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Matching two natural language sentences is a fundamental problem in both natural language processing and

information retrieval. Preliminary studies have shown that the syntactic structures help improve the match-

ing accuracy, and different syntactic structures in natural language are complementary to sentence semantic

understanding. Ideally, a matching model would leverage all syntactic information. Existing models, however,

are only able to combine limited (usually one) types of syntactic information due to the complex and hetero-

geneous nature of the syntactic information. To deal with the problem, we propose a novel matching model,

which formulates sentencematching as a representation learning task on a syntactic-informed heterogeneous

graph. The model, referred to as SIGN (Syntactic-Informed Graph Network), first constructs a heterogeneous

matching graph based on the multiple syntactic structures of two input sentences. Then the graph attention

network algorithm is applied to the matching graph to learn the high-level representations of the nodes. With

the help of the graph learning framework, the multiple syntactic structures, as well as the word semantics,

can be represented and interacted in the matching graph and therefore collectively enhance the matching

accuracy. We conducted comprehensive experiments on three public datasets. The results demonstrate that

SIGN outperforms the state of the art and also can discriminate the sentences in an interpretable way.
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1 INTRODUCTION

Natural language sentence matching is a funda\mental technique in information retrieval andNat-
ural Language Processing (NLP). Typical tasks include relevance ranking, Paraphrase Identi-
fication (PI), and Natural Language Inference (NLI). For example, the matching models for PI
have been developed to determine whether two sentences are semantically identical. In NLI, text
matching has been used to determine whether a hypothesis is entailment, contradiction, or neutral
given a premise.
Many research efforts have been devoted to developing matching models that can bridge the

semantic gaps between two sentences [24, 54]. Previously, the matching was conducted based on
superficial matching signals such as shared words/phrases, as well as word/phrase embedding
similarities and word orders. Typical approaches include the representation-based methods of
DSSM [19], C-DSSM [14, 39], the interaction-based methods of ARC-II [18], MatchPyramid [35],
DRMM [17], KNRM [52], and their combinations: Duet [32], RE2 [55], and BERT4Match [11]. Re-
cently, studies have shown that NLP knowledge, especially the syntactic structures, is useful in
sentence matching. Among them, the syntactic-based representation methods encode the syntax
of two sentences separately and aggregate them to make the prediction [8, 9, 25, 34]; the syntactic-
based interaction methods directly utilize the different syntactic tags as fine-grained matching
signals and utilize these signals to conduct sentence matching [6]. Recently, Liu et al. [25], Xu et al.
[53], and Zhang et al. [59] proposed to combine the sentence syntax with Pre-Trained Language

Models (PLMs) and achieved state-of-the-art sentence matching performance.
Although performance improvements have been achieved, one obvious weakness of existing

approaches is that they usually use limited (usually one) types of syntactic structures and en-
code them separately for matching. In this way, the rich complementary information contained in
other types of syntactic structures is inevitably overlooked. Previous studies of sentence linguis-
tics [13, 16] have verified that all types of syntactic structures are crucial for discovering sentence
semantics. In sentence matching, different syntactic structures provide complementary match-
ing signals, which are important for sentence matching. More detailed examples can be found in
Section 3.2. However, due to the complex and heterogeneous nature of the syntactic information,
it is difficult for existing matching models to utilize the multiple syntactic structures and capture
their complementary matching signals.
Given a natural language sentence, several syntactic structures can be parsed in the NLP pipeline

process, including the relation structures (e.g., syntactic dependencies, word-chunk structures)
and the attribute structures (e.g., Parts of Speech (POS), chunk types, and Named Entities

(NEs)). Different structures are represented differently. The relation structures represent that one
word/chunk syntactic relates to another word/chunk. For example, syntactic dependencies are usu-
ally represented as the directed links that connect the words that have one-to-one correspondence.
The chunks, however, are usually represented as links from the words to their higher-order units
(chunks). The attribute structure reflects the attribute of the word/chunk. For example, POS/NE
tags (chunk types) are simply the category labels of the words (chunk). In matching, relation struc-
tures provide an approximation to the semantic relationship between prediction and their argu-
ments [8, 34]. Attributes of words/chunks are useful for encapsulating the rich syntax structural
patterns [6].
Ideally, to achieve high matching accuracy, a matching model would utilize the syntactic struc-

tures and ensure their good interaction. In real practices, however, the complexity and heterogene-
ity of the syntactic structures hinder their full potential.
In this article, we aim to develop a novel sentence matching model that can leverage multiple

types of syntactic structures and make them interact in a fine-grained way. Inspired by the graph
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learning framework [45, 47], we propose SIGN (Syntactic-Informed Graph Network) to develop a
graph learning based model for sentence matching. Specifically, given a pair of sentences, the syn-
tactic structures (e.g., POS and Named Entity Recognition (NER) tags, syntactic dependencies,
chunking structures) are first extracted with an NLP parser (e.g., using Stanford CoreNLP [31]).
Then a heterogeneous matching graph is constructed in which each node corresponds to a word,
a chunk, or a sentence. The edges are inferred according to different types of extracted syntactic
structures: as for the relation structures, the edge represents that one node syntactic relates to
another node; as for attribute structures, and the edge represents one node that has the same at-
tributes as another node. In a graph learning framework, the nodes with edges will interact and
their representation will be similar. Therefore, all syntactic structures can be well incorporated
into the matching graph and provide complementary matching signals.
In the SIGN training phase, after initializing PLM (e.g., BERT [11] or RoBERTa [28]) embed-

dings, the Graph Attention Network (GAT) [45] or Heterogeneous Graph Attention Net-

work (HGAT) [47] is utilized to learn the representations of nodes from different types of edges,
followed by a relation classifier for making the final matching prediction. In this way, the syntactic
structures, as well as the semantics of the two sentences, are respectively encoded in the edges and
nodes of the matching graph and collectively contribute to the final matching.
Incorporating the semantic and syntactic information in one matching model offers several ad-

vantages: exploiting rich syntactic information in matching, collectively utilizing the syntactic and
semantic information, ease in interpretation, and improved prediction accuracy. The contributions
of this work can be summarized as follows:

• We highlight the necessity of simultaneously using semantic information and syntactical in-
formation (including the related structures and the attribute structures) in sentence match-
ing. A novel matching model called SIGN is proposed in which the matching graph based on
syntactic structures enables the model to conduct the text matching in an accurate, robust,
and interpretable way.
• Experimental results based on three publicly available benchmarks show that SIGN outper-
forms the state-of-the-art baselines.
• Analysis shows that SIGN not only can bridge the semantic gaps between sentences but also
can discriminate the sentences that are similar in form but different in meaning.

2 RELATEDWORK

2.1 Syntactic-Free Sentence Matching Models

Machine learning has been widely adapted to the task of matching natural language sentences [24].
Existing approaches can be categorized as representation-based models, interaction-based mod-
els, and their combinations [54]. Representation-based models try to represent the two input sen-
tences in a high-level semantic space and then conduct matching in the space. The early work
of DSSM [19] makes use of a deep feed-forward network to respectively represent the inputted
sentences as dense vectors (see also [14, 18, 39, 49]). The attention mechanism [36] has also been
adopted by matching models to enable the matching model to get a richer representation. For
example, the recently developed models of DRCN [43], CSRAN [21], and RE2 [55] all stack the en-
coding layers and attention layers to obtain the sentence representations for matching. Interaction-
based models directly capture the local interaction relationship between the elements (e.g., words,
phrases) of two sentences. The interaction can be represented as, for example, the matching ma-
trices or the attention vectors. The final matching scores can be achieved by integrating the local
interactions. Representative models in this category include ARC-II [18], MatchPyramid [35], and
DeepMatch [29], among others. For example, MatchPyramid [35] uses a CNN to aggregate the
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local word interaction signals in the matching matrix. DeepMatch [29] is designed for integrating
the local interaction signals based on the hierarchical structures of the topics. Researchers also
found that combining both representation-based and interaction-based models can achieve better
matching accuracy, as reported in DUET [32]. Recently, the PLM of BERT has also been fine-tuned
for the matching task, and state-of-the-art performances have been achieved [11, 28]. These tra-
ditional models always utilize superficial matching signals (e.g., word-word correspondence and
word order) and ignore the implicit or explicit NLP knowledge.

