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Abstract. Cross-modal search is one fundamental task in multi-modal
learning, but there is hardly any work that aims to solve multiple cross-
modal search tasks at once. In this work, we propose a novel Versatile
ElasticMulti-mOdal (VEMO) model for search-oriented multi-task learn-
ing. VEMO is versatile because we integrate cross-modal semantic search,
named entity recognition, and scene text spotting into a unified frame-
work, where the latter two can be further adapted to entity- and character-
based image search tasks. VEMO is also elastic because we can freely as-
semble sub-modules of our flexible network architecture for correspond-
ing tasks. Moreover, to give more choices on the effect-efficiency trade-off
when performing cross-modal semantic search, we place multiple encoder
exits. Experimental results show the effectiveness of our VEMO with
only 37.6% network parameters compared to those needed for uni-task
training. Further evaluations on entity- and character-based image search
tasks also validate the superiority of search-oriented multi-task learning.

Keywords: multi-modal model · multi-task learning · cross-modal search.

1 Introduction

Cross-modal search [41, 34, 19, 30, 47] is fundamental in multi-modal learning.
Humans obviously possess cross-modal search ability. We can not only find im-
ages with proper descriptions (i.e., cross-modal semantic search), but also match
images with given entities (i.e., entity-based image search), as well as find im-
ages having the given text in them (i.e., character-based image search). These
different types of cross-modal search tasks are certainly in need in real scenarios.

However, researches on multi-modal search models in the literature mostly
focus on only one type of search task. In recent years, techniques towards cross-
modal semantic search (also known as cross-modal retrieval) [11, 33, 43, 16, 27, 15]
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Fig. 1: Overview of our VEMO. It integrates cross-modal semantic search (including
ITA & ITM), named entity recognition, and scene text spotting (including TD & TR)
for search-oriented multi-task learning.

have achieved great success. Significant progress has also been made in the fields
of named entity recognition [17, 46, 44, 51] and scene text spotting/optical char-
acter recognition [28, 8, 42, 49], which are closely related to entity- and character-
based image search tasks, respectively. Unfortunately, there is hardly any work
that aims to solve multiple cross-modal search tasks at once.

To fill the void on search-oriented multi-task learning, we propose a Versatile
Elastic Multi-mOdal model (VEMO), which integrates cross-modal semantic
search (CMSS), named entity recognition (NER), and scene text spotting (STS)
in a unified framework. The overview of our VEMO is presented in Fig. 1. Once
trained, besides these three explicitly learned tasks, VEMO can go beyond and
carry out entity- and character-based image search tasks with the help of NER
and STS, respectively. We devise a flexible model architecture that allows the
simultaneous training of these tasks. That is, we modify ViT [7] and BERT [6]
as our two main networks, from which we can take out sub-modules (encoders
and decoders) for corresponding tasks. Specifically, for CMSS, we need an image
encoder and a text encoder for instance-level image-text alignment, and we also
need a multi-modal encoder for finer-grained token-level image-text matching.
For NER, we simply need a text encoder for token classification. For STS, we
need an image encoder and two decoders: a location decoder for text detection
and a text decoder for text recognition. All these encoders and decoders come
from our modified ViT and BERT, with parameter re-use not only among tasks
but also within one task. Our design keeps VEMO in a relatively small scale and
also makes VEMO very flexible because we can choose modules as we need.

For the inference of CMSS, the instance-level image-text alignment is efficient
because we only need to extract the query embedding and compute similarities
with all pre-extracted candidate embeddings at the instance level. On the other
hand, although the token-level image-text matching is very time-consuming, it
is more effective because of the finer-grained modeling. To give more choices
between the two extremes, we place multiple exits at different layers of the
multi-modal encoder when performing image-text matching. In this way, we can
freely adjust the effect-efficiency trade-off according to the usage scenarios.

Our contributions are summarized here: (1) We propose a novel Versatile
ElasticMulti-mOdal (VEMO) model for search-oriented multi-task learning. We
integrate CMSS, NER, and STS into a unified framework, where the latter two



VEMO: A Versatile Elastic Multi-Modal Model 3

can further contribute to entity- and character-based image search tasks, respec-
tively, indicating the versatility of VEMO. (2) We design a flexible model archi-
tecture, where we can use different modules for corresponding tasks, with param-
eter re-use among these modules. Moreover, we introduce selectable image-text
matching exits, making VEMO more elastic. (3) Experiments show that VEMO
saves a lot of parameters while achieving comparative results with independently
trained uni-task models. Further evaluations on entity- and character-based im-
age search tasks also demonstrate the effectiveness of our search-oriented model.

