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Abstract

Online advertising has been one of the most important
sources for industry’s growth, where the demand-side plat-
forms (DSP) play an important role via bidding to the ad ex-
changes on behalf of their advertiser clients. Since more and
more ad exchanges have shifted from second to first price
auctions, it is challenging for DSPs to adjust bidding strategy
in the volatile environment. Recent studies on bid shading in
first-price auctions may have limited performance due to rel-
atively strong hypotheses about winning probability distribu-
tion. Moreover, these studies do not consider the incentive of
advertiser clients, which can be crucial for a reliable advertis-
ing platform. In this work, we consider both the optimization
of bid shading technique and the design of internal auction
which is ex-post incentive compatible (IC) for the manage-
ment of a DSP. Firstly, we prove that the joint design of bid
shading and ex-post IC auction can be reduced to choosing
one monotone bid function for each advertiser without loss
of optimality. Then we propose a parameterized neural net-
work to implement the monotone bid functions. With well-
designed surrogate loss, the objective can be optimized in an
end-to-end manner. Finally, our experimental results demon-
strate the effectiveness and superiority of our algorithm.

Introduction
Over the past two decades, online advertising has been
proven to be one of the most effective methods of monetiza-
tion for internet companies. Typically, for each of these com-
panies, there is a main auction mechanism that is in charge
of allocating relevant ads to target users and collecting pay-
ments from the winning advertisers. In practice, different
mechanisms such as VCG (Vickrey–Clarke–Groves) (Vick-
rey 1961; Clarke 1971; Groves et al. 1973) and GSP (gen-
eralized second-price) (Edelman, Ostrovsky, and Schwarz
2007) and their variations are widely adopted and advertisers
exhibit different bidding behaviors in different mechanisms.

For ad platforms such as Google or Tiktok, there are bil-
lions of ad auctions, each executed within a few millisec-
onds, conducted daily. With such stringent latency require-
ments, ad exchanges have emerged as a popular form of on-
line advertising marketplaces in real time. Specifically, an
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ad exchange runs auctions to sell user impressions from di-
verse publishers to advertisers. As can be imagined, it is
challenging to bid well for each individual advertiser in such
complex ad exchanges. As a result, the DSPs (demand-side
platforms) are widely adopted to help advertiser clients tar-
get their desired users and optimize the bid price for corre-
sponding valuable impressions. Besides, the DSPs allow ad-
vertisers to set high-level goals (e.g., effective cost per action
(eCPA)), and then bid on behalf of the managed advertisers
in the ad exchange. In this paper, we consider the problem of
optimizing trade-offs between surplus and profit for a target
DSP, while meeting the goals for every advertiser client.

In the ad exchange literature, second-price auction has
once been the most widely used online auction format, due
to its advantage in dominant strategy incentive compatibil-
ity. That is, an advertiser will bid exactly her valuation for
the slot regardless of the bidding strategies of others. In re-
cent years, however, a large number of ad exchanges switch
their auctions to first-price auction (LLC 2021) for a variety
of reasons, including (i) in first price auction the winner’s
payment is not affected by the uncertainty about the oppo-
nents’ bids, which not only guarantees the implementation’s
credibility (Akbarpour and Li 2018), but also possibly sim-
plifies the design of certain bidding strategy, especially when
the advertiser has a budget or ROI (return over investment)
constraint, and (ii) an advertiser’s exact valuation for the slot
may be confidential, which makes the truth-telling equilib-
rium of second-price auction less attractive (Niu et al. 2017).

However, the shift from second-price to first-price auc-
tion makes it difficult for a DSP to adapt to the volatile auc-
tion environment, as the DSP needs to estimate the oppo-
nents’ bid prices to optimize its bidding strategy. The well-
known bid shading technique, which has been widely used
in US treasury auctions (Hortaçsu, Kastl, and Zhang 2018)
and FCC spectrum auctions (Chakravorti et al. 1995), is
then applied in first-price auction to adjust the bid price.
The challenge of bid shading lies in the trade-off between
payment and winning probability. Concretely, a lower bid
is more likely to lose but charged less when obtaining the
impression, while a higher bid is more likely to win but
charged more when winning the impression. Most studies
on bid shading (Pan et al. 2020; Zhou et al. 2021) rely heav-
ily on the exact estimation of winning probability, but Zhang



et al. (2021) provides evidence on the inaccurate estimation
of these parametric distributions, showing necessity of fur-
ther research on bid shading.

Different from ad exchanges, a DSP manages the pur-
chases of impressions on behalf of its advertiser clients.
Therefore, when using an auction to allocate impressions
and extract payments, a DSP needs to convince each adver-
tiser that all its purchases are made optimally, making it cru-
cial to run an incentive compatible (IC) auction so that the
bids are reliable and predictable.

