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ABSTRACT
Hybrid image retrieval is a significant task for a wide range of

applications. In this scenario, the hybrid query for searching im-
ages consists of a reference image and a text modifier. The reference
image provides a vital visual context and displays some semantic
details, while the text modifier specifies the modifications to the ref-
erence image. To address such hybrid cross-modal retrieval, we pro-
pose a multi-level contrastive learning (MLCL) method for combin-
ing the hybrid query features into a fused feature by cross-modal
contrastive learning with multi-level semantic alignment. Mean-
while, we additionally consider self-supervised contrastive learning
to enhance the semantic correlation of the features at different levels
of the combiner network. Extensive results on three public datasets
(i.e., FashionIQ, Shoes, and CIRR) demonstrate that our proposed
MLCL significantly outperforms the state-of-the-art methods under
the hybrid cross-modal retrieval setting.

Index Terms— Cross-modal retrieval, Multi-level semantic
alignment, Feature fusion, Contrastive learning

1. INTRODUCTION

Multimodal retrieval is one of the most basic tasks in multimodal
learning, aiming to retrieve data from one modality with data from
another as a query. However, limiting search queries to a single
modality is suboptimal in real-world applications. The textual de-
scription only provides an accurate but partial depiction of the de-
sired result, as it is often difficult to ask the user to provide a com-
plete text description. The visual queries are richer but more am-
biguous because there is no clear definition of similarity between
images. To alleviate this limitation, we can relax the restrictions
on queries by allowing them to consist of data from more than one
modality, i.e. retrieving images using a hybrid query consisting of
a reference image and a text modifier, a task scenario we will call
Hybrid Cross-Modal Retrieval (HCMR). The text modifier in the
hybrid query explains how to modify the reference image to obtain
the target image. The HCMR task has potential applications in e-
commerce, where considering user intentions is crucial.

In this work, we propose a novel MLCL method to better fuse
the hybrid query features for image retrieval. Two key components
are designed to overcome the drawbacks of previous methods. The
first is cross-modal contrastive learning with multi-level semantic
alignment, which can more finely supervise the training process of
the encoders and the combiner and extract more diverse features
for retrieval. The second is self-supervised semantic correlation
learning on the multi-level combined features, which helps to main-
tain the semantic representation capability of the encoders and the
combiner. Extensive results show that our proposed MLCL signif-
icantly outperforms the state-of-the-art methods under the hybrid
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cross-modal retrieval setting. Our code is available at https://
github.com/JWargrave/MLCL.

2. RELATED WORK AND CHALLENGES

The HCMR task has been addressed in a large number of works [1–
16]. CoSMo [9] uses two different neural network modules, one
for image style and one for image content. DCNet [10] proposes a
Correction Network to model the difference between the reference
and target image explicitly in the embedding space. CLIP4Cir [14]
leverages CLIP [17] as the base network to integrate text and im-
age features. The method employs a two-stage training approach.
ARTEMIS [15] splits the hybrid cross-modal retrieval task into two
separate retrieval tasks, namely text-to-image retrieval and image-
to-image retrieval. However, this approach requires accessing all
images in the database twice, leading to additional computational
overhead during real deployment.

Despite significant progress in addressing the Hybrid Cross-
Modal Retrieval (HCMR) task, current state-of-the-art methods
still encounter three primary challenges. Firstly, the HCMR task
involves data from multiple modalities, but many SOTA methods,
such ARTEMIS [15], use a backbone pre-trained with unimodal
data, which is not conducive to improving model performance. In
our work, we employ the CLIP [17] model, a powerful model that
achieves exceptional performance in multi-modal learning. Sec-
ondly, effective image retrieval requires understanding information
at different levels of detail, from low-level visual features to high-
level semantic concepts. However, many current models rely on
feature fusion methods that only consider one level of detail, limit-
ing their ability to extract information across different granularities.
For example, recent models such as CLIP4Cir [14] use single-level
matching methods, which do not facilitate the extraction of informa-
tion at different granularities. Finally, with only simple supervision
from cross-modal contrastive learning, the knowledge learned by
the model from the original image or text is at risk of being lost. Our
proposed MLCL method designs specialized mechanisms to address
the above three major drawbacks.