2 Related Work

Multi-Modal Multi-Task Search has drawn very little attention in the lit-
erature. The only related work we find is Multi-task Unified Model (MUM) [30]
from Google, which is devised for their new search function: multisearch [47].
Multisearch allows the input of image and text together as search query, and
aims to understand them in more natural ways to form a composed query. It is
different from our VEMO in that MUM focuses on performing end-to-end search
via one model to finally replace all the steps of search engines, while we simply
design a multi-modal multi-task model for different types of search tasks.

Multi-Task Learning (MTL) [3, 50, 40] aims to leverage useful knowledge
in multiple related tasks to improve the model generalization ability. Most ex-
isting MTL studies in computer vision [13, 23, 22, 29] and natural language pro-
cessing [35, 39, 3] focus on tasks that can be summarized into a uniform format,
making the design of multi-task model neat and orderly (e.g., one shared back-
bone with multiple task-specific heads). However, we consider tasks that differ
in formalizations, thus making our model architecture much more complex.

Cross-Modal Semantic Search is also known as cross-modal retrieval.
Recent works can be generally grouped into three types. Dual-stream meth-
ods [1, 45, 38, 27] adopt separate vision and language encoders for global instance-
level image-text alignment, which are efficient during evaluation. Single-stream
ones [4, 10, 48, 16] resort to one multi-modal encoder, allowing finer-grained modal-
ity interaction, which are thus more effective but time-consuming. Methods
adopting hybrid architectures [15, 43] integrate dual-stream and single-stream,
offering both choices. Inspired by BLIP [15], we also adopt the hybrid architec-
ture and extend it to more tasks. Notably, with multiple exits of the multi-modal
encoder for token-level image-text matching, our VEMO is even more elastic.

Named Entity Recognition [17, 46, 44, 51] aims to identify named entities
in text and classify them into pre-defined categories (e.g., person and location).
Scene Text Spotting [28, 8, 42, 49] aims to detect and recognize text in natural
scenes. To our best knowledge, we are the first to combine these two tasks with
cross-modal semantic search for search-oriented multi-task learning.
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Fig. 2: The overall architecture of VEMO. Parameter re-use among different search-
oriented tasks makes VEMO versatile, elastic, and meanwhile storage efficient.

3 Methodology

3.1 Framework Overview

The proposed VEMO is an end-to-end framework that handles cross-modal se-
mantic search (CMSS), named entity recognition (NER), and scene text spot-
ting (STS) in a unified manner. As shown in Fig. 2, VEMO contains two main
networks of N layers: a vision network modified from ViT [7] and a language
network modified from BERT [6]. Each network can be divided into three parts:
bottom (N −L) layers only work as encoding layers, while top L layers have two
branches. In Sec. 3.2, we describe the CMSS task, where the bottom and top im-
age encoders as well as the bottom and top text encoders are used. In Sec. 3.3, we
introduce NER, where only part of the bottom and top text encoders are used.
Then we describe STS in Sec. 3.4, which contains text detection and recognition
as two sub-tasks. The bottom image encoder and part of the image encoder-
decoder are used for encoding input images, followed by text detection using the
image encoder-decoder and text recognition using the text decoder.

3.2 Cross-Modal Semantic Search (CMSS)

Given a query from one modality, CMSS aims to search samples from another
modality that semantically match the query. As illustrated in Fig. 3(a), we con-
sider two training losses for modality interactions at two levels: a cross-modal mo-
mentum contrastive loss for instance-level image-text alignment, and an token-
level image-text matching loss for finer-grained modality interaction.

Cross-Modal Momentum Contrastive (CMMC) Loss. The CMMC loss
is adopted to project samples from different modalities into a unified embedding
space for image-text alignment at the global instance level. Here, the total N
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layers of the top and bottom image (or text) encoders are used as the uni-
modal image (or text) encoder, which encodes image patches (or word tokens)
into a sequence of features along with an additional [CLS-I] (or [CLS-T]) token
representing the global sample feature. Note that the cross attention (CrossAttn)
module in each layer is skipped for the uni-modal text encoder.