2.2 Syntactic-Based Sentence Matching Models

In recent years, there has been a research trend that utilizes rich NLP knowledge to improve sen-
tence matching, which can be categorized as syntactic-based representation and interaction meth-
ods. The syntactic-based representation methods encode the syntax of two sentences separately
and aggregate them to make the prediction. For example, Liu et al. [27] also proposed an end-to-
end neural network to exact the latent constituency trees of sentences and then matched their
latent structures by the weighted sum of all possible sentence spans. Potthast et al. [37] employed
the n-grams of the syntactic structure sequence and encoded them as matching features for para-
phrasing identification. HIM [9] utilized the recurrent neural network (known as the tree-RNN)
to aggregate word representation utilizing the relation structures (word syntactic dependencies)
(also see [8, 34]). The syntactic-based interaction methods directly utilize the different syntactic
tags as fine-grained matching signals, and the tags are often extracted from the attribute structures
such as POS, constituent parsing, and NER. For example, Das and Smith [10] and Mohammad et al.
[33] utilized the POS tag as syntactic features of classifiers to identify the paraphrase, and MIX [6]
utilized the POS tag and NE of two sentences as prior knowledge for multi-layer convolutions.
Recently, Sachan et al. [38] found that syntax can help the PLM capture more information and
achieve impressive results for NLP tasks. Bai et al. [2] proposed to utilize different semantic role
labeling tags and constituency trees to enhance the representation ability of PLMs, respectively. Liu
et al. [25] proposed to combine syntactic dependency and semantic role labeling tags to conduct
sentence matching and achieved state-of-the-art performances on sentence matching tasks.

2.3 Graph-Based Sentence Matching Models

The graph-based model has also been used for sentence matching. Bu et al. [5] andWang et al. [46]
viewed the sentences as graphs, which can extract and match the subgraph patterns with conven-
tional graph kernels. With the development of the Graph Convolutional Network (GCN) [23],
GAT [45], and HGAT [47], deep graph learning has been applied to the matching task since it is
a more practical way to represent the nodes and edges with embeddings. TextGCN [56] jointly
learns the embeddings with the GCN for both various documents and their words through a het-
erogeneous graph. ED-GAT [30] and DEPGCN [58] view the dependency parse tree as a graph and
utilize the GCN to obtain the syntactic embeddings of the input texts. Recently, Sachan et al. [38]
proposed a syntax graph based model with a PLM on NLP tasks and proved the effectiveness of
syntactic structure on the PLM. Yu et al. [57] utilized the hierarchical matching signals with a GNN
model.

3 SYNTACTIC STRUCTURES FOR SENTENCE MATCHING

3.1 Problem Formulation

In matching, given a pair of natural language sentences, their relationship is predicted with a
matching function. Formally, suppose that Z is the set of labels that are defined by a specific
matching task. In the preceding PI examples, Z = {0, 1}, where 0 and 1 respectively indicate the
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Table 1. Notations and Their Explanations

Notations Explanations

(X ,Y , z) ∈ D sentence pair with label z
X (or Y ) = {w1,w2, . . . ,wtX } sentence and corresponding words

CX (or CY ) = {c1, c2, . . . , cnX } chunk sequence of X (or Y )
GX ,Y = (V,E,H) matching graph of X and Y
V = Vw ∪Vc ∪Vs nodes in the matching graph

Vw word nodes

Vc chunk nodes

Vs sentence nodes

E = Er el ∪ Eatt ∪ Eaдд edges in the matching graph

Er el relation edges

Eatt attribute edges

Eaдд aggregation edges

{aiv1
,aiv2
, . . . ,aivt } i-th attribute tags of node inV

GXri = (VX
ri
,EXri ) i-th relation structure graph in X

H ∈ Rd×|V | node representations of GX ,Y

labels of “dissimilar” and “similar”; in NLI, Z = {0, 1, 2}, where 0, 1, and 2 respectively indicate
“contradiction,” “neutral,” and “entailment.” In the training phase, a set of training instances D =
{(Xi ,Yi , zi )}Ni=1 is given, where given were each sample (X ,Y , z) ∈ D consists of a sentence pair
(X ,Y ) as well as its corresponding ground-truth matching label z. Moreover, the sentences X and
Y are two sequences of words: X = {wX

1 ,w
X
2 , . . . ,w

X
tX
} and Y = {wY

1 ,w
Y
2 , . . . ,w

Y
tY
}, wherewX

i and

wY
j denote the i-th and j-th words inX andY , and tX and tY are the number of words (lengths) ofX

and Y , respectively. The objective is to learn a matching model that takes a sentences pair as input
and outputs the prediction of the sentence pair’s relationship. Table 1 lists the major notations that
will be used in the article.

3.2 Problem Analysis

Existing sentence matching models either consider the inputted sentences pair (X ,Y ) as sequences
of tokens, overlooking the syntactic information, or utilize very limited syntactic information in
matching [2, 6, 34, 59]. However, fully exploiting the syntactic structures is important for accurate
sentence matching. We will give two examples to show how the multiple different syntactic infor-
mation helps to identify the semantic dissimilar and semantic similar sentence pairs, which have
different syntactic structures.
The first example is shown in Figure 1, which illustrates a sentence pair from the Quora Ques-

tion Pairs (QQP) test set whose ground-truth label z = 0 (dissimilar). The parsed syntactic struc-
tures, including the relation structure (e.g., syntactic dependency, word-chunk structure) and at-
tribute structure (e.g., chunk type and POS tags), are shown. We can see that the two sentences X
and Y are quite similar in terms of the superficial matching signals: they share the most important
words wX

i ,w
Y
j : (“what,” “is,” “the,” “program,” “meaning,” “of,” “SAP”) after stemming. Moreover,

they are similar to the shared bi-grams “what is” and “the meaning of.” Additionally, the ordering
of words is similar. At the same time, their attribute (e.g., POS, chunk types) syntactic structures
are also quite similar. Existing matching models (e.g., [2, 6]) only utilize the attribute knowledge,
which results in wrong predictions for the example pair. However, the prediction becomes much
easier if the relation structures (e.g., word syntactic dependencies) are taken into consideration: it
is easy to know that the first sentence focuses on “workflow” while the second focuses on “SAP.”
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Fig. 1. Example 1: Syntactic structures for real sentence pairs from the QQP dataset. The ground truth label
is “dissimilar.”

Fig. 2. Example 2: Syntactic structures for real sentence pairs from a general case. The ground truth label is
“similar.”

The second example shown in Figure 2 illustrates a sentence pair (X ,Y ) whose ground-truth
label z = 1 (similar), but they have different syntactic structures. Similarly, the relation structure
(syntactic dependency) and attribute structure (POS tags) are shown. We can see that they share
similar semantics but have different forms of the words: the word (“visit”) in sentence X has
the verb form, and the word (“visit”) in the phrase (“paid a visit”) of sentence Y has the noun
form. However, the sentences share the same semantic meanings, because the word (“visit”) in
sentence X is the verbalization of the word (“visit”) in sentence Y . This verbalization can be
categorized as the word form transformation, and it can be easily identified if the POS tags and
word syntactic dependencies are taken into consideration. For example, the verbalization of nouns

can be identified by the (“VB
obj−−→NN” and “NN”) structures easily, where “obj” is the word-word

dependency type.
Previous studies and recent online paraphrasing tools [12] usually categorized the different syn-

tax transformations into four types: (1) different forms of a word, (2) word/chunk equations or

ACM Transactions on Information Systems, Vol. 42, No. 2, Article 38. Publication date: September 2023.
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Table 2. Syntactic Structures for Identifying the Syntax Transformation

Syntax

transformation

Types

Explanations Examples
Identified Syntactic

Structures

different forms
of a word

replacing words using a
different form (e.g.,

verbalization of nouns or
adjectivization of verbs)

(“We visited the
museum.”; “We paid a
visit to the museum.”)

attribute structures (e.g.,
POS, chunk tags) and
relation structures (e.g.,

word syntactic
dependencies)

word/chunk
equations or
synonyms

replacing words or chunks
with their synonyms

(“The cloud is similar to
the airplane.”; “The

cloud is comparative to
the airplane.”)

attribute structures (e.g.,
POS, NE, and chunk tags)

active or passive
sentence

adjust the sentences in the
active voice to the passive

voice, or vice versa

(“The dog is chasing the
cat.”; “The cat is chased

by the dog.”)

relation structures (e.g.,
word syntactic
dependencies)

different
word/chunk
order

preposition or postposition
of different components of a

sentence

(“At the weekend, we
went hiking.”; “We went
hiking at the weekend.”)

attribute structures (e.g.,
chunk tags) and relation
structures (e.g., word

syntactic dependencies)

synonyms, (3) active or passive sentence, and (4) different word/chunk order. These syntax trans-
formations aim to change the syntax of a sentence while maintaining the semantics of a sentence.
A detailed description and applied syntactic structures can be found in Table 2.

