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ABSTRACT

Although denoising diffusion probabilistic models (DDPMs) have
shown remarkable progress in image generation, they typically face
two main challenges: the time-expensive sampling process and the
semantically meaningless latent space, which are often addressed
separately in previous works. In particular, the latest representative
work Denoising Diffusion GAN reduces the sampling steps to as few
as two but ignores the semantics of the latent space. To address the
two challenges simultaneously, we propose a two-stage framework to
make the latent space of Denoising Diffusion GAN more semantically
meaningful while enjoying its efficiency. Extensive results on three
benchmark datasets demonstrate that our proposed diffusion model
achieves competitive results with only two sampling steps in uncon-
ditional image generation. More importantly, the latent space of our
diffusion model trained for unconditional image generation is shown
to be semantically meaningful, which can be exploited on various
downstream tasks (e.g., attribute editing) without further training.

Index Terms— Diffusion model, GAN, Latent space, Semantics

1. INTRODUCTION

Image generation falls in the most popular topics in computer vi-
sion, which has been dominated by Generative Adversarial Networks
(GANs) [1] in the past few years [2, 3, 4] due to their superior ability
to synthesize photo-realistic images. Recently, Denoising Diffusion
Probabilistic Models (DDPMs) [5, 6, 7, 8] have achieved impressive
results in image generation [9, 10, 11], which are shown to outperform
GANs in terms of sample quality, diversity, and training stability.

Although DDPMs show superior ability in generation tasks, they
typically face two main drawbacks (but GANs do not): the time-
expensive sampling process and the semantically meaningless latent
space, which significantly limit their applications in practice. Exist-
ing works [12, 13, 14] have started to address these two challenges
independently, but it is still a dilemma in the literature. In particular,
Denoising Diffusion GAN [15] (DDGAN for short) takes as few as
two sampling steps but achieves competitive sample quality and diver-
sity w.r.t. the traditional DDPMs. However, it ignores the semantics
of the latent space.

In this paper, we propose to decompose the sampling process of
DDPMs into two stages: a semantics generation stage and a detail
refinement stage, and devise a two-stage framework to enhance the
semantics of the latent space in DDGAN while enjoying its efficiency
simultaneously. Specifically, in the semantics generation stage, we
introduce a semantic encoder to encode the input image into a latent
vector and enforce the generator to recover the corresponding seman-
tics of the input image from the pure Gaussian noise conditioned on

* Corresponding author

the latent vector. In the detail refinement stage, we encourage the
generator to refine the details while preserving the main semantic
information of the output of the semantics generation stage. With
such a two-stage framework, the semantics of generated images is
mainly controlled by the latent vectors derived from the semantic
encoder, and the corresponding latent space becomes semantically
meaningful. Furthermore, instead of sampling the time step uniformly
during training, we start by sampling the semantics generation stage
more frequently and end by sampling the detail refinement stage more
frequently with a linear scheduler. This adaptive strategy further im-
proves the sample quality and enhances the semantics of the latent
space of our diffusion model.

Our main contributions are three-fold: (1) To the best of our
knowledge, this is the first work to address the two main challenges
of DDPMs simultaneously, which allows that a unconditional DDPM
can be directly deployed for various downstream tasks with efficient
sampling process. (2) Based on DDGAN, we provide a simple yet
effective two-stage framework to enhance the semantic of the latent
space of this model while enjoying its sampling efficiency. Our newly-
devised progressive training pipeline further improves the sample
quality as well as enhance the semantics of the latent space. (3)
Extensive results on three benchmark datasets show that our diffusion
model achieves competitive performance but with only two sampling
steps in unconditional image generation. Importantly, the latent
space of our model trained for unconditional generation is shown
to be semantically meaningful, which can be exploited on various
downstream tasks (e.g., attribute editing) without further training.