For each image-text pair (Ii, Ti) in a batch B sampled from the CMSS dataset,
let f Ii and fTi denote the global image and text embeddings after linear projec-
tion on the [CLS-I] and [CLS-T] features, respectively. Inspired by uni-modal
MoCo [9], we maintain two queues QI and QT to keep the most recent Nq image-
text features obtained from the momentum uni-modal encoders. For each Ii, we
regard the momentum feature f̂Ti of its paired Ti as the positive sample, and
take all samples in QT as negatives. The image-to-text contrastive loss is:

Li2t = − 1

|B|
∑

(Ii,Ti)∈B
log

pos(f Ii , f̂
T
i , τ)

pos(f Ii , f̂
T
i , τ) + neg(f Ii ,QT , τ)

, (1)

where τ is the temperature parameter, and

pos(f Ii , f̂
T
i , τ) = exp(f Ii · f̂Ti /τ), neg(f Ii ,QT , τ) =

∑
qT
j ∈QT

exp(f Ii ·qT
j /τ). (2)

Similarly, the text-to-image contrastive loss is defined as:

Lt2i = − 1

|B|
∑

(Ii,Ti)∈B
log

pos(fTi , f̂ Ii , τ)

pos(fTi , f̂ Ii , τ) + neg(fTi ,QI , τ)
, (3)

where f̂ Ii is the momentum feature of Ii. The total CMMC loss is simply as:

Lcmmc = Li2t + Lt2i. (4)

After loss calculation, the momentum features of paired images and texts from
the current batch are then pushed into the corresponding momentum queues,
meanwhile the earliest |B| samples in both queues are popped out.

Image-Text Matching (ITM) loss. The ITM loss is adopted to model finer
modality interactions at the token level. Concretely, we use all N layers of the
top and bottom text encoders as the multi-modal encoder. Note that the self-
attention (SelfAttn) and the feed forward network (FFN) in each layer share
weights with those in the same layer of the uni-modal text encoder, which
largely reduces the number of network parameters. The multi-modal encoder
takes image-text pairs as input, and performs binary classification to predict
whether the input pair is matched. For the raw input text, we append an [ITM]

token to represent the multi-modal feature, where image information is encoded
by inputting the final sequence of patch features from the uni-modal image en-
coder as the “keys” and “values” for the CrossAttn in each layer.

Furthermore, to freely adjust the effect-efficiency trade-off, we allow the
multi-modal encoder to exit at each of the top L layers. Specifically, for each
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Fig. 3: Schematic illustration of three search-oriented training tasks in VEMO. Note
that sub-modules with the same name and color are shared across different tasks and
encoders/decoders. Multiple exits for ITM make VEMO more elastic.

input pair (I, T ), let f ITM
N−L+l(I, T ) denote the [ITM] feature at the (N−L+ l)-th

layer (l = 1, · · · , L). A two-class linear classifier hITM
l (i.e., the ITM head) is

adopted, which is followed by a softmax function σ, resulting in two probabili-
ties σ(hITM

l (f ITM
N−L+l(I, T ))) ∈ R2 (l = 1, · · · , L). Without loss of generality, we

regard its first element as the matching score of (I, T ), denoted as ITMl(I, T ).
To calculate the ITM loss, inspired by BLIP [15], for each image Ii (or each

text Ti) in batch B, we first sample a hard negative sample HardNeg(Ii) ∈
{Tj |j = 1, · · · , |B|, j ̸= i} (or HardNeg(Ti) ∈ {Ij |j = 1, · · · , |B|, j ̸= i}). In this
way, we have one positive pair (Ii, Ti) and two negative pairs (Ii,HardNeg(Ii))
and (HardNeg(Ti), Ti) for each (Ii, Ti) ∈ B. In each training iteration, we average
the ITM losses calculated over all top L layers of the multi-modal encoder:

Litm =
1

3L|B|
∑

(Ii,Ti)∈B

∑
l∈{1,··· ,L}

[BCE(1, ITMl(Ii, Ti))

+ BCE(0, ITMl(Ii,HardNeg(Ii))) + BCE(0, ITMl(HardNeg(Ti), Ti))],
(5)

where BCE(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ) is the binary cross-entropy.
Finally, the total loss for cross-modal semantic search is:

Lcmss = Lcmmc + Litm. (6)

3.3 Named Entity Recognition (NER)

As illustrated in Fig. 3(b), for NER, we use the same uni-modal text encoder
as in calculating CMMC loss. We simply adopt a two-layer classifier on top of
the text encoder and compute the token classification loss. Specifically, for each
text T in a batch Bner sampled from the NER dataset, we can obtain a score
matrix Ŝ ∈ RNseq×Nc , where Nseq and Nc are the token sequence length and the
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number of classes, respectively. The NER loss is then defined as:

Lner =
1

|Bner|
∑

T∈Bner

CE(S, Ŝ), (7)

where S ∈ RNseq×Nc is the one-hot ground-truth label matrix over Nseq tokens
of sample T , and CE(·, ·) is the batched cross-entropy function over Nseq tokens.