In this work, we consider both the optimization of bid
shading technique and the design of ex-post IC auction for
a target DSP participating in open (non-censored) first-price
auctions, which are adopted by many ad exchanges nowa-
days (Gligorijevic et al. 2020). In open first-price auctions,
feedback denoting the minimum winning price (i.e., the
highest bid of the opponents) is sent to all participants no
matter whether they win or not. Our contributions can be
summarized as follows.

• We first formalize the DSP’s design problem into the joint
optimization of (i) a bid shading strategy for the first-price
auction and (ii) an internal auction that is ex-post IC and
used once a slot is won from the first-price auction. Fur-
thermore, we derive a reduction from joint optimization of
bid shading and ex-post IC auction to learning of mono-
tone bid functions without loss of optimality.
• We propose a partially monotone and invertible param-

eterized neural network to implement the monotone bid
functions. With well-designed surrogate loss function, we
then optimize our objective in an end-to-end manner.
• Based on both offline data and online A/B test, extensive

experiments are conducted to demonstrate the effective-
ness and superiority of our algorithm.

Additional Related Work
One closely related topic is automated mechanism design,
where learning-based techniques are adopted for design of
desired mechanism. Conitzer and Sandholm (2002) pro-
poses the automated mechanism design approach, where
the mechanism is automatically created for specific prefer-
ence instance at hand. Since then, there is a growing body
of research on learning-theoretic characterizations in auc-
tion settings, such as sample complexity of revenue max-
imization (Morgenstern and Roughgarden 2016; Cole and
Roughgarden 2014; Balcan, Sandholm, and Vitercik 2018).
Besides, there is also a stream of research that uses para-
metric function approximators to represent mechanisms and
then design learning approaches for the optimization prob-
lem. Firstly, some works develop learning methods for opti-
mization of specific parameters in auctions, such as reserve
price (Mohri and Medina 2014) and boosted value (Gol-
rezaei et al. 2021). And reinforcement learning is adopted
for dynamic settings (Shen et al. 2020; Tang 2017). Sec-
ondly, a plethora of works, which belong to differentiable
economics, aim to design specific network architecture for
the more general case. For instance, some works, e.g., Re-
gretNet (Dütting et al. 2019), EquivariantNet (Rahme et al.
2021) and CITransNet (Duan et al. 2022), relax the incentive

Figure 1: Illustration of the procedure. Our work focuses on
the design of (β, π, p) in the blue rectangle.

constraint and design revenue-maximizing mechanisms via
deep learning. In contrast, MenuNet (Shen, Tang, and Zuo
2019) and MyersonNet (Duetting et al. 2021) also leverage
deep learning but design mechanisms which are exactly IC
and revenue-maximizing. Among the frameworks of differ-
entiable economics, our work is most related to the work by
Liu et al. (2021), which extends MyersonNet via integrat-
ing context features and uses partially monotone networks
to design IC mechanisms for multi-objective optimization
in e-commerce advertising.

Another closely related line of works includes optimiza-
tion of bid shading technique. In first-price auctions, the gen-
eral approaches for bid shading can be divided into three cat-
egories. Firstly, point estimation is used to directly predict
the minimum winning price or its derivatives. For example,
Gligorijevic et al. (2020) uses models based on Factoriza-
tion Machines to estimate the bid shading factor (i.e., the ra-
tio of the minimum winning price to the original bid price).
Secondly, distribution estimators are built using bid land-
scape forecasting to predict the winning probability distri-
bution (Cui et al. 2011; Ren et al. 2019; Wu, Yeh, and Chen
2018; Ghosh et al. 2019), and then the optimal bid is de-
termined by searching for maximum expected surplus (Pan
et al. 2020; Zhou et al. 2021). These estimators all admit
an efficient search for optimal bid but differ in the assump-
tion of the distribution families, such as gamma and log-
normal distribution. Thirdly, instead of point and distribu-
tion estimations, Zhang et al. (2021) uses online learning
to design nonparametric bid shading algorithms. Outside of
bid shading in first-price auction, our work is also related
to the work by Nedelec, El Karoui, and Perchet (2019),
which designs learning-based shading strategies to do ma-
nipulation in incentive compatible though prior-dependent
revenue-maximizing auctions.

Preliminaries
In this section, we first describe the basic flow of events be-
tween the target DSP and the ad exchanges that adopt open
first-price auctions. Then we characterize the ex-post IC and
IR auctions for the target DSP under this scenario. Finally,
we formulate the joint optimization problem of bid shading
and auction for trade-offs between surplus and profit.

Procedure Description
We consider that a DSP interacts with ad exchanges in open
first-price auctions. When an impression is submitted to the
ad exchange, the DSP competes for this impression on be-
half of n advertiser clients in a real-time first-price auc-



tion. If the DSP wins the impression, it will allocate the
impression to the clients and extract payment. We use vi
to denote the value of impression for advertiser i and use
v = (v1, . . . , vn) to represent the value profile. Besides, we
assume that vi is drawn from a publicly known distribution
Fi, with the corresponding density function fi. The flow of
events in our model is divided into three phases and is illus-
trated in Fig. 1.
Phase 1 Each advertiser client i submits bi to the DSP. Then

the DSP uses some bidding strategy to calculate β(b)
based on the bid profile b = (b1, . . . , bn) and submits
β(b) to the ad exchange.