3. METHODOLOGY

In this section, we give the details of our proposed Multi-Level
Contrastive Learning (MLCL) for hybrid cross-modal retrieval. In
Section 3.1, we first introduce the hybrid cross-modal retrieval task
setting. In Section 3.2, we further describe the overall architec-
ture of our proposed MLCL. In Sections 3.3 and 3.4, cross-modal
contrastive learning with multi-level semantic alignment and self-
supervised semantic correlation learning are described in detail, re-
spectively. In Section 3.5, we give the details of the training process
and loss function.

https://github.com/JWargrave/MLCL
https://github.com/JWargrave/MLCL
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Fig. 1. The architecture of the proposed MLCL method, which
consists of three trainable modules: the image encoder, the text en-
coder, and the combiner network. fref , ftxt, and ftgt denote the
L2-normalized features of reference image, text modifier, and target
image, respectively. The visual encoder used for feature extraction
of the reference image and the target image is identical.

3.1. Hybrid Cross-Modal Retrieval

In this setting, a hybrid query is composed of a reference image Ir
and a text modifier Tm, which expresses some textual modification
to the reference image. This task aims to retrieve the best matching
image It, which satisfies both the visual similarity constraints im-
posed by the reference image and the modification expressed by the
text modifier.

3.2. Overall Architecture

As shown in Fig. 1, our MLCL consists of an image encoder ΦI(·), a
text encoder ΦT (·), and a multi-level combiner network ψcombiner
in general. Given the reference/target image and the text modifier,
we first adopt the image encoder to extract the reference/target image
features fref = ΦI(Ir)/ftar = ΦI(It) and a textual encoder to
extract the text modifier feature ftxt = ΦT (Tm). Then we fuse
the reference image feature and the text modifier feature into three
multi-level combined features {fs, fc, fh} by a combiner module:
{fs, fc, fh} = ψcombiner(fref , ftxt).

Once all the features are extracted, we utilize two kinds of
training objectives to optimize our MLCL: cross-modal contrastive
learning with multi-level semantic alignment (mCCL for short),
and self-supervised semantic correlation learning (SSCL for short).
The two modules are described separately below.

3.3. Cross-Modal Contrastive Learning with Multi-Level Se-
mantic Alignment

In order to perform effective image retrieval, both the encoders and
the combiner module must well understand the semantics of the ref-
erence/target image and the text modifier for heterogeneous modal-
ity information fusion. To more finely supervise the training process
of the encoders and the combiner, we propose three different fu-
sion mechanisms to capture different degrees of integration features.
In Fig. 2, we depict the combiner network, alongside three fusion
mechanisms: SimSum, CatCombined, and HybridFusion. Each
of these fusion mechanisms is described in detail below.

SimSum utilizes the concept proposed by CLIP to map various
types of data into a standardized space and ensures the principle of

additivity as described in [17]. Thus, in order to derive the first com-
bined query feature fs, we perform the summation of both visual
and textual features:

fs = fref + ftxt (1)

where fref , ftxt denote the L2-normalized features of reference im-
age and text modifier extracted by the encoders, respectively.

CatCombined improves SimSum by introducing an additional
learnable fusion module to better fuse the visual features and text
features. This fusion module is based on the concatenation of the
two query features. Specifically, we project the two query features
via a linear layer followed by the ReLU function. Projected features
are then concatenated and fed to three linear layers with the ReLU
function to obtain the second combined features fc:

fm = cat(MLPimg(fref ),MLPtxt(ftxt))

fc = Linear(MLP2(fm))
(2)

where MLP denotes one to three linear layers with ReLU functions,
cat denotes the concatenation operation, and Linear denotes one lin-
ear layer. While the Linear and MLP2 modules can be merged into
a single MLP, we have opted to present them as distinct entities for
the sake of consistency with the notation employed later in this pa-
per.

HybridFusion simultaneously combines SimSum and CatCom-
bined for better information fusion. We replace the direct addition of
two query features in SimSum with a convex combination of them.
Specifically, the projected features mentioned above are concate-
nated and fed to two branches with a similar structure: two linear
layers with a ReLU function. The first branch aims to compute the
coefficients of a convex combination between the image and text
features with a sigmoid function, while the second branch does not
use the sigmoid function. Then fh is obtained by adding the convex
combination to the output of the second branch, which can be seen
as a form of residual connection [18] and help to integrate different
levels of features:

α = sigmoid(MLPcon(fm))

Convex(fref , ftxt) = α ∗ fref + (1− α) ∗ ftxt
fh =MLP2(fm) + Convex(fref , ftxt)

(3)

where Convex denotes a convex combination of two features, and its
coefficient α is a learned scalar.