3.4 Scene Text Spotting (STS)

Inspired by TESTR [49], we design an end-to-end STS approach involving one
image encoder and two decoders. As illustrated in Fig. 3(c), the architectures of
both decoders are the same, i.e., each decoder layer contains a factorized SelfAttn
(including an intra SelfAttn and an inter SelfAttn), a deformable CrossAttn [52],
and an FFN. As For the image encoder, to minimize the possible learning conflict
of fully sharing it with the uni-modal image encoder used in CMSS, we only re-
use the bottom (N − L) layers. The top L layers of the image encoder for STS
come from the location decoder (that is why we also call it the image encoder-
decoder), where only the intra SelfAttn and FFN are used in each layer.

For each image I in an STS batch Bsts, the encoder first extracts the sequence
of image patch features. Then for each patch, we predict a coarse bounding box
(i.e., proposal) and a probability of having text within the box. Only proposals
with top-P probability values are selected for further location and text decoding.

Location Decoder Loss. To localize text in arbitrary shapes, we expect Nctrl

control points to enclose a polygon. Specifically, we adopt Nctrl learnable control
point query tokens C ∈ RNctrl×dctrl , where dctrl is the dimension of each control
point token embedding. To help the location decoding process, we embed the
proposal information into C by first making P copies of C and then adding the
transformed p-th proposal into the p-th copy. In this way, we obtain the input of
the location decoder as C = {C(p) ∈ RNctrl×dctrl}Pp=1, where each group focuses
on one region in the image. In each layer, an intra SelfAttn is first performed
over Nctrl query tokens for each of the P groups independently, then an inter
SelfAttn is performed over P tokens for the same j-th (j = 1, · · · , Nctrl) control
point. In the following deformable CrossAttn, P proposals are naturally used as
reference points to sample “keys” from the image patch features (see details of the
deformable attention in [52]). After obtaining the output query embeddings from
the location decoder, for each control point group, we devise a binary classifier to
predict whether this region has text in it and a coordinate predictor to predict
the coordinates of Nctrl control points. Since not all P groups’ corresponding
image regions contain text, an injective function ϕ : {1, · · · , Ngt} → {1, · · · , P}
is needed, where Ngt is the number of ground-truth text annotations in an image.
This bipartite matching problem can be efficiently solved by the Hungarian
algorithm [14]. Let s(p) denote the classification probability of the p-th control

point group and Φ = {ϕ(g)}Ngt

g=1 ⊆ {1, · · · , P} denote the index set of groups
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containing text. The classification loss is then defined as a focal loss [20]:

Ldec
cls = −

∑
p∈Φ

α(1− s(p))γ log s(p) −
∑

p/∈Φ
(1− α)(s(p))γ log(1− s(p)), (8)

where α and γ are two hyper-parameters. Let z(g) ∈ RNctrl×2 (g = 1, · · · , Ngt)
denote the g-th ground-truth annotation in an image and ẑ(p) ∈ RNctrl×2 (p =
1, · · · , P ) denote the predicted control point coordinates of the p-th query group.
We define the coordinate regression loss as:

Lcoord =
∑

g∈{1,··· ,Ngt}
∥z(g) − ẑ(ϕ(g))∥. (9)

Text Decoder Loss. Like the learnable control point query tokens for location
decoding, we adopt Nchar learnable character query tokens for the text decoder.
Similarly, the query is duplicated into P copies before being input into the text
decoder. By adopting a character classifier, we can finally obtain the predicted
classification scores t̂(p) ∈ RNchar×(Nvoc+1) for p-th query group, where Nvoc is
the number of characters in the vocabulary and an additional null class is needed
because Nchar is larger than the length of ground-truth text in most cases. The
text recognition loss is then defined as the character classification loss:

Ltext =
∑

g∈{1,··· ,Ngt}
CE(t(g), t̂(ϕ(g))), (10)

where t(g) ∈ RNchar×(Nvoc+1) denotes the one-hot labels over Nchar characters in
the g-th ground-truth text in an image.

