the corresponding values of eti and yti .
One crucial problem with the feedback label yti is that the

observed value is unreliable when eti = 0 (bold ‘?’ in the far

right column of Table I). The reason is that ui’s attention may

not be on vti if eti = 0. We denote whether the user attention

is on the music as a binary random variable ati ∈ {0, 1} where

ati = 1 means ui is focus on vti , and 0 otherwise. Please

note that ati is the true attention indicator of user attention.

Obviously, eti = 1 means ati = 1, as the active feedback

provided by the user certainly indicates a focus of attention

on the music. However, we don’t know the value of ati when

eti = 0, i.e., ati is partially observable. The third column of

Table I shows that ati is unknown (marked with ‘?’) when

passive feedback is given.

Thus, the task of user attention prediction becomes estimating

the probability that the user focuses on the t-th song:

αt
i := Pr(ati = 1|Xt

i ), (1)

where Xt
i = [x1

i ,x
2
i , · · · ,xt

i] is the sequence of history and

current features. We can see that probability not only depends

on the current information xt
i, but also depends on the previous

interacted information Xt−1
i . It can be estimated with a neural

network g with parameters Θg:

α̂t
i := g(Xt

i ;Θg). (2)

For clear presentation, Table II lists the notations and their

explanations used in this paper.

B. Ideal Risk for Attention Estimator

The focus of this study is to obtain an accurate attention

predictor based on the dataset S, the ideal empirical risk

measure is defined as

RAtt
ideal (g) =

1

|S|
N∑
i=1

li∑
t=1

[
αt
i�

+
g +

(
1− αt

i

)
�−g

]
, (3)

where �+g and �−g respectively denote the simplified notations for

�+(g(Xt
i ;Θg)) and �−(g(Xt

i ;Θg)). For instance, �+g and �−g

are the local losses for positive (with user attention) and nega-

tive (without user attention) examples, respectively. One popular

loss function definition is log loss: �+g := − log(g(Xt
i ;Θg))

and �−g := − log(1− g(Xt
i ;Θg)).

Note that the ideal empirical risk defined in Eq. (3) uses the

true but unobservable attention level αt
i, making it infeasible to

minimize Eq. (3) directly. In real applications, it is necessary

to surrogate it with observed variables.

C. Are Existing Methods Unbiased against Ideal Risk?

The simplest estimator for the ideal loss is called PN (i.e.,
ordinary supervised learning) [41], which naively treats all

unlabeled data as negative samples. Its empirical risk is

R̂Att
PN (g) =

1

|S|
N∑
i=1

li∑
t=1

[
eti�

+
g +

(
1− eti

)
�−g

]
. (4)

However, for user attention prediction, each unlabeled data

could belong to either the positive or negative sample (eti =
0 ⇒ ati = 0 or ati = 1) and Eq. (4) is biased against the ideal

risk in Eq. (3) (i.e., E[R̂Att
PN ] �= RAtt

ideal).

Another latest work NDB [12] uses a simple negative

sampling heuristic for attention prediction. The rule is: the

attention label is 0 only when a user continues for more than ten

songs without any active feedback signals. From the viewpoint

of PU-learning, NDB surrogates Eq. (3) with

R̂Att
NDB (g) =

1

|S|
N∑
i=1

li∑
t=1

[
eti�

+
g + dti

(
1− eti

)
�−g

]
, (5)

where dti is a passive sample mask variable. dti = 1 if et−10
i =

et−9
i = · · · = et−1

i = 0, and dti = 0 otherwise.

Though R̂Att
NDB can be directly optimized, it is difficult to

guarantee its unbiasedness: the definition of dti implies that

the user attention will decay to zero only after ten songs.

However, a user may lose attention at any time during the

streaming listening events [13], and thus NDB is also biased

(i.e., E[R̂Att
NDB ] �= RAtt

ideal). In fact, all the active feedback

(eti = 1) means ati = 1 but the passive feedback (eti = 0)

does not always mean ati = 0, which can be viewed as a

positive-unlabeled problem.

Remark 1. According to the analysis above, we have demon-
strated that the loss functions of existing methods are all biased
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against the ideal loss defined in Eq. (3). Therefore, to derive
a desirable unbiased estimator, it is essential to consider the
PU-learning nature and the sequential dependencies.

D. A PU-learning View of Attention Estimation

From the viewpoint of positive-unlabeled learning (PU-

learning) [14], [17], for the attention estimation task, the type

eti plays as the observed indicator variable that the example xt
i

is labeled, and attention ati plays as the true indicator variable
that the example is positive (i.e., user attention is focused).

They have the following relationship:

Pr(ati = 1|eti = 1) = 1, (6)

Pr(ati = 0|eti = 0) < 1. (7)

Specifically, from the viewpoint of predicting the user attention

ati, Eq. (6) correspond to the labeled positive data in PU-

learning (i.e., eti = 1 ⇒ ati = 1); and Eq. (7) corresponds

to the unlabeled data in PU-learning (i.e., ati is unknown or

unlabeled if eti = 0 and can be either 1 or 0).

The key of ERM-based PU-learning is to define the propen-

sity score that re-weights the labeled positive samples. In

the attention prediction for music streaming services, the

probability of observing active feedback (i.e., labeled positive

sample) depends on both the history user feedback sequences

and the features, as shown in Figure 2. Therefore, we define

the sequential propensity score as follows:

Definition 1. The sequential propensity score of the user ui

on the t-th song of the i-th session is

pti := Pr(eti = 1|Xt
i , E

t−1
i , ati = 1), (8)

where Et−1
i = [e1i , e

2
i , · · · , et−1

i ] is the user history observed
feedback of the i-th session.