As shown in Fig. 2, we utilize the above three fusion mecha-
nisms to fuse the reference image feature and the text modifier fea-
ture and obtain multi-level semantic integrated query features (fh,
fc and fs). During the training phase, we employ cross-modal con-
trastive learning to achieve multi-level semantic alignment. This
process involves minimizing the distances between the three com-
bined features and the target image feature, as described in Sec-
tion 3.5. During the inference phase, we directly fuse the three com-
bined features as the final query feature fcom:

fcom = fh + fc + fs (4)

3.4. Self-Supervised Semantic Correlation Learning

Simple supervision from cross-modal contrastive learning forces the
data of different modalities to be aligned (i.e., the fused query fea-
tures and the target image features), which decreases the semantic
correlation of the fused features and increases their sensitivity to data
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Fig. 2. The architecture of the Multi-Level Combiner network.
fref , ftxt, and ftgt denote the L2-normalized features of reference
image, text modifier, and target image, respectively. The MLP mod-
ule has one to two linear layers with the ReLU function. MLPs with
the same subscript j share the parameters (j = 1, 2). Moreover,
MLP1 is actually composed of two MLPs, namely MLPimg and
MLPtxt, which operate on the reference feature and the text mod-
ifier feature, respectively. ConvexSum consists of two linear layers
with the ReLU function followed by a sigmoid function and returns
a convex combination of ftxt and fref , which is not depicted in the
figure provided.

perturbations. Ensuring robustness to data perturbation is crucial.
Therefore, we introduce self-supervised semantic correlation learn-
ing (SSCL) in our MLCL to enhance the semantic correlation of the
fused features. Specifically, we conduct self-supervised contrastive
learning on the three combined features (with augmented image-text
pair as the target). To obtain the augmented fusion features, we ap-
ply data augmentation to the reference image, where a wide range
of augmentation techniques (e.g., random resized cropping, rotation,
horizontal and vertical flipping) are used.

3.5. Training Pipeline

The training of the whole model is performed with batches of triplets
formed by: reference images, text modifiers, and target images. We
employ the InfoNCE [19] loss to conduct contrastive learning:

LIN (q, k) =
1

B

B∑
i=1

− log

{
eλ∗ψsim(qi,k

+
i )∑B

j=1 e
λ∗ψsim(qi,kj)

}
(5)

where B denotes the batch size and the similarity function ψsim is
implemented as cosine similarity. k+i denotes the positive sample
(paired with qi) in the InfoNCE loss. λ is a temperature parameter
that controls the range of the logits, and it is a learnable parameter.

According to Sections 3.3 and 3.4, the mCCL and SSCL losses
can be formulated as:

LmCCL = LIN (fs, ftgt) + LIN (fc, ftgt) + LIN (fh, ftgt)

LSSCL = LIN (fs, f̃s) + LIN (fc, f̃c) + LIN (fh, f̃h)
(6)

where ftgt denotes the target image features, {f̃s, f̃c, f̃h} are the
corresponding augmented fusion features.

The full loss of our MLCL is:

LMLCL = LmCCL + LSSCL (7)

Table 1. Comparative results on the FashionIQ validation set. The
best score is bolded and the second best score is underlined.

Method Shirt Dress Toptee Average
R@10R@50R@10R@50R@10R@50R@10R@50

VAL (Lvv + Lvs) [7] 21.03 42.75 21.47 43.83 26.71 51.81 23.07 46.13
VAL (GloVe) [7] 22.38 44.15 22.53 44.00 27.53 51.68 24.15 46.61
ARTEMIS (RN50) [15] 21.05 44.18 27.34 51.71 24.91 49.87 24.43 48.59
MAAF [11] 21.30 44.20 23.80 48.60 27.90 53.60 24.30 48.80
ARTEMIS (RN50) [15] 21.78 43.64 27.16 52.40 29.20 54.83 26.05 50.29
CurlingNet [13] 21.45 44.56 26.15 53.24 30.12 55.23 25.90 51.01
CoSmo [9] 24.90 49.18 25.64 50.30 29.21 57.46 26.58 52.31
AACL [23] 24.82 48.85 29.89 55.85 30.88 56.85 28.53 53.85
DCNet [10] 23.95 47.30 28.95 56.07 30.44 58.29 27.78 53.89
SAC w/BERT [24] 28.02 51.86 26.52 51.01 32.70 61.23 29.08 54.70
CLIP4Cir (RN50) [14] 35.77 57.02 31.73 56.02 36.46 62.77 34.65 58.60
CLIP4Cir (RN50x4) [14] 39.99 60.45 33.81 59.40 41.41 65.37 38.32 61.74

MLCL(mCCL+SSCL) 43.33 64.67 38.92 63.91 47.99 70.02 43.41 66.20

4. EXPERIMENTS

4.1. Datasets and Metrics

We conduct comparative experiments on three public benchmark
datasets, all of which make use of human-written textual modifiers
in natural language. (1) The Fashion IQ [20] dataset contains 18k
training triplets (46.6k images) and 12k test triplets (15.5k images).
(2) The Shoes [21] dataset contains 9k training triplets (10k images)
and 1.7k test triplets (4.7k images). (3) The CIRR [22] dataset is
composed of 36k pairs of open-domain images, arranged in a 80%-
10%-10% split between the train/validation/test.