2. PROGRESSIVE DENOISING DIFFUSION GAN
2.1. Proposed Method
With careful exploration of the two-step DDGAN, we empirically
find that the semantics of its generated images mainly depends on
the latent variables inputted in the first sampling step. As a result,
the sampling process of DDGAN [15] can be decomposed into two
stages: the semantics generation stage and the detail refinement
stage. Based on this two-stage sampling process, our goal is to make
the latent spaces in the semantics generation stage more semanti-
cally meaningful, so that we can address the two main drawbacks of
DDPMs (i.e., the time-expensive sampling process and the semanti-
cally meaningless latent space) simultaneously. To achieve this, we
present a two-stage framework in the following (see Figure 1). For
easier understanding, we denote the image sampled from q(x1:t|x0)
and pθ(xt:T ) as x̄t and xt, respectively.
Semantics Generation Stage. As mentioned above, we should
make the latent variables inputted in this stage more semantically
meaningful. To this end, we design an auxiliary encoder that learns
to encode the input image x̄0 into a latent vector z2, and adopt the
generator to synthesize images conditioned on z2.
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Fig. 1. Illustration of the training process of our proposed model. x̄t and xt denote images sampled frome q(x1:t|x0) and pθ(xt:T ), respectively.
Note that the two novel losses LSem and LPer are essential to learn semantically meaningful latent space.

The similar idea of introducing an auxiliary encoder to learn a
semantic latent space of DDPMs is also explored in Diffusion Au-
toencoders [14] (DiffAE for short), which is trained by minimizing
the loss function ∥ϵθ(xt, t, zsem) − ϵ∥22 based on the Gaussian as-
sumption. However, when the Gaussian assumption is removed for
fast sampling in DDGAN, directly applying DiffAE to DDGAN is
found to be invalid (see Sec. 3.2). To address this challenge, we thus
carefully explore which component indeed makes DiffAE valid, and
find that the success of DiffAE fundamentally attributes to its special
form of loss function (i.e., L2 loss), which implicitly enforces xt to be
close to x0 in semantics. However, when the Gaussian assumption is
removed, the adversarial loss is adopted for training instead of the L2
loss. Further, the adversarial loss can only guarantee the two distribu-
tion q(xt−1|xt) and pθ(xt−1|xt) to be close, but can not guarantee xt

and x0 to be close in semantics. Overall, the use of adversarial loss
leads to the failure of simply applying DiffAE to DDGAN.

In this work, we thus propose a novel perceptual loss LPer to
address the challenge above. Concretely, we apply the L1 constraint
to the input image x̄0 and the output of the generator x̃0 at both pixel
level and feature level to guarantee that they are close in semantics:

LSem=Eq(x0)q(x2|x0)

[
∥G(x̄2, SE(x̄0), t = 2)−x̄0∥1

+∥V (G(x̄2, SE(x̄0), t = 2))−V (x̄0)∥1
]
,

(1)

where V (·) is to extract feature with the pre-trained VGG [16].
With such framework and loss, z2 is encouraged to represent

high-level semantic information, while x2 is encouraged to represent
low-level detail information. The training process of the semantics
generation stage is shown in Figure 1 (left).
Detail Refinement Stage. With the output of the semantics genera-
tion stage, the goal of detail refinement stage is to refine its details
while preserving the semantic information of it. Although the latent
variables inputted in this stage (i.e., z1) affects only imperceptible
details in DDGAN, we find that it leads to much semantics variation
in our framework. Therefore, to further guarantee z1 has no influence
on semantics of generated images, we additionally apply the percep-
tual constraint LPer to the output of generator and x̃0 in this stage.
Formally, the perceptual loss LPer is defined as follows:

LPer=Eq(x0)q(xt|x0)pθ(xt+1:T )

[
∥G(x̄1, z1, t=1)−x̃0∥1

]
. (2)

With this constraint, the semantics of generated images are controlled
by z2, and z1 only affects the imperceptible details, which is important
for attribute manipulation and controllable generation (see Figure 2).
The training process of this stage is shown in Figure 1 (right).