Phase 2 The ad exchange receives bids from different DSPs
and runs open first-price auction to determine who gets
to display an advertisement. Specifically, let r denote the
maximum bid of other DSPs, then the target DSP wins
only if β(b) ≥ r and will be charged β(b). Otherwise,
the target DSP loses and pays nothing. Moreover, unlike
canonical first-price auction, the target DSP will always
obtain r as feedback regardless of the auction outcome,
which means the minimum winning price.

Phase 3 The target DSP determines how to allocate the im-
pression and how much each advertiser has to pay accord-
ing to some allocation rule π(b, r;β) and payment rule
p(b, r;β). To be specific, the allocation rule π outputs an
n-dimensional vector indicating the quantity of impres-
sions allocated to each advertiser while the payment rule
p outputs an n-dimensional non-negative vector specify-
ing the payment for each advertiser.

It is worth noting that the auction (π, p) depends not only on
the bid profile b, but also on the bidding strategy β and feed-
back r, which is crucial for our design of optimal incentive
compatible auction. Furthermore, we assume that r follows
some known cumulative distribution W (·|x), which is de-
termined conditionally on x. Here x denotes the aggregated
context information, including both the features of impres-
sion and the features of all advertisers. Then the expectation
of I{β(b) ≥ r} can be written as W (β(b)|x). For simplic-
ity, we use W (·) and W (·|x) interchangeably. We empha-
size that x does not include the bids information, thus we
have a natural assumption that vi and r are conditionally in-
dependent given x.

Ex-post IC and IR Auction Design
Incentive compatibility (IC), which roughly means advertis-
ers have no incentives to misreport their values, is of vital
importance for the design of auction mechanism. For one
thing, without loss of generality, the target DSP only needs
to consider incentive compatible mechanisms according to
the revelation principle (Myerson 1981). For another thing,
since advertisers do not need to compute complex bidding
strategy in IC mechanisms, the IC property ensures the sta-
bility of the advertising system in that the bids from adver-
tiser clients are reliable and predicable. Therefore, in what
follows we do not distinguish between advertisers’ values v
and bids b when there is no confusion. As discussed in the
work by Babaioff et al. (2020) and Ni and Tang (2022), it is
without loss of generality to consider the classic quasi-linear

utility maximization model, where each advertiser aims to
maximize its quasi-linear utility ui = viπi − pi (More ex-
planations are given in the full version). Then the ex-post
incentive compatibility (IC) and individual rationality (IR)
can be defined formally as follows.
Definition 1. Given β, an auction mechanism (π, p) is ex-
post IC if for all i, vi, bi, b−i and r, the following inequality
holds.

viπi(vi, b−i, r;β)− pi(vi, b−i, r;β)

≥ viπi(bi, b−i, r;β)− pi(bi, b−i, r;β).
(1)

Besides, (π, p) is ex-post IR if for all i, vi, b−i and r,
the utility is non-negative, that is, viπi(vi, b−i, r;β) −
pi(vi, b−i, r;β) ≥ 0.

Note that the definition of ex-post IC and IR depends on
the realization r of the distribution W (·), which is the feed-
back of open first-price auction. Following the work by My-
erson (1981), we can fully characterize the set of ex-post IC
and IR auctions as stated in Proposition 2 and 3, respectively.
Moreover, Proposition 2 points out that with the help of pay-
ment identity (2), we can only concentrate on the design of
allocation function.
Proposition 2. Given β, an auction mechanism (π, p) is ex-
post IC if and only if for all i, v−i and r, the following two
conditions hold.
• (Monotonicity) The allocation πi(vi, v−i, r;β) for adver-

tiser i is monotone increasing in vi.
• (Payment identity) The payment for advertiser i satisfies

pi(vi, v−i, r;β)− pi(0, v−i, r;β)

= vi · πi(vi, v−i, r;β)−
∫ vi

0

πi(s, v−i, r;β)ds.
(2)

Proposition 3. Given β, an ex-post IC auction (π, p) is ex-
post IR iff. for all i, v−i and r, pi(0, v−i, r;β) ≤ 0 holds.

Problem Formulation
In this work, we consider the joint optimization problem
of bid shading strategy β and ex-post IC and IR auction
design (π, p) from the perspective of the target DSP. Be-
sides, the objective we optimize is the linear combination
of surplus and profit. To be specific, the surplus of the DSP
is given by the difference between the obtained value for
the advertiser clients and the payment to ad exchanges, i.e.,
S(v, r;π, p, β) =

∑n
i=1 (vi − β(v))πi(v, r;β), while the

profit is defined as the difference between the revenue from
the managed advertisers and the payment to ad exchanges,
i.e.,R(v, r;π, p, β) =

∑n
i=1 pi−β(v)·I{β(v) ≥ r}. There-

fore, we can formulate the corresponding joint optimization
problem.

max
β,π,p

E(v,r,x)∼D

[∑n

i=1
[λviπi(v, r;β) + (1− λ)pi(v, r;β)]

− β(v)(λ
∑n

i=1
πi(v, r;β) + (1− λ)I{β(v) ≥ r})

]
.