Intuitively, the sequential propensity score pti can be viewed

as the probability of a positive sample (i.e., ati = 1) being

labeled or selected as an active feedback sample (i.e., eti = 1).

IV. OUR APPROACH: UAE

In this section, we first naturally formulate the task of atten-

tion prediction as a problem of PU-learning, and then propose

an Unbiased Attention Estimator (UAE) by extending the

traditional Empirical-Risk-Minimization (ERM) PU-learning

methods to handle sequential dependencies of user attention in

music recommendation. Finally, we apply the proposed UAE

to the downstream music recommendation tasks.

A. Unbiased Risks in Sequential PU-learning

Given the sequential propensity pti defined in Eq. 8, we

further derive the following proposition that connects the

observed feedback type eti with the true attention αt
i:

Proposition 1. Given the sequential propensity score pti and the
true attention level αt

i, the expectation of observing feedback
variable eti is

E
[
eti
]
= pti · αt

i, (9)

for all i and t, where αt
i is the true attention probability defined

in Eq. (1).

Proof. The expectation of observed feedback variable eti is

E(eti) = Pr(eti = 1|Xt
i , E

t−1
i ) as eti is a Bernoulli random

variable. Thus, we have

Pr(eti = 1|Xt
i , E

t−1
i )

= Pr(eti = 1|Xt
i , E

t−1
i , ati = 1)Pr(ati = 1|Xt

i , E
t−1
i )

+ Pr(eti = 1|Xt
i , E

t−1
i , ati = 0)Pr(ati = 0|Xt

i , E
t−1
i )

= Pr(eti = 1|Xt
i , E

t−1
i , ati = 1)Pr(ati = 1|Xt

i , E
t−1
i )

= Pr(eti = 1|Xt
i , E

t−1
i , ati = 1)Pr(ati = 1|Xt

i )

= pti · αt
i,

where the second equation holds because if the user attention

ati is 0, then we must not observe active feedback (i.e., eti = 1).

Unbiased Risk for Attention Estimation. Proposition 1

states that the propensity of any observed active feedback action

can be decomposed as the product of the sequential propensity

pti and the true attention level αt
i. Based on this, we further

propose an unbiased sequential PU-learning attention estimator

by extending the ERM-based PU-learning:

R̂Att
unbiased (g)

=
1

|S|
N∑
i=1

li∑
t=1

[
eti

(
1

pti
�+g +

(
1− 1

pti

)
�−g

)
+

(
1− eti

)
�−g

]

=
1

|S|
N∑
i=1

li∑
t=1

[
eti
pti

�+g +

(
1− eti

pti

)
�−g

]
. (10)

From the first equation of Eq. (10), we can see that to

create a new unbiased data distribution, the proposed unbiased

sequential PU-learning estimator treats all unlabeled (passive)

examples as negative with weight 1, and treats all labeled (ac-

tive) examples as both positive and negative with weights of
1
pt
i

and
(
1− 1

pt
i

)
respectively. We can theoretically prove that

Eq. (10) is an unbiased risk estimator, as shown in the following

theorem:

Theorem 1 (Unbiased Sequential PU-learning Risk Estimation).
Eq. (10) is unbiased in terms of the ideal risk in Eq. (3):

E[R̂Att
unbiased (g)]

= E

[
1

|S|
N∑
i=1

li∑
t=1

[
eti
pti

�+g +

(
1− eti

pti

)
�−g

]]

=
1

|S|
N∑
i=1

li∑
t=1

[
E[eti]

pti
�+g +

(
1− E[eti]

pti

)
�−g

]

=
1

|S|
N∑
i=1

li∑
t=1

[
αt
i�

+
g +

(
1− αt

i

)
�−g

]
= RAtt

ideal(g),

(11)

where the third equation in Eq. (11) can be obtained from
E[eti] = pti · αt

i in the Proposition 1.

Theorem 1 verifies the unbiasedness of the proposed attention

estimator in Eq. (10).
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Fig. 4. An overview of our proposed UAE framework for modeling user attention in music recommendation. The left part demonstrates the full pipeline of
this work. The right part is the specific architecture of the proposed GRU-based implementation.

Unbiased Risk for Propensity Estimation. The unbiased

risk defined in Eq. (10) needs sequential propensity scores pti,
but the real value of pti is always unavailable. In this paper, we

aim to estimate the propensity at the t-th song with another

neural network h:

p̂ti := h(Xt
i , E

t−1
i ;Θh), (12)

where Et−1
i = [e1i , e

2
i , · · · , et−1

i ] is short for history observed

attention sequence before t and Θh is the parameters of the

propensity estimation neural network h.
The ideal empirical risk for propensity estimation is

RPro
ideal (h) =

1

|S|
N∑
i=1

li∑
t=1

[
pti�

+
h +

(
1− pti

)
�−h

]
, (13)

where �+h and �−h are the simplified notations for

�+(h(Xt
i , E

t−1
i ;Θh)) and �−(h(Xt

i , E
t−1
i ;Θh)), respectively.