Please note that the preceding two types of examples are not rare in the dataset. Based on the
experimental results of BERT (trained on the QQP dataset), we found that in the error cases, the
syntactically dissimilar pairs account for 83.9%.
Therefore, we conclude that (1) different sentence syntactic structures are all essential in sen-

tence matching, and (2) it is necessary to fully exploit the syntactic structures because different
types of the structures can work collectively and complementarily.
In practice, however, the syntactic structures, including the relation structures and attribute

structures, are complex and heterogeneous. Ideally, a matchingmodel would utilize these syntactic
structures simultaneously and make them fully interactive.

4 OUR APPROACH: SIGN

In this section, we propose SIGN, a novel syntactic-informed graph network for sentence matching
that utilizes multiple syntactic structures in a general way. Next, we first describe the general
framework and then explain the model details.

4.1 General Framework

Figure 3 illustrates the proposed SIGN. The left side shows the overall matching process of a sen-
tence pair, and the right side shows the matching graph details. Given a pair of natural language
sentences, SIGN first processes the sentence pair with an NLP syntactic parser including the rela-
tion structure and attribute structure. After that, the graph representation learning algorithm of
the GAT [45] or HGAT [47] is applied over the matching graph, with the embeddings from the
PLM as the initial node representations. Finally, the relation classifier is employed to summarize
the learned representations and outputs the final matching prediction.
In the following sections, we explain the key components of SIGN in detail.

ACM Transactions on Information Systems, Vol. 42, No. 2, Article 38. Publication date: September 2023.
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Fig. 3. Architecture of SIGN for sentence matching.

4.2 Assignment of Syntactic Structures

Given a pair of sentences (X ,Y ), three types of syntactic analysis are respectively applied toX and
Y : syntactic dependency parsing, chunking, and POS tagging.

The syntactic dependency parsing outputs a set of directed relations between lexical items in the
sentence, for showing their internal structures. Specifically, give a sentenceX = {w1,w2, . . . ,wtX },
the dependency parser will output a dependency graph GX

d
= (VX

d
,EX

d
), where VX

d
contains

the words in X , and EX
d
= {(wi ,w j )}, where (wi ,w j ) is a directed edge for indicating that there

exists a syntactic dependency betweenwordswi andw j . Inmatching, the head-dependent relations
provide an approximation to the semantic relationship between prediction and their arguments,
which is useful for matching.

Chunking is another kind of syntactic analysis where the sequence of words in a sentence is
identified as forming phrases of various chunk types, such as noun phrases, verb phrases, and
prepositional phrases. [1]. Specifically, for a sentence X = {w1,w2, . . . ,wtX }, the chunker will
output a chunk sequenceCX = {c1, c2, . . . , cn } and its types sequence {CHKc1 ,CHKc2 , . . . ,CHKcn }.
Furthermore, from the results, we can obtainNc j as well, whereNc j is the set of wordwi consisting
of chunk c j . In matching, chunking gives additional access to the information about groups of
the word, which will give an additional chunk-level matching signal. Therefore, it is efficient for
matching hierarchically.
POS and NE tagging are widely useful syntactic analyses where the sequence of words in a

sentence is tagged as 11 POS. Specifically, for a sentence X = {w1,w2, . . . ,wtX }, the POS/NER
tagger will output a POS tag sequence {POSw1 , POSw2 , . . . , POSwtX

} and the NER tag sequence
{NERw1 ,NERw2 , . . . ,NERwtX

}. For text matching, POS and NE tags are useful for encapsulating
the rich structural patterns and good measurements of importance in terms of interactions [6].

4.3 Syntactic-Informed Matching Graph

Based on the sentence pair (X ,Y ) and their syntactic structures, a directed hierarchical graph
GX ,Y = (V,E,H) can be derived for matching, referred to as the matching graph in the article.
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Specifically, each node in V could be a word or a chunk in X and Y , or a sentence (i.e., X or Y );
H denotes the matrix that contains the node representations in graph GX ,Y , and all of the node

representations consist of amatrixH =
[
h1, . . . , h |V |

] ∈ Rd×|V | , where each node’s representation
is denoted as hv ∈ Rd ,∀v ∈ V , and E denotes directed relationships between the nodes.
The nodes in the matching graph are connected with a set of directed edges E, which is defined

as the union of several types of edges inferred from relation structures, attribute structures, and
aggregation structures:

E = Er el ∪ Eatt ∪ Eaдд .
As for the relation structures, the edge Er el represents that one node syntactic relates to another
node, which consists of dependency edge Edep and chunk edge Echk :

Er el = Edep ∪ Echk .
As for attribute structures, the edge Eatt represents that one node has the same attributes as an-
other node, which consists of POS edge EPOS , NER edge ENER , and chunk edge ETOC (Type of

Chunk (TOC)):

Eatt = EPOS ∪ ETOC ∪ ENER .

To aggregate the syntactic information to a sentence, all of the word nodes and chunk nodes are
linked to the corresponding sentence nodes, forming the aggregation edges Eaдд . The details are
described as follows.

4.3.1 Relation Edges. The relation edge Er el represents that one node syntactic relates to an-
other node, which consists of dependency edge Edep and chunk edge Echk . Please note that the
relation structure interactions of two sentences are mainly referred to as syntactic-based repre-
sentation methods [8, 9]. The reason for the implementation is that the edge construction time
complexity of utilizing fine-grained relation tags (i.e., the syntactic-based interaction method) will
become O ( |tX |2× |tY |2). In such an interaction method, it will delay the inference time unbearably
compared to the time complexity of representation methods (O ( |tX | + |tY |)2)). A more detailed
time complexity analysis can be found in Section 4.7.1. At the same time, the space consumption
of the interaction method is also not affordable.
Specifically, for the source sentence X in the inputted sentence pair, its syntactic dependency

parsing results form a graph GX
d
= (VX

d
,EX

d
), as described in Section 4.2. Similarly, for the target

sentence Y , its syntactic dependency parsing results also form another graph GY
d
= (VY

d
,EY

d
).

SIGN defines its syntactic dependency edges, denoted as Edep , as the union of these sets:

Edep = EXd ∪ E′Xd ∪ EYd ∪ E′Yd ,
where E′X

d
= {(wi ,w j ) : (w j ,wi ) ∈ EXd ∨ i = j} and E′Y

d
= {(wi ,w j ) : (w j ,wi ) ∈ EYd ∨ i = j}. Please

note that following the practices in the work of Bastings et al. [3], SIGN also includes E′X
d

and

E′Y
d
, which contain the dependency links with inverse directions and self-loop links, as its edges.

These edges enable SIGN to propagate the information in the matching graph more efficiently and
effectively—that is, they propagate not only along the dependency directions but also along its
inverse directions and to itself.
Given a sentence pair (X ,Y ), the parsed chunking information can also be represented as the

edges between the word nodesVw and chunk nodesVc , denoted as Echk :
Echk = EXchk ∪ EYchk ,

where EX
chk

(or EY
chk

) is defined as

EXchk = {(wi , c j ) : wi ∈ Nc j ,∀j = 1, 2, · · ·} ∪ {(c j , c j ) |c j ∈ CX },

ACM Transactions on Information Systems, Vol. 42, No. 2, Article 38. Publication date: September 2023.
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where Nc j is the set of word wi consisting of chunk c j . EYchk is defined similarly. Echk is used for
propagating the information from the word nodes to the corresponding high-level chunk nodes.