(P1)

s.t.

{∑n
i=1 πi(v, r;β) ≤ I{β(v) ≥ r},

(π, p) is ex-post IC and ex-post IR.

HereD denotes the dataset where vi is sampled from Fi and
r is drawn fromW (·|x), and λ is used to balance the surplus
and profit.



Comparison with related work. Firstly, most related
works focus on either the optimization of bid shading strat-
egy or the design of IC auction for various settings, while
the bid shading and the internal auction are optimized si-
multaneously in this paper. For example, the optimization
problem (P1) is similar with that in the work by Bachrach
et al. (2014), the difference is that we also need to optimize
the bid shading strategy β, which jointly influences the out-
come of mechanism (π, p) with the feedback r. Secondly,
although some works (Grigas et al. 2017) also consider both
the bidding strategy and the internal auction among the ad-
vertiser clients, the ad exchanges in these works are assumed
to adopt second-price auction, whose truthfulness simplifies
the optimization of bidding strategy.

Analysis
In this section, we derive a reduction from joint optimiza-
tion problem (P1) of bid shading and ex-post IC auction to
optimization of monotone bid functions and show its merits.

Reduction

In the optimization problem (P1), there are three functions
to be determined, that is, the bid shading strategy β, the al-
location rule π and the payment rule p. And the bid shad-
ing strategy will jointly influence the allocation and pay-
ment rule with the feedback r, making it difficult to solve
the corresponding problem. However, motivated by the cel-
ebrated work (Myerson 1981) which designs the revenue-
maximization auction via ranking the buyers by virtual
value ϕi(vi) = vi − 1−Fi(vi)

fi(vi)
, we use monotone bid func-

tions to derive the bid shading strategy and construct a fam-
ily of ex-post IC auctions, and then convert the original prob-
lem (P1) to direct optimization of bid functions.

To be specific, for each advertiser i, given a monotone
bid function ρi(bi) and its inverse transform ρ−1

i (V ) =
inf {y|ρi(y) ≥ V }, we can sort the advertisers in a non-
increasing order of bid scores, i.e., ρ1(b1) ≥ ρ2(b2) ≥
· · · ≥ ρn(bn). Then we can define a bidding strategy as
βρ(b) = ρ1(b1). After submitting bid βρ(b) to the ad ex-
change and getting the minimum bid to win as feedback r,
we can further construct an auction as follows.

Mechanism 4 (ρ-Induced Auction). Given the bid scores
ρ1(b1) ≥ ρ2(b2) ≥ · · · ≥ ρn(bn) and the feedback r:

• Allocate the impression to advertiser 1 when ρ1(b1) ≥ r,
i.e., πρ1 = I{ρ1(b1) ≥ r}.
• Charge advertiser 1 the minimum bid to win the impres-

sion if allocated, i.e., pρ1 = πρ1 · ρ
−1
1 (max {ρ2(b2), r}).

It is straightforward to verify that the ρ-induced auction
(Mechanism 4) is ex-post IC and ex-post IR. Thus the auc-
tions induced by the monotone bid functions ρ = {ρi}ni=1
form a class of ex-post IC and IR auctions. For convenience,
we use π(·;βρ) and πρ(·), p(·;βρ) and pρ(·) interchange-
ably. Besides, we can incorporate the features into ρi (i.e.,
ρi(vi;x)) as long as it is partially monotone in the value.
Therefore, we can formulate the optimization problem with

respect to ρ as follows.

max
{ρi}

E(v,r,x)∼D

[∑n

i=1
λviπ

ρ
i (v, r) + (1− λ)pρi (v, r)

−max
j
ρj(vj ;x)

∑n

i=1
πρi (v, r)

]
. (P2)

s.t. ρi(vi;x) is monotone increasing in vi,∀i.

We then propose our main theorem which derives a reduc-
tion from problem (P1) to the optimization problems of ρ un-
der standard assumption about ψi(vi) = λvi+(1−λ)ϕi(vi).
The intuition of reduction is that the optimal bidding strat-
egy is monotone increasing in the winning value.
Theorem 5. If vi is independent of each other given x and
ψi(vi) is monotone increasing in vi for all advertisers, then
the induced bidding strategy and ex-post IC and IR auction
(βρ

∗
, πρ

∗
, pρ

∗
) of the optimal solution ρ∗ = {ρ∗i }

n
i=1 for

problem (P2) is also the optimal solution for problem (P1).