However, the true propensity cannot be directly learned in

real-world music streaming service scenarios. According to

Proposition 1 and similar to the unbiased attention estimator

defined in Eq. (10), we propose an unbiased propensity

estimator from a dual perspective:

R̂Pro
unbiased (h) =

1

|S|
N∑
i=1

li∑
t=1

[
eti
αt
i

�+h +

(
1− eti

αt
i

)
�−h

]
. (14)

It can be proved that Eq. (14) is an unbiased risk function for

the ideal risk in Eq. (13) in the following theorem:

Theorem 2 (Unbiased Sequential Propensity Estimation).
Eq. (14) is unbiased in terms of the ideal risk in Eq. (13):

E[R̂Pro
unbiased (h)]

= E

[
1

|S|
N∑
i=1

li∑
t=1

[
eti
αt
i

�+h +

(
1− eti

αt
i

)
�−h

]]

=
1

|S|
N∑
i=1

li∑
t=1

[
E[eti]

αt
i

�+h +

(
1− E[eti]

αt
i

)
�−h

]

=
1

|S|
N∑
i=1

li∑
t=1

[
pti�

+
h +

(
1− pti

)
�−h

]
= RPro

ideal(h),

(15)

where the third equation in Eq. (15) can be obtained from
E[eti] = pti · αt

i in the Proposition 1.

Given true attention level αt
i, Theorem 2 shows that we

can get unbiased sequential propensity estimation through

minimizing the unbiased risk in Eq. (14), by only using the

observable user feedback variable eti.

B. Model Specification and Learning Algorithm

Based on the proposed two dual unbiased estimators, we

further implement our framework with GRU [42], and optimize

their parameters via alternating optimization.

Model Specification. As illustrated in the right part of Figure

4, our implementation of UAE framework consists of two GRUs

and MLPs for predicting user attention and propensity score,

respectively.

For constructing the attention prediction network g, we utilize

the first GRU (called GRU1) for the sequential feature modeling.

The input at each step consists of all the sparse features and

dense features, including user features (e.g., gender, age, and

country), song features (e.g., artist, album and genre), and

user-item cross features (e.g., the number of songs played in

the last 30 day). The hidden state at each step is recurrently

computed by:

z1(x
t
i),h

t
i = GRU1(x

t
i,h

t−1
i ),

where ht
i and ht−1

i are the hidden vectors at the t-th and

(t− 1)-th steps, respectively. The output representation z1(x
t
i)

encodes the feature information from the current time step and

the history time steps. Then we employ a MLP for conducting

the attention prediction:

α̂t
i = σ(MLP1(z1(x

t
i))),

where σ(x) = 1
1+e−x is the element-wise Sigmoid function.

As for the propensity estimation network h, we use another

GRU (denoted as GRU2) to model the user sequential history

feedback. The output z2(e
t−1
i ) and hidden state h

′t−1
i at each

step t are recurrently computed as

z2(e
t−1
i ),h

′t−1
i = GRU2(e

t−1
i ,h

′t−2
i ).
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Algorithm 1: Learning Algorithm for UAE

Input: Training dataset S; number of training epochs

Ne; number of iteration steps Na, Np

Output: Parameter Θg for attention model g
1 Initialize the parameters Θg,Θh

2 for ne = 1, · · · , Ne do
3 // Unbiased Attention Risk Minimizer
4 for na = 1, · · · , Na do
5 P̂ ← {{h(Xt

i , E
t−1
i ;Θh)}lit=1}Ni=1

6 Θg ← argming R̂Att
UAE(g | P̂) {Eq. (16)}

7 end
8 // Unbiased Propensity Risk Minimizer
9 for np = 1, · · · , Np do

10 Â ← {{g(Xt
i ;Θg)}lit=1}Ni=1

11 Θh ← argminh R̂Pro
UAE(h | Â) {Eq. (17)}

12 end
13 end
14 return Θg

After that and according to the propensity defined in Eq. (12),

we can get the predicted sequential propensity with another

MLP (denoted as MLP2) which takes z1(x
t
i), z2(e

t−1
i ), and

et−1
i as its inputs:

p̂ti = σ(MLP2(z1(x
t
i)⊕ z2(e

t−1
i )⊕ et−1

i )),

where ‘⊕’ is an operation to concatenate two vectors.

Alternating Optimization. The proposed UAE model has

several parameters to learn, including Θg in the attention model

g (i.e., parameters in GRU1, MLP1) and Θh in the propensity

model h (i.e., parameters in GRU2 and MLP2). They can be

determined by optimizing the following empirical risks.

First, given all of the estimated propensity P̂ = {p̂ti} for

i = 1, · · · , N ; t = 1, · · · , li, and Eq. (10), the empirical risk

for deriving the attention model parameters Θg is defined as

R̂Att
UAE

(
g | P̂

)
=

1

|S|
N∑
i=1

li∑
t=1

[
eti
p̂ti
�+g +

(
1− eti

p̂ti

)
�−g

]
.

(16)

Similarly, given all of the estimated attention Â = {α̂t
i} for

i = 1, · · · , N ; t = 1, · · · , li, and Eq. (14), the empirical risk

for deriving the propensity model parameters Θh is defined as

R̂Pro
UAE

(
h | Â

)
=

1

|S|
N∑
i=1

li∑
t=1

[
eti
α̂t
i

�+h +

(
1− eti

α̂t
i

)
�−h

]
.

(17)

Lastly, we design a learning algorithm by minimizing the

above two empirical risks where the attention network g and

the propensity network h are updated in alternating fashion. As

shown in Algorithm 1, each optimization iteration consists of

two phases: the first phase updates Θg by minimizing R̂Att
UAE

with current Θh (line 4-7). Then, the second phase updates

Θh by minimizing R̂Pro
UAE with the updated Θg (line 9-12).