4.3.2 Attribute Edges. As for attribute structures, the edge Eatt consists of POS edge EPOS , NER
edge ENER , and chunk edge ETOC . As for the syntactic structure interactions at the attribute level,
we adapt the syntactic-based interactionmethods [6, 25] for the following two reasons: (1) previous
studies [54] showed that the fine-grained matching signals will be more robust and accurate, and
(2) the time complexity of constructing attribute edges (O ( |tX | × |tY |)) is affordable.

The constructing detail is explained as follows. It is a strong signal in matching if two matched
words (or chunk) have identical POS tags (or chunk type labels). Inspired by the observation, SIGN
defines the POS edges (denoted as EPOS ) as follows:

EPOS = {(wi, w j ) : wi ∈ X ∧w j ∈ Y ∧ POSwi
= POSwj

} ∪ {(wi, w j ) : wi ∈ Y ∧w j ∈ X ∧ POSwi
= POSwj

},
where POSwi

and POSw j
are the assigned POS tags for wordwi in X and wordw j in Y .

Similarly, the NER edges (denoted as ENER ) are defined as follows:

ENER = {(wi, w j ) : wi ∈ X ∧w j ∈ Y ∧ NERwi
= NERwj

} ∪ {(wi, w j ) : wi ∈ Y ∧w j ∈ X ∧ NERwi
= NERwj

}.
At the chunk level, SIGN defines the TOC edges (denoted as ETOC ) as follows:
ETOC = {(ci, c j ) : ci ∈ CX ∧ c j ∈ CY ∧CHKci = CHKcj } ∪ {(ci, c j ) : ci ∈ CY ∧ c j ∈ CX ∧CHKci = CHKcj },

where CHKci and CHKc j are the assigned chunk types for chunk ci from CX and chunk c j from
CY , respectively.

Please note that in the matching task, we assume that the words and chunk fromX andY should
be aligned with each other. Therefore, if there is a POS/NER edge (or a TOC edge) from wi to w j

(or ci to c j ), there will also be an edge from w j to wi (or c j to ci ) so that the information can be
propagated along both directions.

4.3.3 Aggregation Edges. Finally, all of the word nodes and chunk nodes are linked to the cor-
responding sentence nodes, forming the aggregation edges:

Eaдд = EXaдд ∪ EYaдд ,
where EXaдд = {(wi ,x ) |wi ∈ X } ∪ {(c j ,x ) |c j ∈ CX } ∪ {(x ,x )} and EYaдд = {(wi ,y) |wi ∈ Y } ∪
{(c j ,y) |c j ∈ CY } ∪ {(y,y)}. These links aggregate the information from the words and chunks to
the corresponding sentence nodes.
The details are described in Section 1 of the supplementary material. Note that any NLP parser

can be used for the construction of the edges. In this article, we used the Stanford CoreNLP
parser [31].

4.4 Initialization of Graph Representations

In SIGN, thematching betweenX andY is formalized as representation learning over thematching
graph GX ,Y = (V,E,H). In graph representation learning, the node representations are updated
at each layer. We denote the node representation matrix through the k-th layer (k = 0, 1, 2 · · · )
message propagating as H(k ) .

The initial representations of the nodes, denoted as H(0) = [h
(0)
1 , . . . , h

(0)
|V |], are given by the

embedding vectors obtained from a PLM. Specifically, after inputting sentence pair (X ,Y ) into
the PLM with format HPLM = {[CLS],wX

1 , . . . ,w
X
tX
, [SEP]},wY

1 , . . . ,w
Y
tY
, [SEP], we can obtain the

embeddings from the last hidden layer of the PLM model: hPLM = {hv , ∀v ∈ HPLM }. The initial
representations of the word nodes in matching graph H(0) are set with the corresponding vectors
hPLM ’s.
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Fig. 4. The algorithm derived in representation learning over the matching graph. The top, middle, and
bottom subfigures represent the syntactic edges at the word, chunk, and sentence levels, respectively.
(a) GAT, where αi is the attention weight of different input-link edges (i.e.,

∑
i αi = 1). (b) HGAT, where

αi is the attention weight of single edge types (i.e.,
∑
i αi = 1) and βj is the attention weight of different edge

types (i.e.,
∑
j βj = 1).

As for the chunk nodes in Vc , we follow the practices in the work of Chen et al. [7] to set the
initial embeddings based on the embeddings of the associated words utilizing a gating mechanism:
hc j =

∑
wi ∈Ncj FFNc (hwi

;Θc )	hwi
, for allhc j ∈ Vc , where FFNc is a two-layer feed-forward neural

network with parameters Θc and ‘	’ denotes the element-wise product of two vectors. Here FFNc

plays as a gating function. In a sentence, the semantic contributions of the functional words (e.g.,
“the,” “a”) to the whole sentence are relatively small. In the gating functions, the words with richer
semantics in the chunk can contribute more to the chunk representation.
Finally, for initializing the sentence nodes, the embeddings of all associated words are aggre-

gated with max-pooling: hs = max-pooling hwi
, for all s ∈ Vs .

4.5 Algorithm Derived in Representation Learning over the Matching Graph

In SIGN, the GAT is applied to learn the node semantic representation incorporating the edge
syntactic information. We applied GAT [45] and HGAT [47]. Figure 4 shows the intuitive example
of the GAT and HGAT algorithms.
In the GAT algorithm, different types of edge have the samemessage passing mechanism, which

denotes that any input-link edge has attention weight αi (i.e.,
∑

i αi = 1). Figure 4(a) gives an intu-
itive example: in the bottom subfigure, the word node receives the message from the dependency
edges with weight α1,α2, POS edges with weight α3,α4, and NER edges with weight α5, the chunk
nodes, and the sentence node, which also receives a similar message from its linked edges.
The HGAT algorithm introduced different message passing mechanisms for different types of

edge. Figure 4(b) gives an intuitive example: in the bottom subfigure, first, each edge type receives
the message with αi weight (i.e.,

∑
i αi = 1) from its linked node. For example, the dependency

type receives the message with weight α1,α2. Next, different edge types pass the message to the
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target node with weight βj (i.e.,
∑

j βj = 1). For example, each word node receives the message
from the dependency, POS, and NER edge with weight β1, β2, β3. Similarly, the chunk node receives
the message from the chunk and TOC edges, and the sentence node receives the aggregate edges.
Next, we explain their message passing mechanisms in detail.

4.5.1 GAT Representation Learning. The initial representations in H(0) only contain the local
semantic information of the sentence elements. The GAT [45] is employed to learn the node repre-
sentations in the matching graph so that the node information can be propagated along the edges.
For each depth � = 0, . . . ,L, where L is the maximal number of layers, the GAT generates a neigh-
borhood embedding with the aggregation function for each node and combines it with the existing
embedding of the node. To avoid a vanishing gradient problem and following the mechanism in
the work of Devlin et al. [11], the node representations are updated as follows:

H(�+1) = LayerNorm(H
′ (�) + H(�) + FFN� (H

′ (�) + H(�) ;Θ� )), (1)

where FFN� is a one-layer MLP, parameterized by Θ� . H
′ (l ) = [h

′ (�)
1 , . . . , h

′ (�)
|V |] and its i-th column

h
′ (�)
i is defined as

h
′ (�)
i = σ ��

�
1

K

K∑

k=1

∑

j ∈Ni
αki jW

kh
(�)
j
��
� ,

for � = 0, . . . ,L where K is the number of headers in the attention module, Ni denotes the set of
embeddings of the neighborhoodwith the nodes corresponding tohi ,α

k
i j represents the normalized

attention coefficients computed by the k-th attention mechanism αk , andWk is the corresponding
input linear transformation’s weight matrix. The αki j is defined as

αki j =
exp (LeakyRelu(aT [Wkhi ‖ Wkhj ]))∑

j ∈Ni
exp(LeakyRelu(aT [Wkhi ‖ Wkhj ]))

,

where ‘‖’ denotes the concatenation operation. In our experiments, the attention mechanism is a
single-layer feed-forward neural network, parameterized by a weight vector aT .