Special Case and Relation with Myerson Auction
To help interpret Theorem 5, we provide analysis of a spe-
cial case, where by the following assumption on distribution
W , the optimal solution for (P1) admits a close-form expres-
sion. The correspondence between ρ and optimal solution
(β, π, p) can thus be clearly identified.
Assumption 6. The feedback r and each advertiser’s value
vi are defined on a continuous interval [r, r̄]. Moreover, the
probability density function W ′(·) is positive on the interval
and W (ξ)/W ′(ξ) + ξ is strictly monotone increasing in ξ.

It is worth noting that many common used distributions in
the field of auction satisfy Assumption 6, such as truncated-
normal, gamma and log-normal distribution. Let s̄(V ) de-
note the value that maximizes (V − ξ)W (ξ), i.e., s̄(V ) =
arg maxξ∈[r,r̄] (V − ξ)W (ξ), then we can verify that s̄(V )
is well-defined and is monotone increasing in V according
to Assumption 6. Therefore, the optimal bid shading and ex-
post IC auction for problem (P1) can be derived naturally
via payment identity (2) under this assumption.
Proposition 7. Suppose W satisfies Assumption 6, vi is in-
dependent of each other and ψi(vi) is monotone increas-
ing in vi for all advertisers. Let i∗ ∈ arg maxi ψi(vi), then
the optimal bidding strategy β∗(v) for (P1) only depends on
ψi∗(vi∗), i.e., β∗(v) = s̄(ψi∗(vi∗)). And the optimal auction
(π∗, p∗) for (P1) can be written as

π∗i (v, r;β∗) = I{β∗(ψi(vi)) ≥ r} · I{i = i∗},
p∗i (v, r;β

∗) = π∗i (v, r;β∗) · p̂i(v, r),

where p̂i(v, r) = ψ−1
i

(
max {maxj 6=i ψj(vj),

W (r)
W ′(r) + r}

)
.

In Proposition 7, p̂i(v, r) denotes the minimum bid for ad-
vertiser i∗ to win the impression under the optimal bidding
strategy β∗ after the realization of r. Compared with Myer-
son auction (Myerson 1981), the challenge in optimization
problem (P1) is that the unknown r causes randomness of
whether there exists an impression to allocate, and an ex-
post IC mechanism has to take such randomness into con-
sideration. To be specific, under Assumption 6, the reserve
price is now ψ−1

i (W (r)/W ′(r) + r) instead of ϕ−1
i (0) in

Myerson auction.



Proposition 8. Suppose W satisfies Assumption 6, vi is in-
dependent of each other and ψi(vi) is monotone increasing
in vi for all advertisers. Let ρ∗i (vi) = s̄(ψi(vi)) denote the
monotone bid function for advertiser i, then the induced bid-
ding strategy and ex-post IC and IR auction (βρ

∗
, πρ

∗
, pρ

∗
)

is the optimal solution for problem (P1).
Moreover, as stated in Proposition 8, we can also obtain

the optimal formula of bid shading and auction for problem
(P1) via constructing the monotone bid functions. And it is
worth noting that the optimal monotone bid function ρ∗i (vi)
in Proposition 8 not only depends on ψi(vi) (ranking in My-
erson auction), but also relies on the distribution W .

Comparison with Related Work in Bid Shading
As far as we know, a line of works (Zhou et al. 2021;
Pan et al. 2020) which optimizes bid shading in open first-
price auctions relies on relatively strong hypothesis about
the feedback distribution W . To be specific, these studies
can be summarized into a two-stage solution framework. In
Stage 1, W (ξ|x) is estimated via bid landscape forecasting
technique (Cui et al. 2011; Ren et al. 2019; Wu, Yeh, and
Chen 2018; Ghosh et al. 2019) and Ŵ (ξ|x) is obtained to
approximate W (ξ|x). In Stage 2, the optimal solution is de-
rived with respect to Ŵ (ξ|x) based on Proposition 7.

We argue that these work have limited performance in
two aspects. Firstly, in order to admit an efficient computa-
tion of β∗(v) in Stage 2, the hypothesis class for Ŵ (ξ|x) is
usually formulated as a family of special distributions (e.g.,
gamma and log-normal distribution), which is characterized
by Assumption 6 and can not fully capture the pattern of real
distribution W . Secondly, the objective of Stage 1 is often
to maximize the expected log-likelihood Er,x[log Ŵ ′(r|x)],
while the objective of Stage 2 is to optimize the expected
trade-offs between surplus and profit. And there are no di-
rect relationship between these two objectives in two stages,
which is illustrated in the full version.

However, note that Theorem 5 does not rely on any as-
sumptions on the distribution W (e.g., Assumption 6), thus
we can further reduce the negative effect caused by distribu-
tion estimation through optimizing the monotone bid func-
tions directly, which will be shown in the next section.

Learning Framework
In this section, we first propose a neural network which is
partially monotone and invertible to implement the mono-
tone bid functions. Then we meticulously design a surrogate
loss function to train the objective in an end-to-end manner.