In our performance evaluation on FashionIQ, we use the average
recall at rank K (R@K) as the evaluation metric. Specifically, we
consider two ranks: 10 and 50. For the Shoes dataset, we report the
average recall at rank K for three ranks: 1, 10, and 50. As for CIRR,
we report the average recall at rank K for four ranks: 1, 5, 10, and 50.
Additionally, in line with prior work [22], we also report the subset
recall at rank K (Recallsubset@K) for CIRR. This metric restricts
the candidate target images to those that are semantically similar to
the correct target image.

4.2. Implementation Details

Our MLCL model consists of three modules that need to be trained:
the image encoder, the text encoder, and the combiner network. We
initialize the encoders with the pre-trained CLIP [17] model. The
computation of combined feature fs only involves two encoders and
is independent of the combiner network. Therefore, instead of train-
ing the three combined features simultaneously, we employed an
asynchronous training strategy. Specifically, the training of the entire
model is divided into two stages. In the first stage, we solely com-
pute fs and conduct a contrastive learning between it and the target
image’s features. During this stage, we only fine-tune the image and
text encoders while keeping the parameters of the combiner network
frozen. We refer to this stage as the fine-tuning stage. In the second
stage, we exclusively train the combiner network while keeping the
parameters of the encoders frozen. We compute fc and fh, which
are extracted by the combiner network, and then conduct contrastive
learning between these two combined features and the features of the
target image. We refer to the second stage as the combiner training
stage. In both stages, we use cosine similarity as a feature-to-feature
similarity function.



Table 2. Comparative results on the Shoes validation set. The best
score is bolded and the second best score is underlined.

Method R@1 R@10 R@50 (ΣR@K)/3

FiLM [25] 10.19 38.89 68.30 39.13
MRN [26] 11.74 41.70 67.01 40.15
TIRG [1] 12.60 45.45 69.39 42.48
VAL (Lvv + Lvs) [7] 16.98 49.83 73.91 46.91
CoSmo [9] 16.72 48.36 75.64 46.91
DATIR [27] 17.20 51.10 75.60 47.97
VAL (GloVe) [7] 17.18 51.52 75.83 48.18
ARTEMIS (RN50-LSTM) [15] 17.60 51.05 76.85 48.50
ARTEMIS (RN50-BiGRU) [15] 18.72 53.11 79.31 50.38

MLCL(mCCL+SSCL) 22.71 57.41 81.43 53.85

Table 3. Comparative results on the CIRR test set. The best score
is bolded and the second best score is underlined. † denotes results
cited from [22].

Method Recall@K Recallsubset@K
K=1 K=5 K=10 K=50 K=1 K=2 K=3

TIRG† [1] 14.61 48.37 64.08 90.03 22.67 44.97 65.14
TIRG+LastConv† [1] 11.04 35.68 51.27 83.29 23.82 45.65 64.55
MAAF† [11] 10.31 33.03 48.30 80.06 21.05 41.81 61.60
MAAF+BERT† [11] 10.12 33.10 48.01 80.57 22.04 42.41 62.14
MAAF-IT† [11] 9.90 32.86 48.83 80.27 21.17 42.04 60.91
MAAF-RP† [11] 10.22 33.32 48.68 81.84 21.41 42.17 61.60
ARTEMIS [15] 16.96 46.10 61.31 87.73 39.99 62.20 75.67
CIRPLANT† [22] 15.18 43.36 60.48 87.64 33.81 56.99 75.40
CIRPLANT w/O† [22] 19.55 52.55 68.39 92.38 39.20 63.03 79.49
CLIP4Cir (RN50) [14] 35.81 68.80 80.17 95.25 66.96 85.25 93.13
CLIP4Cir (RN50x4) [14] 38.53 69.98 81.86 95.93 68.19 85.64 94.17

MLCL(mCCL+SSCL) 43.18 76.77 87.16 97.88 70.84 87.40 95.18

4.3. Comparison with State-of-the-Arts

Table 1, 2, and 3 show the comparative results between our MLCL
method and the current state-of-the-art models on the FashionIQ,
Shoes, and CIRR datasets, respectively. It can be clearly seen that:
(1) Compared with the SOTA models, our method achieves 5.09%,
4.30% and 5.30% improvement in Recall@10 on three datasets, re-
spectively. (2) The significant improvements over CLIP4Cir [14]
and ARTEMIS [15] demonstrate that our devised SSCL and mCCL
modules can indeed better learn the interaction and fusion between
different modalities for hybrid cross-modal retrieval. (3) Our method
is capable of achieving superior results, whether applied to a profes-
sional dataset within a designated field or a general dataset without
any discernible preference.