4.5.2 HGAT Representation Learning. The HGAT [47] provided a better way to leverage differ-
ent types of syntactic structures in the graph learning phase. Since our matching graph is heteroge-
neous in different syntactic structures, the HGAT is employed to learn the different types of node
representations in the matching graph so that the node information can be propagated along with
the different types of edges. For each depth � = 0, . . . ,L, where L is the maximal number of layers
and for each type of edges ei (i = 1, 2, . . . , ra + rn + 1) described in Section 4.3, the HGAT gen-
erates different types of node representations. Then the HGAT applies the aggregation function
for each type of node representation of its neighbors and combines all types of representations
with a learnable aggregating function. To incorporate the graph learning algorithm and the PLM
fine-tuning, we adapt the skip connect [11] mechanism. The node representations are updated as
follows:

H(�+1) = LayerNorm(H
′ (�) + H(�) + FFN� (H

′ (�) + H(�) ;Θ� )), (2)

where FFN� is a one-layer MLP, parameterized by Θ� . H
′ (l ) = [h

′ (�)
1 , . . . , h

′ (�)
|V |] and its i-th column

h
′ (�)
i is computed through semantic level attention:

h
′ (�)
i =

ra+rn+1∑

j=1

βejh
′ (�)
i,ej
, (3)
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where h
′ (�)
i,ej

is the representation updated by h
(�)
i through edge ej , βej denotes the coefficient of the

h
′ (�)
i,ej

, and βej can be updated as follows:

βej =
exp (wej )∑Nc

k=1
exp (wek )

,

where wej denotes the importance of the type ej parameterized byW e , and it can be updated as
follows:

wej =
1

|V |
∑

i ∈ |V |

(
h (�)
i

)T
tanh

(
W eh

′ (�)
i,ej

)
.

As for h
′ (�)
i,ej

, the node level attention is applied with it:

h
′ (�)
i,ej
= σ ��

�
1

K

K∑

k=1

∑

m∈Ni
αkim,ej

Wk
ej
h
(�)
m,ej

��
� , (4)

for � = 0, . . . ,L, where K is the number of headers in the attention module, Ni denotes the set
of embeddings of the neighborhood with the nodes corresponding to hi , α

k
im,ej

is the normalized

attention coefficients computed by the k-th attentionmechanismαkej , andW
k
ej
is the corresponding

input linear transformation’s weight matrix. The αkim,ej
is defined as

αkim,ej
=

exp (LeakyRelu(aT [Wk
ej
hi,ej ‖ Wk

ej
hm,ej ]))∑

m∈Ni
exp(LeakyRelu(aT [Wk

ejhi,ej ‖ Wk
ejhm,ej ]))

,

where ‘‖’ denotes the concatenation operation. In our experiments, the attention mechanism is a
single-layer feed-forward neural network, parameterized by a weight vector aT .

Note that the syntactic-informed graph is actually a hierarchical graph, which consists of the
sentence, chunk, and word level. In such a graph, the way of aggregating embeddings from
word/chunk level to chunk/sentence level can be well incorporated into the graph attention mech-
anism. For example, the set of attention weights {αkim,ej

|ej ∈ Eaдд } can be seen as the aggre-

gation weights from the word/chunk level to the sentence level. The set of attention weights
{αkim,ej

|ej ∈ Echk } can be seen as the aggregation weights from the word level to the chunk level.

4.6 Relation Classifier

To capture different semantics on different types of nodes, the node embeddings are aggregated as
features. For sentence X in the inputted pair (X ,Y ), its aggregated representation, denoted as gX ,
is obtained by aggregating the representations of associated nodes:

gX = max-pooling
w ∈Vw∧w ∈X

hLw ‖ max-pooling
c ∈Vc∧c ∈X

hLc ‖ hLx ,

where hLw and hLc are the word and chunk representations associated with wordw and chunk c at
the L-th level. Similarly, the aggregated representation of Y , denoted as gY , can also be calculated
based on the same way.
Therefore, the final matching can be predicted by summarizing the matching signals in gX , gY ,

and the h[CLS] vector outputted from BERT:

p(X ,Y ) = FFNp

( [
gX ‖ gY ‖ gX 	 gY ‖ |gX − gY |

]
+ h[CLS];Θ

p
)
, (5)

where p(X ,Y ) = [p1, . . . ,p |Z |] and pk denotes the probability of the k-th category. FFNp is an MLP
parametered byΘp . The last layer of FFNp is softmax so that its output is a probability distribution.
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The SIGN model has free parameters Θ = {Θc ,Θ�,Θp ,Wk , a,We } to determine. In the training
phase, given the training set D = {(Xi ,Yi , zi )}Ni=1, the parameters are learned by minimizing the
cross-entropy loss between the labels and the predicted results:

L = −
∑

(X ,Y ,z)∈D

|Z |∑

k=1

zk logpk + λ‖Θ‖2, (6)

where zk = 1 when the pair belongs to the k-th category, and zk = 0 in other cases, ‖Θ‖2 is the �2
regularizer for avoiding overfitting, and λ > 0 is the tradeoff coefficient.

4.7 Discussion

SIGN provides a general and elegant graph learning approach to sentence matching. Furthermore,
SIGN can match two sentences efficiently and effectively.
4.7.1 Time Complexity Analysis. At the online time, SIGN needs to process the sentence pairs

with the PLM, parse them with the NLP parser, solve the GAT, and finally calculate the matching
score. The online time complexity for a typical PLM [11, 28] and NLP parser [31] is of O ( |tX +
tY |2 × d ) and O (( |tX |2 + |tY |2) × d ), where d is the embedding dim of each word. Since the NLP
parser can work with the PLM extraction in parallel, usually the NLP parser does not delay the
inference time.
At the online time, the time complexity of the relaxed SIGN is corresponding to the time com-

plexity of the GAT, which is of O ((m + n2) × d ) [51] on the association graph, where n is the total
number of nodes andm is the total number of edges. We can see, in practice, that the edge number
m is nearly close to the nodes n (i.e., m ≈ n). In this way, the total time complexity of SIGN is
O (( |tX + tY |2 + ( |tX |2 + |tY |2) +m + n2) × d ) = O ( |tX + tY |2 × d ) with the PLM as the inference
time bottleneck.

4.7.2 Syntax and Semantics Incorporation. The graph learning framework provides a powerful
tool to model different types of heterogeneous syntactic structures. More importantly, both the
word semantics and the syntactic structures are jointly represented in one graph: the semantic
information is encoded as the node embeddings, and the syntactic structures are represented as
the directed edges. In this way, SIGN provides a unified approach to enable the two matching
sentences to interact in a fine-grainedmanner, enhancing the overall understanding and coherence
of the context. The matching graph models all information from two sentences into one graph so
that their interactions from semantic and syntactic perspectives can be fully exploited.
SIGN also conducts sentence matching in an explainable way. We found that the word-level and

chunk-level similarities generated by SIGN are sparse. The multiple types of syntactic information
not only improve the overall matching accuracy but also help to discriminate the word/chunk pairs
that are either dissimilar or similar in form but different in syntax. Therefore, SIGN is easier to
explain than existing methods like BERT and RoBERTa.

5 EXPERIMENTS

In this section, we evaluate the performance of the proposed SIGN model with experiments on
three publicly available datasets. We raised and tried to answer three major research questions:

• RQ1: Can SIGN improve sentence matching?
• RQ2: What are the benefits of using different types of syntactic structures in matching?
• RQ3: How does SIGN improve the matching accuracy in an explainable way?

The source code and all experiments have been shared on GitHub (https://github.com/
XuChen0427/Syntactic-Informed-Graph-Networks-for-Sentence-Matching).

ACM Transactions on Information Systems, Vol. 42, No. 2, Article 38. Publication date: September 2023.

https://github.com/XuChen0427/Syntactic-Informed-Graph-Networks-for-Sentence-Matching


Syntactic-Informed Graph Networks for Sentence Matching 38:15

Table 3. Statistics of Three Datasets Used in the Experiments

Dataset Task Description |Z| # Pairs

QQP paraphrase identification 2 404k
SNLI premise-hypothesis prediction 3 570k
SciTail premise-hypothesis prediction 2 27k

5.1 Experimental Settings

We conducted the experiments to test the performance of SIGN using three large-scale publicly
available sentence matching benchmark datasets: QQP for the task of PI, and Stanford Natural

Language Inference (SNLI) [4] and SciTail [20] for the task of NLI (Table 3 summarizes the
description and statistics of them):

QQP1 is a dataset for PI. The label has two classes indicating whether one question is a para-
phrase of the other. The dataset contains 404k labeled sentence pairs. We used the same
data split as in the work of Wang et al. [50].