Parameterized Bidding
Following the construction of ρ-induced auction, all we need
to design are the monotone bid functions ρ = {ρi}ni=1,
which need to meet the following requirements: (i) Each
ρi is monotone increasing in vi and the inverse transform
should be computed efficiently. (ii) The monotone bid func-
tion should implicitly capture the pattern of the feedback dis-
tribution W and the value distribution Fi.

The similarity between Mechanism 4 and Myerson auc-
tion motivates us to adopt MyersonNet (Duetting et al. 2021)

to implement monotone bid functions. However, due to the
diversity of the advertiser clients and the impressions from
ad exchanges, we also incorporate the features from both
advertisers and impressions within the design of monotone
bid functions. Besides, it is impossible to design dedicated
function for each advertiser. Instead, every advertisers share
the same parametric function and we use x̄i = (x, IDi) to
denote the input features to calculate ρi, where IDi is the ID
embedding for advertiser i. In light of the above characteri-
zations, we extend the design of partially monotone network
in (Daniels and Velikova 2010; Liu et al. 2021) and rewrite
the bid function ρi with respect to vi and x as:

ρ̂(vi; x̄i) = min
q∈[Q]

max
z∈[Z]

{ewqz+θ·x̄ivi +Wqz · x̄i + αqz}, (3)

where ρ̂ is mainly implemented via a two-layer feed-forward
network (illustrated in the full version), taking the value vi
and feature x̄i as input and outputting ρi. The monotonic-
ity is then guaranteed via min and max operators over these
partially monotone linear functions in vi. Moreover, the in-
verse transform of ρ̂(vi; x̄i) can be computed efficiently in a
closed-form expression, that is,

ρ̂−1(V ; x̄i) = max
q∈[Q]

min
z∈[Z]

{e−wqz−θ·x̄i(V −Wqz · x̄i − αqz)}.

It is worth noting that the difference from the network ar-
chitecture in (Liu et al. 2021) is that we adopt an additional
unit θ · x̄i in the slope in Equation (3). In fact, as argued by
Daniels and Velikova (2010), without θ · x̄i, this partially
monotone MIN-MAX network has the capacity to approxi-
mate any partially monotone functions arbitrarily well, given
sufficiently large Q and Z. However, both Q and Z are pre-
defined, and the neural network can not capture all the diver-
sity of advertiser clients and impressions with limited Q and
Z. Therefore, an additional term θ · x̄i, which depends on
the features, can further enhance the capability of the neural
network to approximate the partially monotone functions.

Surrogate Loss Function
With the design of monotone bid functions ρ = {ρi}ni=1,
we can specify the optimization problem (P2). Without loss
of generality, we assume that ρ1 ≥ ρ2 ≥ · · · ≥ ρn. Then
the bidding strategy is βρ(v) = ρ1, and the allocation and
payment rule for advertiser 1 can be written as πρ1(v, r) =
I{ρ1 ≥ r} and pρ1(v, r) = πρ1(v, r) · ρ̂−1(max {ρ2, r}; x̄1).
For convenience, we use lρ(v, r,x) to denote the linear com-
bination of surplus and profit, that is,

lρ(v, r,x) = λv1 + (1− λ)ρ̂−1(max {ρ2, r}; x̄1)− ρ1.

Then for problem (P2), we aim to minimize the following
loss function:
L(w,W ,θ,α) = −E(v,r,x)∼D[lρ(v, r,x) · I{ρ1 ≥ r}], (4)

which is the opposite number of the expected objective.
However, note that the indicator function I{ρ1 ≥ r} in
Equation (4) is not continuous at ρ1 = r, we replace the
indicator function by a sigmoid function to obtain a fully
differentiable surrogate loss, that is,

L̂(w,W ,θ,α) = −E(v,r,x)∼D[lρ(v, r,x) · σ(η
ρ1 − r
r

)], (5)

where σ(ξ) = 1
1+exp (−ξ) and η > 0 is a temperature param-

eter which denotes the degree of the approximation with the



indicator function. We gradually increase η during the train-
ing process to approach I{ρ1 ≥ r} and when η → +∞,
σ(η ρ1−rr ) → I{ρ1 ≥ r},∀ρ1 6= r. Besides, ρ1−r

r in the
sigmoid function is used to reduce the effects caused by
the wide range of r, and thus normalize the input to the
sigmoid function. Therefore, we can optimize the objective
in an end-to-end manner via minimizing the surrogate loss
L̂(w,W ,θ,α), and name the method as MINMAX.

Experiments
In this section, we first exhibit the representation capability
of our partially monotone network to approach the optimum
on various distributions. Then, based on both offline data and
online A/B test, we show the effectiveness and superiority of
our learning method against state-of-the-art algorithms.