Remark 2. Discussion of the time complexity. For our GRU-
based implementation UAE, the most time complexity comes
from the GRU to capture sequential pattern characteristics,
which is O(n · d2) per layer, where n is the sequence length
and d is the representation dimension.

C. Applying to Downstream Music Recommendation

After we get the learned parameter Θg for the attention

estimator based on the Algorithm 1, we can directly use the

attention estimator to predict the attention for each data sample

without the propensity estimator. As illustrated in the left

part of Figure 4, the estimated user attention can be used

to improve the downstream music recommendation models,

through estimating the confidence of passive feedback samples

with the attention scores:

R̂Rec
UAE (f)

=
1

|S|
∑

(xt
i,e

t
i,y

t
i)∈S

[
etiδ

(
f(xt

i)
)
+ wt

i ·
(
1− eti

)
δ
(
f(xt

i)
)]

,

(18)

where f can be any downstream music recommendation models,

and δ (f(xt
i)) = −(yti log(f(x

t
i))+(1−yti) log(1−f(xt

i))) is

the local binary cross-entropy loss. Following the experiences

in [39], [43], the confidence of the passive feedback data wt
i is

calculated based on the predicted user attention α̂t
i (0 < α̂t

i <
1), and defined as a re-weighting function that conforms to a

power-law distribution2:

wt
i = 1− (α̂t

i + 1)−γ , (19)

where γ > 0 is a hyper-parameter. The re-weighting function

guarantees that 0 ≤ wt
i < 1 and increases with the increasing

of α̂t
i (i.e., wt

i ∝ α̂t
i). According to Eq. (19), a passive sample

in the training set is more reliable if the user has more potential

attention on it, consequently leading to a higher weight.

Remark 3. When incorporating the estimated attention score
into the downstream task, our UAE model is solely utilized to
infer the user attention score for re-weighting the unreliable
passive feedback during the training phase of the downstream
music recommendation model. Therefore, UAE will not increase
the inference cost of the downstream recommendation model.
Moreover, similar to standard re-weighting methods, our pro-
posed UAE does not disrupt the convergence of the downstream
recommendation model; instead, it provides a more accurate
estimation of user attention and helps the convergence to a
better solution. We will conduct an experimental analysis of the
convergence of the downstream music recommendation models
with and without our proposed UAE in Section VI-C.

V. DISCUSSION

A. Variance Analysis

Theorem 1 and Theorem 2 verify the unbiasedness of

the attention estimator and propensity estimator through re-

2The design of wt
i is still a open problem and need more explore in the

future work. Here we only use a simple but effective empirical formula.
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weighting with propensities, respectively. However, propensity-

based re-weighting methods often suffer from high variance

[39], [44], [45], [46], [47]. The following two theorems analyze

the variances of the estimators in UAE.

Theorem 3 (Variance of unbiased attention estimator). The
variance of the proposed unbiased attention risk estimator
defined in Eq. (10) is

V

[
R̂Att

unbiased (g)
]
=

1

|S|2
N∑
i=1

li∑
t=1

[
αt
i

(
1

pti
− αt

i

)(
�+g − �−g

)2]
.

Theorem 4 (Variance of unbiased propensity estimator). The
variance of the proposed unbiased propensity risk estimator
defined in Eq. (14) is

V

[
R̂Pro

unbiased (h)
]
=

1

|S|2
N∑
i=1

li∑
t=1

[
pti

(
1

αt
i

− pti

)(
�+h − �−h

)2]
.

Due to space limitations, we only present the proof of

Theorem 3, as the proof of Theorem 4 can be derived in

a similar way.

Proof. First, let St
i =

eti
pt
i
�+g +

(
1− eti

pt
i

)
�−g . Then, V[St

i ] can

be represented as

V[St
i ] = E[(St

i )
2]− E

2[St
i ].

Specifically, we have

E[(St
i )

2] = E

[(
eti
pti

�+g +

(
1− eti

pti

)
�−g

)2
]

= E

[(
eti
pti

)2

(�+g )
2 + 2

eti
pti

(
1− eti

pti

)
�+g �

−
g +

(
1− eti

pti

)2

(�−g )
2

]

=
E[(eti)

2]

(pti)
2

(�+g )
2 + 2

(
E[eti]

pti
− E[(eti)

2]

(pti)
2

)
�+g �

−
g

+

(
1− 2

E[eti]

pti
+

E[(eti)
2]

(pti)
2

)
(�−g )

2

=
E[eti]

(pti)
2
(�+g )

2 + 2

(
E[eti]

pti
− E[eti]

(pti)
2

)
�+g �

−
g

+

(
1− 2

E[eti]

pti
+

E[eti]

(pti)
2

)
(�−g )

2

=
αt
i

pti
(�+g )

2 + 2

(
αt
i − αt

i

pti

)
�+g �

−
g +

(
1− 2αt

i +
αt
i

pti

)
(�−g )

2,

where the fourth equation holds because eti is a Bernoulli

random variable (i.e., E[(eti)
2] = E[eti]), and the fifth equation

comes from E[eti] = pti · αt
i in Proposition 1.

Next, according to Theorem 1, E2[St
i ] can be calculated as

E
2[St

i ] =
(
αt
i�

+
g +

(
1− αt

i

)
�−g

)2
= (αt

i)
2(�+g )

2 + 2αt
i(1− αt

i)�
+
g �
−
g + (1− αt

i)
2(�−g )

2.