SNLI 2 is a benchmark dataset for NLI. The dataset contains 570k labeled sentence pairs. In
NLI, each input triple represents premise-hypothesis-label, and the label could be “en-
tailment,” “neutral,” “contradiction,” or “-”. Following the practices in the work of Bow-
man et al. [4], we used the same dataset split, and the sentence pairs labeled as “-” were
ignored.

SciTail3 is another entailment dataset based onmultiple-choice science exams andweb sentences.
Each input data triple also represents premise-hypothesis-label. The label is “entailment”
or “neutral” because scientific factors cannot contradict. The dataset contains 27k labeled
sentence pairs.

Several sentence-matching state-of-the-art baselines that did not utilize syntactic structures
were chosen as the baselines, including BIMPM [49], CSRAN [21], RE2 [55], BERT [11],
RoBERTa [28]:

BIMPM [49] conducts multiple-perspective matching so that one sentence in one timestep is
matched against all timesteps of another sentence.

CSRAN [21] performs multi-level attention between two sentences with residual connections
among multiple levels.

RE2 [55] introduces an architecture based on various augmented residual connections between
convolutional layers and attention layers for short text matching.

BERT [11] and RoBERTa [28] append an MLP on the last hidden state corresponding to the first
token “[CLS]” of sequence output and fine-tunes the weights on the task.

At the same time, we compared some other baselines: pt-DecAttn [44], DIIN [15],MwAN [40],
SAN [26], DRCN [43], and DGEM [20].

SIGN was also compared with the baselines that utilize syntactic structures:

HIM [9] is a model that uses the constituency tree to improve local word representation.
TBCNN [34] incorporates the syntax trees and utilizes a CNN-based aggregation function to im-

prove the NLI tasks with the representation-based methods.
SyntaxBERT [2] incorporates the syntax trees into pre-trained Transformers to improve sentence

representation quality. State-of-the-art performance was achieved on glue tasks.
SS-BERT [25] incorporates the syntax trees and semantic role labeling into sentence matching

with the representation-based methods.
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Table 4. Types of Chunk and Chunking Rules

Type of Chunk Chunking Rule

NP {<DT|PR.*| JJ.*|NN.*>+}

PP {<IN><NP>}

VP {<VB.*><VB.*>+} ∪ {<VB.*><NP>+}

CLAUSE {<NP><VBP>}

The same as POS of word If only contain one word

The angle brackets (<>) represent the sequence of the POS, the asterisk (*)

represents the wildcard character, the vertical line (|) represents a matched tag

number (e.g., the number of DT) ≥ 0, and the plus sign (+) represents a matched

tag number ≥ 1.

ConSeqNet [48] utilized other knowledge from knowledge graphs (e.g., ConceptNet, WordNet) to
improve the performance of NLI tasks.

These syntactic-based baselines only utilized limited syntactic structures and encoded different
syntax separately. Ourmodel SIGN can leveragemultiple types of syntactic structures in a syntactic
graph and make them interact in a fine-grained way. Some results are not available on all three
datasets because the implementations are not publicly available.
To get the syntactic structure information, Stanford CoreNLP [31] was used to tokenize the in-

putted sentences, generate the syntactic dependency trees, and predict the POS tags, NER tags,
and chunk types. Please note that although the PLM was used for generating the initial embed-
dings of words, here we still adopted the Stanford CoreNLP toolkit rather than the pre-trained
language tokenizer [11, 28] for tokenization. To avoid over-sparse edges in the matching graph,
in all of the experiments, we configured the Stanford CoreNLP tool so that all outputted POS tags
are from {DT , IN , J J ,NN , PR,RB,TO,VB,WP ,WR,UNK } and all outputted chunk types are from
{NP , PP ,VP ,CLAUSE}. The detailed rules are shown in Table 4. It would be a future research di-
rection to reduce the noise of confusing parsing results.
In all of the experiments, we did not limit the maximum sequence length, and all sequences in

a batch were padded to the batch-wise maximum of sequence length. In the training process, all
of the models were trained using the Adam optimizer [22], with the learning rate η tuned among
[1e − 5, 3e − 5] and the batch size n tuned as in other works [16, 32]. In the graph representation
learning layer and the prediction layer, the dropout with a keep probability of 0.8 was adopted. In
the PLM, the keep probability was set to 0.9. The number of GAT/HGAT layers was tuned in the
range of 1 to 3. The threshold for gradient clipping was set to 5.

5.2 Evaluation and Analysis

We conducted experiments and analysis to answer the aforementioned three research questions.

5.2.1 RQ1: Can SIGN Improve Sentence Matching? Tables 5, 6, and 7 report the experimental
results on the benchmark datasets of QQP, SNLI, and SciTail, respectively. Following the prac-
tices in other works [15, 49, 55], prediction accuracy was used as the evaluation metric. We re-
port the derivations of SIGN with different PLMs and different graph learning algorithms—for
example, “SIGN-BERTBASE -GAT” denotes the BERTBASE PLM and GAT algorithm described pre-
viously. We can see that the proposed SIGN model outperformed all of the baselines on all of the
three datasets, indicating the effectiveness of using syntactic structures in sentence matching. The
experimental results are not surprising, as SIGN used not only the syntactic structures of the sen-
tences but also the semantic representations from the PLM to initialize the matching graph. The
results also indicate that given the strong results of BERTBASE , BERTLARGE , and RoBERTaLARGE
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Table 5. Performance Comparison on the QQP Test Set

Without Syntactic Structures Acc. (%)

pt-DecAttn-word [44] 87.5
pt-DecAttn-char [44] 88.4
DIIN [15] 89.1
MwAN [40] 89.1
CSRAN [21] 89.2
SAN [26] 89.4
RE2 [55] 89.2

BERTBASE
† [11] 89.4

BERTLARGE
† [11] 89.6

RoBERTaLARGE
† [28] 90.0

Using Syntactic Structures Acc. (%)

HIM† [9] 88.7

SS-BERTBASE
† [25] 89.4

SS-BERTLARGE
† [25] 89.7

SyntaxBERTBASE [2] 89.6
SyntaxBERTLARGE [2] 89.5

Ours (SIGN-BERTBASE -GAT)
† 89.9∗

Ours (SIGN-BERTLARGE -GAT)
† 90.0∗

Ours (SIGN-RoBERTaLARGE -GAT)
† 90.5∗

Ours (SIGN-BERTBASE -HGAT)† 90.1∗
Ours (SIGN-BERTLARGE -HGAT)† 90.2∗
Ours (SIGN-RoBERTaLARGE -HGAT)† 90.9∗
The asterisk (∗) represents that the improvements over the

corresponding PLM baseline are statistically significant (t-test and

p-value < 0.05), and the dagger (†) denotes that the models are our

implementations and are trained with the same settings.

(the best baseline), SIGN can further improve the results by leveraging the explicit syntactic
information.
We also note that SIGN outperformed the baselines of HIM [9], TBCNN [34], SS-BERT [25],

and SyntaxBERT [2], which also used the syntactic structures for matching. Comparing the
model structures of HIM, TBCNN, and SIGN, we found that HIM and TBCNN use the syntactic
dependency structures of the two sentences to respectively enhance their representations. SIGN,
however, constructs one syntactic-informed matching graph based on two sentences. Comparing
SS-BERT, SyntaxBERT, and SIGN, they all utilized the PLM and syntactic structures to conduct
sentence matching. SIGN, however, utilized different syntactic structures to conduct matching.
The results clearly demonstrate that the syntactic-informed matching graph has the advantage of
fully exploiting the rich syntactic and semantic information for sentence matching.