4.4. Ablation Study

In this section, we conduct ablation experiments on the validation
set of the open domain dataset CIRR and the fashion domain dataset
Shoes to evaluate the influence of several design choices in our ar-
chitecture. The obtained results are reported in Table 4 and 5. Con-
cretely, to demonstrate the effectiveness of SSCL and mCCL, we
start from several single-level semantic alignment baselines, where
only one of the three combined features {fh,fc,fs} is employed dur-
ing both training and evaluation phases. Note that employing differ-
ent combined features activates the gradients of different parts of
the model during the training process. Additionally, in the case of
fs, the effect of fine-tuning the image or text encoder is evaluated
separately. After establishing baselines, we introduce one combined
feature at a time until all three are incorporated, resulting in what we
refer to as multi-level semantic alignment. Finally, we fuse SSCL

Table 4. Ablation study results on the CIRR validation set. The
best score is bolded, the second best score is underlined with a solid
line, and the third best score is underlined with a dashed line. Note
that “I” denotes fine-tuning the image encoder and “T” denotes fine-
tuning the text encoder. AR51 – (R@5 +Rs@1)/2.

mCCL
SSCL

Recall@K Recallsub@K
AR51 Avg

fc fh
fs K=1 K=5 K=10 K=50 K=1 K=2 K=3I T

✓ 27.55 59.89 73.81 94.09 57.81 78.35 89.17 58.85 68.67
✓ 31.14 64.46 78.16 95.26 61.73 81.46 91.49 63.09 71.96

✓ 34.63 68.24 80.41 95.96 60.56 81.10 90.94 64.40 73.13
✓ 33.96 68.14 80.58 95.58 66.35 84.98 92.71 67.24 74.61

✓ ✓ 41.33 74.46 84.79 96.80 68.12 86.41 94.26 71.29 78.02
✓ ✓ 32.17 65.73 79.72 95.43 61.83 81.87 91.10 63.78 72.55
✓ ✓ ✓ ✓ 44.42 76.87 87.28 97.44 70.89 87.66 94.76 73.88 79.90
✓ ✓ ✓ ✓ ✓ 45.75 78.14 87.75 97.35 71.68 87.42 94.74 74.91 80.40

Table 5. Ablation study results on the Shoes validation set. The
best score is bolded, the second best score is underlined with a solid
line, and the third best score is underlined with a dashed line. Note
that “I” denotes fine-tuning the image encoder and “T” denotes fine-
tuning the text encoder.

mCCL
SSCL R@1 R@10 R@50 (

∑
K R@K)/3

fc fh
fs

I T

✓ 13.17 43.04 69.90 42.04
✓ 15.79 47.02 71.04 44.61

✓ 18.91 51.39 77.12 49.14
✓ 12.72 40.15 66.21 39.69

✓ ✓ 20.56 54.51 79.67 51.58
✓ ✓ 16.75 47.36 72.12 45.41
✓ ✓ ✓ ✓ 22.49 56.27 81.03 53.27
✓ ✓ ✓ ✓ ✓ 22.71 57.41 81.43 53.85

into our full method.
From Table 4 and 5, we find that when more levels of combined

features are used, higher average recalls can be obtained. These re-
sults demonstrate that features at different levels can capture details
at varying granularities, and their combination enables a more com-
prehensive understanding of multimodal data. Furthermore, in our
experiments, we find that the proposed SSCL enhances the robust-
ness of our model. Concretely, without using SSCL, the training
process quickly converges to local minima, resulting in no further
improvement in the recall rate.

5. CONCLUSION

In this paper, we propose a multi-level contrastive learning (MLCL)
method for image retrieval with a hybrid query. Two key components
are carefully designed to overcome the drawbacks of previous meth-
ods. The first is cross-modal contrastive learning with multi-level
semantic alignment (mCCL), which can more finely supervise the
training of the whole network and extract more diverse features for
retrieval. The second is self-supervised semantic correlation learn-
ing (SSCL), which helps to enhance the semantic correlation of the
multi-level combined features of the model. Experiments on Shoes,
FashionIQ, and CIRR show that our MLCL method achieves new
state-of-the-art performance.
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