Progressive Training. Although the sampling process of DDGAN
has been decomposed into two stages in the above formulations,
we still train our model end-to-end like traditional DDPMs, instead
of separating the training into two distinct phases. For traditional
DDPMs, each denoising step is independent to the other steps during
training, and they thus randomly sample t from the uniform distribu-
tion in each training step. However, in the detail refinement stage, the
training of generator G depends on the output of the semantics gener-
ation stage x̃0, which can not provide precise semantic information
at the beginning of training due to the inaccurate sampling process
pθ(x1:2). To alleviate this issue, we present a novel progressive
training pipeline, which progressively transforms the attention from
semantics to sample quality. Concretely, in each training step, we
pick t = 2 (i.e., the semantics generation stage) with the probability
P and t = 1 (i.e., the detail refinement stage) with the probability
1−P. P linearly decreases as the number of training epochs increases:

P = Pmax − (Pmax − Pmin)
ne

Ne
, (3)

where ne and Ne denote the current and total number of training
epochs, respectively. Pmax and Pmin are two hyperparameters that
control the trade-off between the semantics and sample quality. With
such dynamic sampling strategy, the model pays more attention to
the semantics generation at the beginning of training. As the training
process goes on, the model gradually diverts attention to the detail
refinement. When this happens, the model has learned to generate
semantically meaningful image x̃0, and thus the refinement steps can
be trained efficiently based on x̃0.

3. EXPERIMENTS

3.1. Datasets and Settings
Datasets. To evaluate the effectiveness of our proposed diffusion
model, we mainly conduct experiments on CelebA-HQ [2]. Moreover,
we also conduct experiments on FFHQ [3] and LSUN-Churches [17],
which are widely used to evaluate the sample quality of generative
models. Images are resized to 256 × 256 in all of our experiments.
Evaluation Metrics. We adopt the Frechét Inception Distance (FID) [18]
to evaluate the quality of generated images, which is commonly used
in previous works. Following previous works [3, 14], we adopt the
Perceptual Path Length (PPL) [3] to evaluate how the latent space
of a generative model is semantically meaningful. Note that we
follow them to set the ε to 1e-4 and divide the resultant PPL by
ε2. We generate 10,000 samples to evaluate PPL on all datasets.
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Fig. 2. Interpolation results on CelebA-HQ in different latent spaces of our ablated models. The semantics of images generated by our full
model is mainly controlled by z2, and its interpolation results are smooth, indicating that the latent space is semantically meaningful.
Table 1. The quantitative results of the ablation study on CelebA-
HQ. The result in each row is obtained by adding the corresponding
component to the model in the last row (except the first row). The
second-best result is marked by underline. We empirically find that
a variable leads to little semantics variation when the corresponding
PPL< 50 (marked in gray).

Method FID ↓ PPL ↓
x2 z2 z1

Baseline 7.64 2135.71 8312.27 6.84
+ Semantic encoder 5.88 11649.05 7195.09 4.70
+ L1 constraint at pixel level 6.77 26.96 1576.84 185.31
+ L1 constraint at feature-map level 6.66 39.21 723.97 40.85

+ Progressive training pipeline (ours) 6.47 36.51 640.81 39.74

When comparing with the state-of-the-art methods, we only consider
the PPL of z2 for our model, which controls the main semantics of
generated images. To evaluate the efficiency of sampling process, we
also report the clock time of generating a batch of 100 images on a
A100 GPU and the number of function evaluations (NFE) as metrics.

3.2. Ablation Study
To demonstrate the contribution of each component of our proposed
model, we conduct ablation study on the CelebA-HQ dataset. Con-
cretely, we consider DDGAN [15] as the baseline, and add various
components on the top of it gradually. We first add the semantic
encoder (denoted as ‘+ Semantic encoder’) on the top of the baseline,
which injects the latent vector extracted from semantic encoder to
the generator at each step instead of the random noises. Note that
the resultant model can be considered as the simple combination of
DDGAN [15] and DiffAE [14]. Further, we add the L1 constraint
at pixel level to the model (denoted as ‘+ L1 constraint at pixel
level’). Subsequently, we add the L1 constraint to the feature maps
extracted by the VGG network when applying the two L1 constraints
to the semantics generation stage only (denoted as ‘+ L1 constraint at
feature-map level’). Finally, we add the constraint in Eq. (2) to the
model and train it with the proposed progressive training pipeline (de-
noted as ‘+ progressive training pipeline’).
Quantitative Results. The quantitative results of ablation study are
shown in Table 1. It can be observed that: (1) The simple combination
of DDGAN and DiffAE can bring a boost in FID. However, the
PPLs of x2 and z2 are still very large, indicating that such simple
combination fails to enhance the semantics of the latent space of the
resultant model due to the gap between Gaussian assumption and

Table 2. Quantitative results on the CelebA-HQ dataset. The second-
best result is marked by underline. The VAE and GAN based methods
are marked in gray.