5.2.2 RQ2: What Are the Benefits of Using Different Types of Syntactic Structures in Matching?

We also conducted two ablation experiments to investigate the benefits of different types of syntac-
tic structures, using the results of the QQP, SNLI, and SciTail on SIGN-BERTBASE -GAT and SIGN-
BERTBASE -HGAT. We respectively investigated for the edges inferred from the relation structure,
attribute structure, and aggregation structure. Moreover, we investigated the edges inferred from
the syntactic dependency and word-chunk relation structure and POS, NER, and chunk-type at-
tribute structure. Similar phenomenons have also been observed in the experiments on other PLMs.
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Table 6. Performance Comparison on the SNLI Test Set

Without Syntactic Structures Acc. (%)

ESIM [9] 88.0
DIIN [15] 88.0
MwAN [40] 88.3
CAFE [42] 88.5
SAN [26] 88.6
CSRAN [21] 88.7
DRCN [43] 88.9
RE2 [55] 89.0

BERTBASE
† [11] 89.0

BERTLARGE
† [11] 89.2

RoBERTaLARGE
† [28] 90.1

Using Syntactic Structures Acc. (%)

TBCNN [34] 83.5

HIM [9]† 88.6

SS-BERTBASE
† [25] 89.2

SS-BERTLARGE
† [25] 89.7

SyntaxBERTBASE [2] 87.8
SyntaxBERTLARGE [2] 89.0

Ours (SIGN-BERTBASE -GAT)
† 89.5

Ours (SIGN-BERTLARGE -GAT)
† 89.8

Ours (SIGN-RoBERTaLARGE -GAT)
† 90.4∗

Ours (SIGN-BERTBASE -HGAT)† 89.7

Ours (SIGN-BERTLARGE -HGAT)† 89.9∗
Ours (SIGN-RoBERTaLARGE -HGAT)† 90.7∗
The asterisk (∗) represents that the improvements over the

corresponding PLM baseline are statisticaly significant (t-test and

p-value < 0.05), and the dagger (†) denotes that the models are our

implementations and are trained with the same settings.

All experiments were conducted five times, and the averaged accuracywas reported.We conducted
significant testing, and all improvements are significant (t-test and p-value < 0.05).
First, we conducted ablation experiments on the QQP and SNLI datasets to test how SIGN-GAT

performed if a specific type of edges (inferred from the corresponding type of syntactic structure)
were removed from the matching graph. Figures 5 and 6 illustrate the accuracy of these SIGN
variations on the test data. The matching accuracy of the original SIGN model (denoted as “all
edges”) and the best baseline BERTBASE are also reported.

Comparing the original version of SIGN-GAT with its variations, we can see that the match-
ing accuracy dropped if any type of the edges were removed. The most performance drops were
caused by removing the dependency edges and POS edges. The results indicate that although the
syntactic structures of dependency and POS are heterogeneous, both of them are essentially impor-
tant in sentence matching. The results also verified the effectiveness of encoding different types
of syntactic structures as the graph edges. Further note that BERTBASE did not use any syntactic
information, resulting in the worst performances in Figures 5 and 6. The results showed that the
different types of edges are complementary in sentence matching. They can improve the accuracy
from different perspectives.
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Table 7. Performance Comparison on the SciTail Test Set

Without Syntactic Structures Acc. (%)

DGEM [20] 77.3
CAFE [42] 83.3
CSRAN [21] 86.7
RE2 [55] 86.6

BERTBASE
† [11] 89.5

BERTLARGE
† [11] 90.6

RoBERTaLARGE
† [28] 91.5

Using Syntactic Structures Acc. (%)

HIM [9]† 71.6
ConSeqNet [48] 85.2

SS-BERTBASE
† [25] 89.6

SS-BERTLARGE
† [25] 91.0

Ours (SIGN-BERTBASE -GAT)
† 90.3

Ours (SIGN-BERTLARGE -GAT)
† 91.2∗

Ours (SIGN-RoBERTaLARGE -GAT)
† 92.3∗

Ours (SIGN-BERTBASE -HGAT)† 90.6

Ours (SIGN-BERTLARGE -HGAT)† 91.7∗
Ours (SIGN-RoBERTaLARGE -HGAT)† 92.9∗
The asterisk (∗) represents that the improvements over the

corresponding PLM baseline are statistically significant (t-test and

p-value < 0.05), and the dagger (†) denotes that the models are our

implementations and are trained with the same settings.

Fig. 5. Ablation studies of the edges inferred from different types of syntactic structures for “SIGN-
BERTBASE -GAT.” The experiment was conducted based on the QQP dataset.

Second, we conducted ablation experiments to test how SIGN-HGAT performed if a specific
type of edges (inferred from the corresponding type of syntactic structure) were removed from
the matching graph. Table 8 illustrates the accuracy of these SIGN-HGAT variations on the test
data. The matching accuracy of the original SIGN model (denoted as “all edges”) and the best

ACM Transactions on Information Systems, Vol. 42, No. 2, Article 38. Publication date: September 2023.



38:20 C. Xu et al.

Fig. 6. Ablation studies of the edges inferred from different types of syntactic structures for “SIGN-
BERTBASE -GAT.” The experiment was conducted based on the SNLI dataset.

Table 8. Ablation Study of the Heterogeneous Graph Attention Network
Based on PLM BERTBASE on the SciTail Test Set

Ablation Study Model SciTail:Acc. (%)

PLM(BERTBASE ) [11] 89.5

SIGN-HGAT-w/o relation structure 90.2 (±0.11)
SIGN-HGAT-w/o attribute structure 90.0 (±0.22)
SIGN-HGAT-w/o aggregation structure 90.4 (±0.15)
SIGN-HGAT-w/o syntactic dependency relation 90.3 (±0.14)
SIGN-HGAT-w/o word-chunk relation 90.2 (±0.12)
SIGN-HGAT-w/o chunk-type attribute 90.2 (±0.25)
SIGN-HGAT-w/o POS attribute 90.1 (±0.19)
SIGN-HGAT-w/o NER attribute 90.4 (±0.18)
SIGN-HGAT-all edges 90.6 (±0.18)

baseline BERTBASE are also reported. Comparing the original version of SIGN with its variations,
we can see that the matching accuracy dropped if any type of the edges were removed. The most
performance drops were caused by removal of attribute edges—that is, the chunk-type edges and
the POS tag edges.
We also conducted experiments for heterogeneous average attention weight βej for different

syntactic structures for SIGN-HGAT on the SciTail training set. βej reflects the importance of each
syntactic structure during training. Attention weights βej in Figure 7 show that each structure has
a certain effect on matching (e.g., the lowest attention weight (NER attribute) is 0.128 ). Moreover,
Figure 7 shows that attribute structures, especially POS and chunk-type attributes, play a more
important role than other syntactic structures.
Note that although we can see that different types of syntactic structures help conduct sentence

matching, the noise of syntactic structures still hinders the potential of SIGN. We analyzed the
bad cases and found that some pairs contain ungrammatical sentences—for example, sentences
without subjects or verbs (e.g., the pair (“white prisms”; “a prism helps people understand”) in the
Scitail test set). These sentences may result in unreasonable syntactic parsing results. It is difficult
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Fig. 7. Average attention weight βej inferred from different syntactic structure on the SciTail training set.

Fig. 8. Cross-sentence chunk and word similarities for a sentence pair. Darker means a higher value. The
SIGN and BERTBASE models are trained on the QQP dataset.

for our method to handle them. How to deal with some ungrammatical sentences in real matching
practices will be future work.

5.3 Explainability Analysis

In this section, we aim to answer RQ3: How does SIGN improve the matching accuracy in an
explainable way? We investigated how SIGN improves the matching accuracy in an explainable
waywith its best variation “SIGN-RoBERTaLARGE -HGAT” improving thematching accuracy, using
the example (X =“What is computer programming ?” ; Y =“What is coding in the computer program
?” ) and examples in Table 2 to illustrate how SIGN identifies the semantic dissimilar and semantic
similar sentence pairs, respectively. The experiments are all conducted on the QQP dataset.