Experiment Setup
Evaluation metrics. Metrics in our offline and online ex-
periments depend on whether the optimal solution can be
fully characterized. In offline experiments, when the val-
ues and the feedback are sampled from predefined distribu-
tions, we can derive the optimal solution (π∗, p∗, β∗). How-
ever, on offline industrial data and online A/B test, we can
not fully characterize the optimal solution. Instead, we can
replace the performance of optimal solution by the upper
bound

∑T
t=1 (maxi v

t
i − r)

+ where ξ+ = max {ξ, 0}. Sup-
pose the output of the methods to be verified is (π, p, β),
then we consider the following metrics: bid deviation (BD),
achieved objective (AO) and achieved post-objective (APO).

BD =

∑T
t=1

|β(vt)−β∗(vt)|
β(vt)+β∗(vt) · I{max {β∗(vt), β(vt)} ≥ rt}∑T

t=1 I{max {β∗(vt), β(vt)} ≥ rt}
,

AO =

∑T
t=1 λS(vt, rt;π, p, β) + (1− λ)R(vt, rt;π, p, β)∑T

t=1 λS(vt, rt;π∗, p∗, β∗) + (1− λ)R(vt, rt;π∗, p∗, β∗)
,

APO =

∑T
t=1 λS(vt, rt;π, p, β) + (1− λ)R(vt, rt;π, p, β)∑T

t=1 (maxi vti − r)
+

.

Here we use (vt, rt,xt) to denote the t-th instance in the test
dataset. Besides, we mainly focus on two classical objectives
in our experiments, i.e., surplus maximization (λ = 1) and
profit maximization (λ = 0).

Baseline methods. We first modify the network architec-
ture for comparison. Same as that in (Liu et al. 2021), Mod1
uses ρ̂(vi; x̄i) = minq∈[Q] maxz∈[Z]{ewqzvi +Wqz · x̄i +
αqz} to implement the monotone bid function and aim to
minimize the surrogate loss. While for Mod2, it uses a dif-
ferent monotone bid function:

ρ̂(vi; x̄i) = min
q∈[Q]

max
z∈[Z]

{ewqz+θqz ·x̄ivi +Wqz · x̄i + αqz},

where each group has its own weight θqz . Apart from the
aforementioned methods which are variants of MINMAX,
we consider the following methods for comparison, which
are widely used for bid shading in open first-price auctions.
Note that these methods only focus on the bid shading tech-
nique for surplus maximization (λ = 1), and ignore the auc-
tion design for the advertiser clients, we complete the design
of an ex-post IC and IR auction by deriving the correspond-
ing payment rule based on payment identity (2). More de-
tails are available in the full version.

Objective Metrics uniform exponential
surplus AO 0.9997(0.0029) 1.0019(0.0057)
(λ = 1) BD 0.0069(0.0023) 0.0234(0.0014)
profit AO 0.9841(0.0375) 0.9771(0.0125)

(λ = 0) BD 0.0203(0.0042) 0.0460(0.0101)

Table 1: Performance on uniform and exponential distribu-
tions. Numbers in the brackets denote standard deviations.

• Estimation of bid shading ratio (BSR) (Gligorijevic et al.
2020). This method transforms the optimization problem
of bid shading to the regression problem, where the label
is given by the bid shading ratio r

max vi
.

• Estimation of distribution with sigmoid function (Dist-
S) (Pan et al. 2020). This method uses Ŵ (ξ|x) =

(1 + e−α(x)−k(x) log ξ)
−1

to approximate W (ξ|x) via
maximum likelihood estimation.

• Dist-G and Dist-L (Zhou et al. 2021). These two meth-
ods resemble Dist-S. The only difference is that Dist-G
and Dist-L use gamma distribution and log-normal distri-
butions to approximate W (ξ|x), respectively.

Offline Experiments
Data description. We use both synthetic data and indus-
trial data to conduct the offline experiments. The synthetic
data is generated from five different distributions while
the industrial data is sampled from the open iPinYou RTB
dataset (Zhang et al. 2014). More details for the generated
offline data can be found in the full version.

Representation capability. As for synthetic data, we can
compute the optimal solution, then we can exhibit the rep-
resentation capability of our partially monotone network to
approach the optimum. Firstly, we present the overall eval-
uated metrics in Table 1. We can see that for surplus max-
imization and profit maximization, both achieved objective
and bid deviation of MINMAX are very close to the opti-
mum on three types of distributions. Secondly, note that the
optimal bidding strategy in Proposition 7 and the bidding
strategy induced by ρ depend on only one of the values, we
can compare these two bidding strategies via plotting the
curve of (vi∗ , β(v)). As Fig.2 shows, the solid lines denote
the optimal bidding strategies while the scatter points form
the bidding strategies of MINMAX. Besides, we use differ-
ent colors to denote different bidding strategies for distri-
butions W (ξ|x) with various parameters. We can see that
scatter points and solid lines coincide for every distribution,
especially in the area with high probability, which means our
partially monotone network uses piece-wise linear functions
to approach the optimal bidding strategy and captures the
pattern of both the feedback distribution W and the value
distribution Fi implicitly.