Finally, we obtain

V[St
i ] = E[(St

i )
2]− E

2[St
i ]

= αt
i(

1

pti
− αt

i)(�
+
g − �−g )

2,

from which we have

V[R̂Att
unbiased (g)] =

1

|S|2
N∑
i=1

li∑
t=1

V[St
i ]

=
1

|S|2
N∑
i=1

li∑
t=1

[
αt
i(

1

pti
− αt

i)(�
+
g − �−g )

2

]
.

These two theorems show that the variance of the two

unbiased estimators depends on their inverse of the propensity

scores (pti for R̂Att
unbiased and αt

i for R̂Pro
unbiased), respectively.

They also indicate that overestimating the propensity scores will

reduce the effect of high variance problem for the two unbiased

estimators in UAE, which confirms the clipping technique [39],

[44], [46] for controlling the variance. However, overestimating

the propensity inevitably leads to a rise in bias. We will analyze

the phenomenon in the next section.

B. Bias Analysis
Though Theorem 1 shows the unbiasedness of attention

estimation with true propensities, the estimated sequential

propensity scores with Eq. (17) can still be inaccurate and

introduce bias to the attention estimation. We show the bias

of the attention estimator with the estimated propensities:

Theorem 5 (Bias of Attention Estimator with Estimated Propen-

sities). Let p̂ti and pti be the estimated sequential propensity
score and true sequential propensity score, respectively. The
bias of the attention estimator in UAE using p̂ti is∣∣∣∣∣ 1

|S|
N∑
i=1

li∑
t=1

[(
pti
p̂ti

− 1

)
αt
i

(
�+g − �−g

)]∣∣∣∣∣ .
Similarly, we give the bias of propensity estimator with the

estimated attention from Eq. (16) as follows:

Theorem 6 (Bias of Propensity Estimator with Estimated

Attention Scores). Let α̂t
i and αt

i be the estimated attention
score and true attention score, respectively. The bias of the
propensity estimator in UAE using α̂t

i is∣∣∣∣∣ 1

|S|
N∑
i=1

li∑
t=1

[(
αt
i

α̂t
i

− 1

)
pti

(
�+h − �−h

)]∣∣∣∣∣ .
The proofs of Theorem 5 and Theorem 6 are similar and we

only show the proof of Theorem 5 due to the page limitation.

Proof. First, given all estimated propensities P̂ = {p̂ti} for
i = 1, · · · , N ; t = 1, · · · , li the bias of our unbiased attention
estimator is defined as

Bias
[
R̂Att

UAE(g | P̂)
]
:=

∣∣∣E [
R̂Att

UAE(g | P̂)
]
−RAtt

ideal(g)
∣∣∣ . (20)

Then, for E
[
R̂Att

UAE(g | P̂)
]
, we have

E

[
R̂Att

UAE(g | P̂)
]
=

1

|S|
N∑
i=1

li∑
t=1

[
E[eti]

p̂ti
�+g +

(
1− E[eti]

p̂ti

)
�−g

]

=
1

|S|
N∑
i=1

li∑
t=1

[
ptiα

t
i

p̂ti
�+g +

(
1− ptiα

t
i

p̂ti

)
�−g

]
,

(21)

768

Authorized licensed use limited to: Renmin University. Downloaded on July 24,2024 at 00:46:44 UTC from IEEE Xplore.  Restrictions apply. 



where the second equation comes from E[eti] = pti · αt
i in the

Proposition 1.

For RAtt
ideal(g), we have

RAtt
ideal (g) =

1

|S|
N∑
i=1

li∑
t=1

[
αt
i�

+
g +

(
1− αt

i

)
�−g

]
. (22)

Thus, we can complete the proof by substituting Eq. (21)
and Eq. (22) into Eq. (20):

Bias
[
R̂Att

UAE(g | P̂)
]

=

∣∣∣∣∣ 1

|S|
N∑
i=1

li∑
t=1

{[
ptiα

t
i

p̂ti
�+g +

(
1− ptiα

t
i

p̂ti

)
�−g

]
− [

αt
i�

+
g +

(
1− αt

i

)
�−g

]}∣∣
=

∣∣∣∣∣ 1

|S|
N∑
i=1

li∑
t=1

[(
pti
p̂ti

− 1

)
αt
i

(
�+g − �−g

)]∣∣∣∣∣ .

Theorem 5 indicates that a better estimated propensity score

p̂ti (more close to true propensity score pti) can reduce bias

during the learning process. It also indicate that underestimate

the propensity will result in a higher bias. Theorem 6 tells us

the similar conclusion from the dual perspective.

C. Differences from Classical PU-learning

UAE is a PU-learning model adapted for modeling user

attention in music recommendation. In that scene, it is similar to

existing PU-learning models, but it also has striking differences.

First, classical PU-learning usually assumes that the labeling

mechanism of each instance is uniform, or that the labeling

mechanism only depends on its local features [14], [15], [16],

[17]. That means the propensity of selecting a labeled positive

example from the complete set of positive examples can be

defined as Pr(eti = 1|xt
i, a

t
i = 1). However, the assumption

often does not hold in real-world scenarios [17]. In music

streaming recommendation, the active feedback actions (i.e.,
labeled as positive samples in attention prediction task) have

sequential dependency nature, which goes beyond the classical

PU-learning assumption. Thus, UAE defines the sequential

propensity as Pr(eti = 1|Xt
i , E

t−1
i , ati = 1) which extends

current PU-learning assumption by taking both the current

and historical user-song interaction features and historical user

feedback actions into consideration, which is more realistic.