5.3.1 Semantic Dissimilar Pairs Identification. First of all, we illustrated the attribute similar-
ities between the node in Figure 8. The similarities were calculated as the dot products of the
corresponding node representations in the matching graph. From Figure 8(a), we can see that the
attribute structures helped to discriminate the chunk pair “is computer programming” (whose
chunk type is VP) and “in the computer program” (whose chunk type is PP), although these two
chunks are similar in form (i.e., they share the words “computer” and “program” after stemming).
More interestingly, the chunk “is computer programming” has some similarities to “is coding.” The
reason is that both of them are “VP,” and they play similar syntactic roles in the sentences (the
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Fig. 9. Inter-sentence chunk and word similarities for a sentence pair. Elements in rows denote the in-degree
similarities and elements in columns denote the out-degree similarities. Darker means a higher value. The
SIGN and BERTBASE models are trained on the QQP dataset.

syntactic dependency trees can be found in Figure 1). Moreover, Figure 8(b) shows the cross-
sentence similarities between the words. Still, we can see that the attribute structures helped
SIGN eliminate most of the noisy matching signals. In contrast, the similarities by RoBERTaLARGE

(Figure 8(c)) are dense and difficult to explain. Summarizing the results, we can conclude that the
attribute structures can help SIGN filter out the noisy and mismatched signals, and highlight the
true matching signals. Therefore, it enhances not only the matching accuracy but also the explain-
ability of the model.
To further exploit the benefit of relation structure in SIGN, we conducted the word-word and

word-chunk relation similarities based on the word representations by SIGN and RoBERTaLARGE .
Figure 9(a) and (b) show the similarities that were calculated as the dot products of the correspond-
ing in-degree and out-degree node representations. From Figure 9(a), we can see that the chunk
has a higher similarity with words if they have a word-chunk relation. From Figure 9(b), we can
see the words have higher similarity if they have a syntactic dependency relation. Therefore, we
can see that the relation structures helped SIGN capture more accurate relations in matching. In
contrast, the similarities by RoBERTaLARGE (Figure 9(c)) are dense and noisy. The phenomenon
leads to incorrect matching predictions.
To further compare the word and chunk representations by SIGN and RoBERTaLARGE , we con-

ducted the TSNE based on the word representations by SIGN and by RoBERTaLARGE . Figure 10
illustrates the results. The two categories (red dots and blue triangles) respectively indicate the
words from the source sentence and the target sentence. Additionally, the red dots and areas de-
note the words and chunks of sentence X , and the blue triangles and areas denote the words and
chunks of sentence Y .

First, at a word level, we can see that the points (words) from Figure 10(a) are much easier to
discriminate from than that from Figure 10(b). Second, in the chunk level, from Figure 10(a), we can
see that the chunk “is computer programming” (VP) from X is closer to the chunk “is coding” (VP)
from Y but has some distance to the chunk “in the computer programming” (PP). However, from
the TSNE visualization of RoBERTaLARGE (Figure 10(b)), we can see that the chunk “is computer
programming” from X is closer to the chunk “in the computer program” from Y since they are
similar in form. The phenomenon leads to incorrect matching predictions.
In summary, the two figures confirm the following. First, we can get a more accurate representa-

tion of the word with its sentence context. The distance between “computer” and “programming”
in X is further in space than “computer” and “program” in Y compared with SIGN and RoBERTa.
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Fig. 10. TSNE illustration of a sentence pair (X = “what is coding in the computer programming?”; Y =
“what is computer programming?”). The red and blue areas indicate the chunks of X and Y . The SIGN and
RoBERTaLARGE models are trained on the QQP dataset.

Second, we can get chunking-level alignment—for example, “is coding” and “is computer program-
ming” have closer distance compared with SIGN and RoBERTa. Third, syntactic structures help
SIGN make high accurate sentence matching in an explainable way.
These experiments further confirmed that the relation structures help SIGNmake high accurate

sentence matching in an explainable way.

5.3.2 Semantic Similar Pairs Identification. To investigate how SIGN identified the semantic
similar pairs, we conducted four case studies to respectively show the four types of syntax trans-
formations in Table 2. The overall comparisons are shown in Tables 9 and 10. The most important
syntactic structures (their βej values are larger than 0.25) are shown in the second column. More-
over, the word-word correspondence matrices of BERTBASE and SIGN are shown in the fourth
column. The word-word correspondences are calculated based on the word embeddings of two
sentence pairs and shown as the similarity matrix. Specifically, the word-word correspondence
matrix of BERTBASE is calculated as the dot product of two sentences’ word embeddings outputted
from the BERTBASE . The word-word correspondence matrix of SIGN is calculated as the dot prod-
uct of learned word embeddings hLw of two sentences (described in Section 4.5). The darker blocks
mean higher similarity.
Table 9 shows the results of the syntax transformations of “different forms of a word” and

“word/chunk equations or synonyms.” The sentence pair (X : “we visited the museum”; Y : “We
paid a visit to the museum”) and pair (X : “The cloud is similar to the airplane”; Y : “The cloud is
comparative to the airplane”) are used as examples in the experiments. Their syntactic dependen-
cies, chunk, and POS structures are shown in the second column. The first pair transfers the verb
form of word (“visited”) in sentence X to the word (“visit”) of sentence Y to the noun form. This
syntax transformation is referred to as verbalization. The second sentence transfers the adjective
“similar” to its synonym “comparative.”

From the observation of the word-word correspondence matrix of the two case studies, we can
see that the matrix of BERTBASE focused on some function words (e.g., “(the, is)”), which are much
noisier than the matrix of SIGN. SIGN, however, considers the multiple important syntactic struc-
tures and focuses on the content words (e.g., “(visit, museum, cloud, similar, comparative)”). More
importantly, SIGN can identify the crucial syntactic structures and right syntax transformation.
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Table 9. Case Studies for Two of Four Different Syntax Transformations Using Four Sentence Pairs in
Table 2, Respectively

The highlighted syntactic structures of sentence pair (X , Y ) are shown in the second column, and the word-word

correspondence matrix of BERTBASE and SIGN-HGAT (the base PLM is BERTBASE ) are shown in the fourth column,

respectively. Both models are trained on the QQP dataset. Darker means a higher value.

For example, the “visited-visit” similarity is darker in the first pair, and the “similar-comparative”
similarity is also relatively darker.
Table 10 further shows the other two syntax transformations: “active or passive sentences” and

“different word/chunk order.” The sentence pair (X : “The dog is chasing the cat”; Y : “The cat is
chased by the dog”) and pair (X : “At the weekend, we went hiking”; Y : “We went hiking at the
weekend”) are used as the examples in the experiments. The first pair transfers the “active” form
(“is chasing”) in sentence X to the passive form (“is chased”) of sentence Y . The second sentence
pairs change their positions of prepositions (“at the weekend”).
From the word-word correspondence matrix of the two cases, we still see that the correspon-

dence matrix of BERTBASE is dense and hard to explain. However, SIGN can identify the crucial
matching component through important syntactic structures. For example, the “chased-chasing”
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Table 10. Case Studies for the Other Two of Four Different Syntax Transformations Utilizing Four Sentence
Pairs Described in Table 2, Respectively

The highlighted syntactic structures of sentence pair (X , Y ) are shown in the second column, and the word-word

correspondence matrix of BERTBASE and SIGN-HGAT are shown in the fourth column, respectively. Both models are

trained on the QQP dataset. Darker means a higher value.

similarity is darker for the first pair, and the “hiking-hiking” similarity is also darker for the second
pair.
In summary, the example in Tables 9 and 10 verified that (1) SIGN can discriminate the important

syntactic structures for matching, (2) SIGN also can identify semantic similar pairs even though
their syntactic structures are different, and (3) different syntactic structures are complementary.
They can help SIGN make highly accurate sentence matching in an explainable way.

6 CONCLUSION

In this article, we proposed a novel approach to learning sentence matching models based on syn-
tactic structures, referred to as SIGN. SIGN explicitly models multiple types of syntactic structures
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under the framework of graph learning. The extracted syntactic structures are first used to de-
rive a matching graph in which both the semantic and syntactic information is represented and
interacted. Then, an HGAT is employed to learn the node representations for the matching graph,
followed by an MLP for conducting the final matching prediction. SIGN offers several advantages:
explicitly modelingmultiple types and heterogeneous syntactic structures inmatching, interacting
with both semantic information and syntactic structures on the graph, and ease in interpretation.
Experimental results based on three large-scale public benchmarks verified the effectiveness and
explainability of the proposed model.
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