Method FID ↓ PPL ↓ NFE ↓ Time (s) ↓

VQ-GAN [19] 10.20 - 257 12.96
VAEBM [20] 20.40 - 24 36.64
NVAE [21] 29.70 449.2 1 1.93
NCP-VAE [22] 24.80 - 1 -
DC-AE [23] 15.80 - 1 0.23
ADA [24] 15.21 178.9 1 0.77

Score SDE [13] 7.23 - 2000 8875.00
UDM [25] 7.16 - 2000 -
P2 [26] 6.91 - 500 -
LDM [27] 5.11 9477.9 500 273.00
LSGM [28] 7.22 - 147 28.37
LDM [27] 20.58 9638.4 50 25.00
DiffAE [14] 15.76 845.6 50 55.70
DDGAN [15] 7.64 8312.3 2 1.02
Ours 6.47 640.8 2 1.02

non-Gaussian assumption. (2) Adding the L1 constraint at pixel level
makes the semantics be mainly affected by z2. Further, the space of
z2 is indeed semantically meaningful (see the PPL of z2), indicating
that this loss is essential to learn the semantics of the latent space.
(3) Based on the findings mentioned in Sec. 2.1, we apply the above
constraint to the semantics generation stage only, and additionally
apply the L1 constraint at feature-map level, which brings a boost in
both sample quality and semantics of latent space (see the FID and
PPL of z2). (4) Our progressive training pipeline further improves the
FID and PPL of z2, indicating that it can improve the sample quality
as well as enhance the semantics of the latent space.
Qualitative Results. We further give qualitative analysis to investi-
gate the effectiveness of our proposed components under human per-
ception. Concretely, we explore the interpolation results in different
spaces of our ablated models. As stated by previous works [29, 30],
the interpolation results are more smooth, the latent space is more
semantically meaningful. Firstly, we use the baseline model to ran-
domly generate an image denoted as (x2, z2, z1). We then separately
move each variable along a random direction to generate a sequence
of images. For the other ablated models, we adopt the semantic en-
coder of them to encoder (x2, z2, z1) into the latent vector z̃2, and
generate an initial image denoted as (x̃2, z̃2, z̃1). We then generate in-
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Fig. 3. Attribute manipulation results of our model on CelebA-HQ. We manipulate the local attribute Smile (the top two rows) and the
global attribute Gender (the bottom two rows) by moving z2 along the direction found by trained SVMs. Note that our model is trained for
unconditional generation only, and is deployed for attribute manipulation without further training.

terpolation results in different latent spaces of each ablated model like
the baseline model. The interpolation results are shown in Figure 2.
We can observe that: (1) The interpolation results of the baseline
are not smooth in the latent space of x2, z2, indicating that these two
spaces of the baseline are semantically meaningless. In addition, z1
only affects the imperceptible details of the generated images. (2)
Adding the semantic encoder on the top of the baseline fails to make
the latent space of x2, z2 more semantically meaningful, indicating
that directly applying DiffAE to the non-Gaussian assumption is in-
valid due to the gap between non-Gaussian assumption and Gaussian
assumption. (3) Adding the L1 constraint at pixel level makes the
model can reconstruct the input images. In addition, the interpolation
results in the space of z2 are smooth, showing that this space is se-
mantically meaningful. However, z1 also affects some semantics of
generated images (e.g., age and eye glasses). (4) Adding the L1 con-
straint at feature-map level (only applied to step T) further improves
the smoothness of the latent space of z2. Note that the semantics of
generated images is mainly affected by z2, but x2 and z1 still lead to
little semantic variation (e.g., hair and identity). (5) Our proposed
progressive training pipeline further guarantee that x2 and z1 affect
only the imperceptible details of the generated images. Furthermore,
both the sample quality and the smoothness of the latent space of z2
are improved.