Second, existing PU-learning methods often assume that the

propensity scores are known (e.g., from domain knowledge or

previous studies), or directly treat them as hyper-parameters and

tune on a small fully labeled data [15], [39], [40], [48], [49].

UAE, on the contrary, employs an alternating optimization

algorithm to learn the attention estimator and propensity

estimator simultaneously.

VI. EXPERIMENTS

To understand the effectiveness of the proposed UAE, we

conduct offline experiments on a public dataset and a product

dataset collected from Huawei Music App, and online A/B

testing for consecutive 7 days on Huawei Music.

TABLE III
STATISTICS OF THE EXPERIMENTAL DATASETS IN THIS PAPER.

Dataset #Sessions #Users #Songs #Features #Feedback Types

30-Music 455 K 5.5 K 1.99 M 12 3

Product 8.47 M 3.75 M 1.73 M 44 6

Note: “M” means million and “K” means thousand.

A. Experimental Settings

Datasets. We evaluate the effectiveness and efficiency of

the proposed UAE on a public dataset called 30-Music and a

real-world dataset collected from Huawei Music App.

30-Music3: 30-Music dataset contains over 1-year time

(Jan 2014 - Jan 2015) user listening events from Last.fm API.

We filter the sessions with fewer than 10 interactions and split

the data into a training set, a validation set, and a testing set,

with ratios of 8 : 1 : 1.

Product: We collect consecutive 9 days of user listening

events from the Huawei Music App. The product dataset

contains more feedback types, including active feedback (i.e.,
“Like”, “Share”, “Download”, “Skip”, and “Dislike”) and

passive feedback (i.e., “Auto-play”). The data collected in

the first 7 days are used as the training set, the next 1 day as

the validation set, and the final day as the testing set.

Table III summarizes the statistics of the two datasets.

Baselines. To verify the effectiveness and generality of UAE,

we test the performances of several popular and state-of-the-art

recommendation models (called base models) 4. Meanwhile,

the performances of the base models equipped with the user

attention predicted by UAE are also tested for comparisons.

The base models include factorization machines (FM) [50],

wide & deep learning model (Wide&Deep) [51], DeepFM
[6], YoutubeNet [52], deep & cross network (DCN) [53],

automatic feature interaction learning network (AutoInt) [7],

and the improved Deep & Cross Network (DCN-V2) [8]. In the

experiments, we denote the base models equipped with UAE

as “model name + UAE”. For example, DCN-V2 equipped

with UAE is denoted as “DCN-V2 + UAE”.

We also compare UAE with existing user attention models

and classical PU-learning models: EDM [11] is a heuristic

method that assumes user attention exponentially decays with

time until another active feedback happens or plunges to

zero. NDB [12] directly learns user attention from observed

user feedback using a heuristic negative sampling, which is

biased according to our analysis in Section III-C. PN [41]

is a baseline for PU-learning that treats the attention of all

unlabeled (passive) samples as zero. SAR [38] is a PU-learning

method that assumes the labeling mechanism only depends on

the local features.

Metrics. Two widely used metrics were used to evaluate

3https://recsys.deib.polimi.it/datasets/
4It is infeasible to evaluate the accuracy of user attention prediction directly,

owing to the challenges in obtaining the ground-truth of user attention.
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TABLE IV
OVERALL PERFORMANCE OF SEVEN BASE RECOMMENDATION MODELS TRAINED WITH AND WITHOUT UAE ON 30-MUSIC AND PRODUCT DATASETS. ALL

EXPERIMENTS ARE CONDUCTED FIVE TIMES WITH DIFFERENT RANDOM SEEDS AND THE AVERAGED RESULTS ARE REPORTED AS PERCENTAGE VALUES

WITH “%” OMITTED. ‘∗’ INDICATES THE IMPROVEMENTS OVER BASE MODELS ARE STATISTICALLY SIGNIFICANT (t-TEST, p-VALUE< 0.05).

Dataset Metric
Base Model

FM Wide&Deep DeepFM YoutubeNet DCN AutoInt DCN-V2

30-Music

AUC

Base 74.90 73.84 73.62 73.73 73.78 73.91 73.95

+UAE (Ours) 75.02∗ 73.95∗ 73.64 73.96∗ 74.08∗ 74.17∗ 74.11∗

RelaImpr 0.48 0.46 0.08 0.97 1.26 1.09 0.67

GAUC

Base 59.65 60.10 60.01 60.14 60.16 59.57 60.13

+UAE (Ours) 59.78∗ 60.14 60.16∗ 60.18 60.17 60.03∗ 60.20
RelaImpr 1.35 0.40 1.50 0.39 0.10 4.81 0.69

Product

AUC

Base 76.64 78.78 78.75 79.30 79.33 79.39 79.42

+UAE (Ours) 76.77∗ 78.93∗ 78.93∗ 79.45∗ 79.46∗ 79.50∗ 79.52∗

RelaImpr 0.49 0.52 0.63 0.51 0.44 0.37 0.34

GAUC

Base 58.44 59.73 59.66 60.12 60.30 60.27 60.37

+UAE (Ours) 58.79∗ 59.94∗ 59.95∗ 60.37∗ 60.43∗ 60.50∗ 60.60∗

RelaImpr 4.15 2.16 3.00 2.47 1.26 2.24 2.22

the recommendation accuracy in offline experiments, i.e., area

under ROC curve (AUC) [54] and group AUC (GAUC) [55]:

AUC =
1

|P||N |
∑
p∈P

∑
n∈N

I (f(p) > f(n)) ,

GAUC =

∑
ui∈U wui

∗ AUCui∑
ui∈U wui

,

where P and N denote the positive sample set and negative

sample set, respectively. f(·) is the recommendation model

and I is the indicator function. The weight wui
in GAUC is

the number of clicks of user ui.