Comparison with baseline methods. We compare our
methods and baselines on two types of datasets. We first con-
duct experiments on synthetic data generated by log-normal
and gamma distribution. The performance of all methods on
synthetic data are listed in Table 2. Compared with Dist-G,



Figure 2: Comparison with optimal bidding strategy.

Methods log-normal gamma
surplus profit surplus profit

Dist-S 0.9894 0.7573 0.9091 0.8138
Dist-G 0.8242 0.5863 0.9693 0.8814
Dist-L 0.9954 0.8624 0.9601 0.8769
Mod1 0.9916 0.9242 0.9804 0.9274
Mod2 0.9929 0.9412 0.9807 0.9324
Simp 0.9882 0.9338 0.9793 0.9297

MINMAX 0.9928 0.9441 0.9815 0.9339

Table 2: Performance comparison (AO) on log-normal and
gamma distributions, where the parameters of distributions
are linear on the feature space R20.

Dist-L performs better on log-normal distribution but worse
on gamma distribution, which justifies the discussion about
the methods based on distribution estimation.We can see that
MINMAX approaches the optimal objective in all cases, ver-
ifying the effectiveness of our methods for tackling the in-
consistency problem caused by distribution estimation. We
further examine the impact of hyper-parameters and archi-
tectures of our partially monotone network. The results in
Table 2 show the superiority of our methods except for sur-
plus maximization on log-normal distribution. Concretely,
MINMAX has better representation capability than Mod1
and the optimization in MINMAX is more stable than that
in Mod2. Besides, we set Q = Z = 1 in MINMAX and
obtain Simp. We note that Simp even outperforms Mod1 for
profit maximization, showing the effectiveness of the term
θ · x̄i in the slope.

We then compare the performance on industrial data. Here
we only consider the baseline methods that are widely used
for bid shading, i.e., BSR, Dist-S, Dist-G and Dist-L. In
order to have a fair comparison among different methods,
we use the same architecture based on DeepFM (Guo et al.
2017) to generate high-level representations of features and
then feed them into the neural networks in different meth-
ods. As Table 3 shows, among the baseline methods, Dist-L
has the best performance for both surplus and profit max-
imization, and methods based on distribution estimation all

Methods surplus(λ = 1) profit(λ = 0)
BSR 0.4138(0.0128) 0.2297(0.0092)

Dist-S 0.4921(0.0104) 0.2352(0.0118)
Dist-G 0.4978(0.0048) 0.2735(0.0018)
Dist-L 0.5159(0.0010) 0.2844(0.0038)

MINMAX 0.5542(0.0014) 0.3491(0.0020)

Table 3: Performance comparison (APO) on industrial data.

perform better than point estimation method BSR because of
robustness. Besides, MINMAX outperforms all the baseline
methods for both surplus and profit maximization by a clear
margin. Concretely, compared with Dist-L, MINMAX has
7.42% surplus lift and 22.75% profit lift. We argue that the
benefits of our methods are twofold. Firstly, they are capa-
ble of approximating any partially monotone functions. Sec-
ondly, they incorporate the objective of optimization prob-
lem into the design of surrogate loss function, resulting in
straightforward end-to-end training.

Online Experiments
In order to show that our proposed method can be incorpo-
rated into the complex advertising systems and improve the
target performance, we deploy it in the real-time bid shad-
ing serving module of one of the world’s leading advertis-
ing platforms. This real-time bid shading serving module in-
teracts with other modules of the advertising systems (e.g.,
auto-bidding) and serves billions of bid requests that are run
via open first-price auctions per day. In practice, we com-
pare MINMAX with the state-of-the-art method Dist-L for
the commonly used surplus maximization.

To demonstrate the performance of MINMAX compared
to Dist-L, we conduct online A/B tests with a percent-
age of traffic volume, which was randomly selected with
the same scale for both methods. Hence we compare ob-
tained surplus

∑
S(vt, rt;π, p, β) and obtained impres-

sions
∑

I{β(vt) ≥ rt} instead of achieved post-objective.
To keep dataset information confidential, we only show the
improvement of these two metrics. Specifically, MINMAX
improves the surplus by 6.41% at a much lower impression
increase (1.80%), verifying the effectiveness of our meth-
ods in online setting. Apart from the improvements on key
metrics, we further argue that MINMAX has an additional
advantage on more efficient computation in deployment, that
is, there is no need to search optimal bid for surplus maxi-
mization based on the estimation of distribution W , all we
need is the inference based on trained model.

Conclusion
In this paper, we consider both the optimization of bid shad-
ing and the design of ex-post IC auction for the management
of a DSP. Firstly, we derive a reduction of the joint optimiza-
tion problem. Then we propose a neural network to imple-
ment the monotone bid functions, and design surrogate loss
function to enable end-to-end training of the objective. Fi-
nally, extensive experiments are conducted to demonstrate
the effectiveness and superiority of our algorithm.
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