3.3. Comparison to the State-of-the-Arts

In this section, we compare our diffusion model with the state-of-the-
arts in the unconditional generation tasks. Note that we only consider
the PPL of z2 for our model, since it controls the main semantics of
generated images (see Sec. 3.2). The quantitative results on CelebA-
HQ are shown in Table 2. We can observe that: (1) Our diffusion
model outperforms all the competitors except LDM [27] in sample
quality (i.e., FID). However, LDM requires 500 steps in sampling pro-
cess, which takes 273 seconds to generate a batch of 100 images on a
A100 GPU (but our model takes only 1.02 seconds). (2) Our model
outperforms all DDPM based competitors on PPL, which indicates
that the latent space of our model is more semantically meaningful.

Note that the PPL of our model is even comparable to those of GANs
and VAEs. (3) Our model also has a faster sampling process than
the other DDPM based competitors (see NFE and Time in Table 2).
(4) Particularly, our model beats DiffAE on all metrics, indicating
that our model can generate more realistic images with much fewer
sampling steps (i.e., much faster sampling process). Meanwhile, the
latent space of our model is more semantically meaningful.

3.4. Attribute Manipulation

To further demonstrate that the latent space of our model is seman-
tically meaningful, we apply our model trained for unconditional
generation to attribute manipulation without further training. The
details of conducting such attribute manipulation are given in Ap-
pendix. The continuous manipulation results by our model are shown
in Figure 3. We find that our model can smoothly change both lo-
cal and global attributes, while preserving the other information of
original images, which indicates that the latent space of our model is
semantically meaningful and disentangled.

4. CONCLUSION

In this work, we explore the latent space of DDGAN, and propose
to decompose the sampling process into two stages motivated by the
empirical findings from our exploration. With this two-stage sampling
process, we propose a novel progressive training pipeline to address
the two main challenges of DDPMs simultaneously, which are only
separately explored in previous works. Extensive experiments show
that our proposed model can achieve competitive results with only two
sampling steps on unconditional images generation. Importantly, our
diffusion model can generate smooth interpolation results and can be
adopted in attribute manipulation without further training, indicating
that the latent space of our model is semantically meaningful.

Acknowledgements. This work was supported in part by National
Natural Science Foundation of China (62376274), and China Unicom
Innovation Ecological Cooperation Plan.



5. REFERENCES

[1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio, “Generative adversarial nets,” in NeurIPS 2014, 2014,
pp. 2672–2680.

[2] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen,
“Progressive growing of GANs for improved quality, stability,
and variation,” in ICLR, 2018.

[3] Tero Karras, Samuli Laine, and Timo Aila, “A style-based
generator architecture for generative adversarial networks,” in
CVPR, 2019, pp. 4401–4410.

[4] Ivan Anokhin, Kirill Demochkin, Taras Khakhulin, Gleb
Sterkin, Victor Lempitsky, and Denis Korzhenkov, “Image
generators with conditionally-independent pixel synthesis,” in
CVPR, 2021, pp. 14278–14287.

[5] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan,
and Surya Ganguli, “Deep unsupervised learning using nonequi-
librium thermodynamics,” in ICML, 2015, vol. 37, pp. 2256–
2265.

[6] Yang Song and Stefano Ermon, “Generative modeling by es-
timating gradients of the data distribution,” in NeurIPS, 2019,
pp. 11895–11907.

[7] Jonathan Ho, Ajay Jain, and Pieter Abbeel, “Denoising diffu-
sion probabilistic models,” in NeurIPS, 2020, pp. 6840–6851.

[8] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune
Gwon, and Sungroh Yoon, “ILVR: Conditioning method for
denoising diffusion probabilistic models,” in ICCV, 2021, pp.
14347–14356.