Moreover, following [56], [57], [58], [59], we further

introduce the RelaImpr [60] metric to show the relative

improvements more clearly. Since AUC and GAUC are 0.5 for

a random strategy, RelaImpr is defined as:

RelaImpr =

(
Metric(evaluated model)− 0.5

Metric(base model)− 0.5
− 1

)
×100%,

where Metric could be AUC or GAUC. In the online A/B

testing, we calculate the relative improvements in terms of

user play time and play count, which are also widely used in

industrial music streaming services products.

Implementation details. For all of the base models and

UAE, we set the embedding size as 8 and the hidden layers

of MLPs as (256, 128, 64). We set the batch size as 4096
for all models for fair comparisons. The hidden dimensions

of the two GRUs in UAE were tuned among {64, 128, 256}.

We utilize Adam[61] as the optimizer and tuned the initial

learning rate for attention model g and propensity model h
among {1e−2, 1e−3, 1e−4, 1e−5}. For the iteration steps for

attention risk minimization and propensity risk minimization

in Algorithm 1, we set Na = 1 and Np = 2 as we find that the

attention estimator has faster convergence than the propensity

estimator in our experiments. Following the practices in [37],

[62], we adopt a risk-clipped technique when optimization to

get non-negative risks, which can reduce the variances.

B. Experimental Results on Offline Datasets
We first test the performances of the 7 base models with

and without UAE on 30-Music and Product. The averaged

results under five times experiments with different random seeds

are reported in Table IV. The line “+UAE” is our approach

(i.e., equipping the corresponding base model with UAE). We

can see that, after equipping our proposed UAE, all of the base

models were enhanced in terms of AUC and GAUC on both

datasets. Most of the improvements are statistically significant

with p-value< 0.05 under the t-test. We attribute the better

performance to the predicted user attention by UAE helped to

remove the impact of unreliable passive feedback samples

for the recommendation task. These results verify UAE’s

effectiveness in accurately predicting user attention and thereby

can be applied to various downstream music recommendation

models to enhance the recommendation performance.
In particular, the improvements in terms of GAUC are more

significant than that of AUC on both datasets. Specifically, on

Product dataset, the average gains and the average relative

improvement of GAUC are 0.24% and 2.50%, respectively.

Note that such improvements are remarkable in the real-world

industrial scenario because GAUC usually reflects the online

real performance improvements well, and even 0.1% offline

GAUC gains can lead to significant online promotions [8], [47],

[63], [64]. Based on these promising results, we can conclude

that UAE has the potential to achieve real online improvements,

which will be further verified in the online A/B testing in the

following Section VI-D.
To compare UAE with existing user attention models and

PU-learning models, we select the best-performing base models,

AutoInt and DCN-V2 [8], as the base models. And then

we equip them with the attention predicted by EDM [11],

NDB [12], PN [41], and SAR [38], achieving five baselines for

each base model and denoted as “Base”, “+EDM”, “+NDB”,

“+PN”, and “+SAR”, respectively. Our approach is denoted as

“+UAE”. Table V reports the experimental results on both the
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TABLE V
PERFORMANCE COMPARISONS OF AUTOINT/DCN-V2 EQUIPPED WITH DIFFERENT ATTENTION PREDICTION MODELS ON 30-MUSIC AND PRODUCT

DATASETS. ALL EXPERIMENTS ARE CONDUCTED FIVE TIMES WITH DIFFERENT RANDOM SEEDS AND THE AVERAGED RESULTS ARE REPORTED AS

PERCENTAGE VALUES WITH “%” OMITTED. ‘∗’ INDICATES THE IMPROVEMENTS OVER THE BEST BASELINES ARE SIGNIFICANT (t-TEST, p-VALUE< 0.05).

Dataset Base Model Metric Base +EDM +NDB +PN +SAR +UAE (Ours)

30-Music

AutoInt

AUC 73.91 73.80 73.89 67.51 73.97 74.17∗

RelaImpr 0.00 −0.46 −0.0 −26.7 0.25 1.09

GAUC 59.57 59.42 59.81 53.80 59.78 60.03∗

RelaImpr 0.00 −1.57 2.51 −60.29 2.19 4.81

DCN-V2

AUC 73.95 73.90 73.80 67.43 73.97 74.11∗

RelaImpr 0.00 −0.21 −0.63 −27.22 0.08 0.67

GAUC 60.13 60.10 60.17 53.62 60.16 60.20
RelaImpr 0.00 −0.30 0.39 −64.26 0.30% 0.69

Product

AutoInt

AUC 79.39 79.26 79.33 54.65 79.29 79.50∗

RelaImpr 0.00 −0.44 −0.2 −84.1 −0.34 0.37

GAUC 60.27 60.44 60.26 52.46 60.34 60.50∗

RelaImpr 0.00 1.66 −0.10 −76.05 0.68 2.24

DCN-V2

AUC 79.42 79.42 79.43 54.98 79.38 79.52∗

RelaImpr 0.00 0.00 0.03 −83.07 −0.14 0.34

GAUC 60.37 60.40 60.42 52.39 60.45 60.60∗

RelaImpr 0.00 0.29 0.48 −76.96 0.77 2.22

30-Music and Product datasets.