Encoder Loss. Since the two decoders both rely on the output of the image
encoder (i.e., image patch features and the generated top-P proposals), we in-
troduce extra constraints for the encoder. As we have mentioned, for each image
patch feature, we predict a coarse bounding box and a probability of having text
within the box. We thus adopt similar binary classification loss Lenc

cls and bound-
ing box coordinate regression loss Lbbox like those for the location decoder. An
extra generalized IoU loss [36] for bounding box regression Lgiou is also used.

Overall, the final scene text spotting loss is:

Lsts =
1

|Bsts|
∑

I∈Bsts

(λclsLdec
cls + λcoordLcoord + λtextLtext

+ λclsLenc
cls + λcoordLbbox + λgiouLgiou),

(11)

where λcls, λcoord, λtext, and λgiou are all hyper-parameters.

4 Experiments

4.1 Datasets

Our VEMO is trained on five datasets simultaneously: two for cross-modal se-
mantic search (CMSS), one for named entity recognition (NER), and two for
scene text spotting (STS).
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We select two widely-used datasets for CMSS: (1) MSCOCO [21] is an
image-text dataset of 123,287 images, with each image annotated by 5 captions.
We follow [16, 27, 15] and split the dataset into 113,287 training, 5,000 validation,
and 5,000 test images. (2) Flickr30K [32] is smaller, with 31,000 images and
158,915 captions in total. As in [16, 27, 15], we split the dataset into 29,000
training, 1,000 validation, and 1,000 test images. For performance evaluation,
Recall@k (R@k, k = 1, 5, 10) and Recall@Mean (R@Mean) are reported, where
R@Mean is the average of R@1, R@5, and R@10.

For NER, we adopt the classic CoNLL-2003 [37], which has 203,621 train-
ing, 51,362 validation, and 46,435 testing tokens. It has four types of entities:
persons, organizations, locations, and miscellaneous names. We report precision
(P), recall (R), and the F1 score as the evaluation results.

For STS, two popular datasets are selected: (1) Total-Text [5] has 1,255
training images and 300 test images, with each image containing curved texts.
(2) ICDAR 2015 [12] contains 1,000 training images and 500 test images. It is
more difficult because the images are from hand-held cameras in the wild. The
standard evaluation protocols used for these datasets are followed.

4.2 Implementation Details

The vision and language networks of our VEMO are modified from ViT-B/16 [7]
and BERT-Base [6], respectively. Thus the number of layers N for each network
is 12. And the number of location/text decoder layers L is set to 6.

For CMSS, the input image size is 384 × 384, and the maximum length of
input text is 35. The batch size |B| = 240. The negative queue size Nq = 57, 600.
And τ in Eqs. (1) – (3) is learnable with the initialization of 0.07. For NER,
we set |Bner| = 128, Nseq = 128, and Nc = 12. For STS, the input image
size is 1, 024 × 1, 024. We set |Bsts| = 8, Nchar = 25, and Nctrl = 16. Top-100
(i.e., P = 100) proposals are selected for further location and text decoding. In
Eq. (8), α = 0.25 and γ = 2.0. In Eq. (11), λcls = 2, λcoord = 5, λtext = 4, and
λgiou = 2.

We employ the AdamW [26] optimizer with the initial learning rate of 1e-5.
And we adopt the cosine learning rate scheduler for training a total of 5 epochs.

Before multi-task training, we load the “BLIP w/ ViT-B (14M)” model [15],
fix all its parameters, and only train the image encoder-decoder and the text
decoder for STS (i.e., STS pre-training). Following TESTR [49], three STS pre-
training datasets are used: SynthText 150K [24], MLT 2017 [31], and Total-
Text [5] (see details in [49]). The initial pre-training learning rate is 1e-4. We
also adopt the cosine learning rate scheduler for training 400K iterations.

4.3 Main Results

We first present the results by our VEMO using different multi-task training
strategies, as well as the uni-task training results in Table 1. Specifically, four
strategies are used to train our VEMO: (1) “sum” – three task losses are simply
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Table 1: Main results (%) on 5 datasets across 3 tasks. Notations: #Params – the num-
ber of model parameters; R@Mean – the average of image-to-text and text-to-image
R@Mean; ∆m – the overall performance gain of each VEMO variant w.r.t. the uni-task
method, defined as the difference of 1

3
( 1
2
(R@Mean(MSCOCO)+R@Mean(Flickr30K))+

F1(CoNLL-2003)+ 1
2
(F1(Total-Text)+F1(ICDAR 2015))). Best results in each column

are highlighted in bold, and second-best ones are underlined.