[9] Jonathan Ho, Chitwan Saharia, William Chan, David J. Fleet,
Mohammad Norouzi, and Tim Salimans, “Cascaded diffusion
models for high fidelity image generation,” Journal of Machine
Learning Research, vol. 23, pp. 47:1–47:33, 2022.

[10] Alexander Quinn Nichol and Prafulla Dhariwal, “Improved
denoising diffusion probabilistic models,” in ICML, 2021, vol.
139, pp. 8162–8171.

[11] Prafulla Dhariwal and Alexander Quinn Nichol, “Diffusion
models beat GANs on image synthesis,” in NeurIPS, 2021, pp.
8780–8794.

[12] Jiaming Song, Chenlin Meng, and Stefano Ermon, “Denoising
diffusion implicit models,” in ICLR, 2021.

[13] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole, “Score-based
generative modeling through stochastic differential equations,”
in ICLR, 2021.

[14] Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa,
and Supasorn Suwajanakorn, “Diffusion autoencoders: Toward
a meaningful and decodable representation,” arXiv preprint
arXiv:2111.15640, 2021.

[15] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat, “Tackling the
generative learning trilemma with denoising diffusion GANs,”
in ICLR, 2022.

[16] Karen Simonyan and Andrew Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,” arXiv
preprint arXiv:1409.1556, 2014.

[17] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong
Xiao, “LSUN: construction of a large-scale image dataset us-
ing deep learning with humans in the loop,” arXiv preprint
arXiv:1506.03365, 2015.

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter, “GANs trained by a two
time-scale update rule converge to a local Nash equilibrium,” in
NeurIPS, 2017, pp. 6626–6637.

[19] Patrick Esser, Robin Rombach, and Björn Ommer, “Taming
transformers for high-resolution image synthesis,” in CVPR,
2021, pp. 12873–12883.

[20] Zhisheng Xiao, Karsten Kreis, Jan Kautz, and Arash Vahdat,
“VAEBM: A symbiosis between variational autoencoders and
energy-based models,” in ICLR, 2021.

[21] Arash Vahdat and Jan Kautz, “NVAE: A deep hierarchical
variational autoencoder,” in NeurIPS, 2020.

[22] Jyoti Aneja, Alexander G. Schwing, Jan Kautz, and Arash
Vahdat, “A contrastive learning approach for training variational
autoencoder priors,” in NeurIPS, 2021, pp. 480–493.

[23] Gaurav Parmar, Dacheng Li, Kwonjoon Lee, and Zhuowen Tu,
“Dual contradistinctive generative autoencoder,” in CVPR, 2021,
pp. 823–832.

[24] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila, “Training generative adversar-
ial networks with limited data,” in NeurIPS, 2020.

[25] Dongjun Kim, Seungjae Shin, Kyungwoo Song, Wanmo Kang,
and Il-Chul Moon, “Score matching model for unbounded data
score,” arXiv preprint arXiv:2106.05527, 2021.

[26] Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim,
Hyunwoo Kim, and Sungroh Yoon, “Perception prioritized
training of diffusion models,” arXiv preprint arXiv:2204.00227,
2022.

[27] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick
Esser, and Björn Ommer, “High-resolution image synthesis
with latent diffusion models,” arXiv preprint arXiv:2112.10752,
2021.

[28] Arash Vahdat, Karsten Kreis, and Jan Kautz, “Score-based
generative modeling in latent space,” in NeurIPS, 2021, pp.
11287–11302.

[29] Diederik P. Kingma and Prafulla Dhariwal, “Glow: Generative
flow with invertible 1x1 convolutions,” in NeurIPS, 2018, pp.
10236–10245.

[30] Zongze Wu, Yotam Nitzan, Eli Shechtman, and Dani Lischin-
ski, “StyleAlign: Analysis and applications of aligned stylegan
models,” in ICLR, 2022.


	 Introduction
	 Progressive Denoising Diffusion GAN
	 Proposed Method

	 Experiments
	 Datasets and Settings
	 Ablation Study
	 Comparison to the State-of-the-Arts
	 Attribute Manipulation

	 Conclusion
	 References