We first observe that the attention models (“EDM” and

“NDB”), PU-learning models (except “PN”), and our approach,

in general, demonstrate improvements over the base models.

This observation underscores the essential importance of

accurate user attention prediction in the context of music

recommendation. However, PN performs worst because it

directly discarded all the valuable information in the passive

feedback. Our product experience also suggests that using

solely limited data (only active feedback samples) leads to

poor performance and is not a preferable approach. In contrast,

compared with all baselines, the model equipped with UAE

(our approach) performs the best under the same base model.

Particularly, it outperforms other attention models, indicating

the crucial role of utilizing all passive feedback actions and

conducting unbiased estimation. Moreover, it also outperforms

the classical PU-learning model of SAR, further validating the

effectiveness of UAE in accurately predicting user attention by

capturing sequential dependencies between feedback actions.

C. Experimental Analysis

As seen in Table IV, among all of the base models, DCN-

V2 achieves the best performance when equipped with UAE.

We further conduct experiments to further analyze UAE with

DCN-V2 as the base model on Product dataset.

Convergence Analysis. To verify the convergence of our

learning algorithm in Algorithm 1, we track the AUC curves

of both DCN-V2 and DCN-V2 + UAE with respect to the

training epochs. Both models are trained for 20 epochs, and

we record the AUC scores on the training set and validation set.

To ensure robustness, we conduct the experiments 10 times

and show the averaged numbers and their 95% confidence

intervals in Figure 5. From the results, we can conclude that
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(a) Training
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(b) Validation

Fig. 5. Performance curves of DCN-V2 with and without UAE w.r.t. the
training epochs. The shaded area indicates the 95% confidence intervals of
t-distribution under the 10 experiments with different random seeds.

UAE can help the base model in terms of not only consistently

aiding the base model in converging to a better solution, but

also reducing the variance. The phenomenon is observed in

both the training and validation set. Overall, these observations

highlight UAE’s potential as a valuable method for enhancing

music recommendation systems by improving convergence

and reducing variance, thereby enhancing recommendation

performance and user experience in real-world applications.

Parameter Analysis. When applying the predicted user

attention scores to the downstream music recommendation,

one key issue is transforming the estimated attention scores to

the weights on the unreliable passive feedback samples. Eq. (19)

gives a transformation function that contains a parameter γ that

needs to be tuned in the experiments. Figure 6(a) shows the

curves of the re-weight function w.r.t. the predicted attention,

with varying values of γ.

In the experiments, we vary γ among {5, 10, 15, 20, 25}.
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Fig. 6. Analysis of the parameter γ in re-weight function. (a): The re-weighting function curves with different γ values. (b): AUC of DCN-V2 trained with
UAE w.r.t. different γ values. (c): GAUC of DCN-V2 trained with UAE w.r.t. different γ values.

Figure 6(b) and Figure 6(c) report the AUC and GAUC of DCN-

V2+UAE with different γ values. The performance of DCN-V2

is shown as dashed vertical lines. From the results, we can

observe that DCN-V2+UAE, in general, outperformed DCN-V2

when γ is set to relatively large values (e.g., ≥ 10), showing the

robustness of Eq. (19). Optimal performance is achieved around

γ = 15. We attribute this to the fact that although the unreliable

passive feedback samples would damage the recommendation

performance because of the noisy labels, they still contribute

valuable information to the training of recommendation models.

Assigning excessively small weights to the unreliable passive

feedback samples (i.e., setting γ to smaller values) will hurt

the overall recommendation performance. Moreover, it is

noteworthy that the performance curves are quite close when

γ becomes large, indicating that the performance of DCN-

V2+UAE is not highly sensitive to γ in this range.

D. Online A/B Testing

To evaluate UAE’s effectiveness in real music recommen-

dation products, we deploy UAE to Huawei Music App

and conduct a one-week online A/B testing. Specifically, we

randomly split the users into two groups, namely the control

group and the experimental group, each involving hundreds

of thousands of daily active users (DAU). For the control

group, the users are served by a highly-optimized deep base

model without UAE. For the experimental group, the users are

served by the same base model equipped with UAE. Figure 7

shows the improvements over the base model after equipping

it with UAE, in terms of play time and play count. The dashed

horizontal lines represent the average improvements over the

seven-day testing period. The results consistently demonstrate

that UAE significantly enhances recommendation performance

with a substantial margin, both in play time and play count. On

average, the relative performance increase in users’ play time

and play count exceeds 2%. The significant and remarkable

online improvements unequivocally showcase the effectiveness

of UAE in real-world music recommendation products. The

success can be attributed to UAE’s superior ability in accurately

predicting user attention and quantifying the reliability of

passive feedback samples. Notably, Huawei Music App has

millions of active users and tens of millions of daily plays, of

which 10% of traffic has been served by our method.
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Fig. 7. Online A/B performances for consecutive 7 days on Huawei Music.

VII. CONCLUSION AND FUTURE WORK

This paper studies the problem of modeling user attention

for counteracting the unreliable passive user feedback in

music recommendation. We first naturally formulate the user

attention prediction as a PU-learning problem, and further

propose an extended ERM-based PU-learning model called

UAE to characterize the sequential dependencies of the user

feedback actions. Theoretical analysis shows the unbiasedness

and variance of the user attention estimator and propensity

estimator. Experimental results on offline datasets and online

A/B testing on Huawei Music both verify the effectiveness and

robustness of our approach.

In future work, we plan to further study how to better apply

user attention to enhance other downstream tasks to improve

users’ online experience in real-world industrial applications.
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