Method #Params
CMSS NER STS

∆mMSCOCO Flickr30K CoNLL-2003 Total-Text ICDAR 2015
R@Mean R@Mean P R F1 P R F1 P R F1

Uni-Task 964.22M 85.16 96.48 75.45 83.71 79.37 62.94 51.26 56.50 38.31 26.19 31.11 -
VEMO-sum 362.50M 85.04 96.07 79.86 83.39 81.59 63.72 50.60 56.41 38.91 24.07 29.74 0.41
VEMO-log sum 362.50M 84.87 96.06 75.04 84.21 79.36 64.95 51.26 57.30 40.91 24.27 30.46 -0.10
VEMO-DWA 362.50M 84.98 96.14 79.37 83.02 81.15 63.30 50.55 56.21 39.07 23.93 29.68 0.22
VEMO-iterative 362.50M 85.48 96.38 75.10 83.45 79.05 63.46 50.99 56.54 40.42 25.28 31.10 -0.07

added together, i.e., Lsum = Lcmss + Lner + Lsts. (2) “log sum” – the logarithm
of three losses are added, i.e., Llog sum = logLcmss + logLner + logLsts. (3)
“DWA” [23] – an adaptive weight is assigned to each loss according to the change
rate of the loss value. Generally, if the decrease rate of one loss becomes small,
then the assigned weight also becomes small. The final loss LDWA = w1Lcmss +
w2Lner+w3Lsts, where w1+w2+w3 = 3. (4) “iterative” – we first calculate loss
for one task, and then perform back propagation immediately before calculating
other tasks’ losses. This process is conducted iteratively among 3 tasks. As for
uni-task training, we train one model for each dataset independently, using the
same hyper-parameter settings as those in multi-task training.

Besides results on each dataset, we report ∆m, the overall performance gain
of VEMO models w.r.t. uni-task results. We also give the number of network
parameters needed for each method, where for uni-task training, we report the
total parameter amount of all uni-task models separately trained on five datasets.

We can observe from Table 1 that although VEMO only needs about 37.6%
network parameters of those for uni-task training, VEMO variants achieve com-
parative results with uni-task training. This clearly validates the effectiveness of
VEMO with such great reduction on the number of model parameters. Among
four VEMO variants, different multi-task training strategies seem to place em-
phasis on different tasks, and the simplest “sum” strategy has the best overall
performance. It is not surprising because unlike those strongly related tasks in
conventional multi-task learning, our three chosen tasks diverse in modalities and
formalizations, which leads to a more complicated multi-task balancing scenario.

We further present detailed results on MSCOCO and Flickr30K in Table 2.
Note that our VEMO variants are trained in a multi-task manner and they also
have multiple image-text matching exits, which clearly make the training more
difficult. Despite that, Table 2 shows that VEMO variants generally achieve com-
parative results with current best, even beating ALIGN with 18B pre-training
data. This indicates that search-oriented multi-task learning and placing multi-
ple image-text matching exits do not harm the performance on CMSS.
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Table 2: Detailed results (%) on MSCOCO and Flickr30K for CMSS. Notations: #
PT Images – the number of images in pre-training data; MTL – multi-task learning;
I2T/T2I – image-to-text/text-to-image. Best results in each group are in bold.

Method
# PT
Images

MTL
MSCOCO Flickr30K

I2T Search T2I Search I2T Search T2I Search
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

UNITER-Base [4] 4M no 64.4 87.4 93.1 50.3 78.5 87.2 85.9 97.1 98.8 72.5 92.4 96.1
OSCAR-Base [18] 4M no 70.0 91.1 95.5 54.0 80.8 88.5 - - - - - -
ALIGN [11] 1.8B no 77.0 93.5 96.9 59.9 83.3 89.8 95.3 99.8 100.0 84.9 97.4 98.6
ALBEF [16] 14M no 77.6 94.3 97.2 60.7 84.3 90.5 95.9 99.8 100.0 85.6 97.5 98.9
COTS [27] 14M no 69.0 90.4 94.9 52.4 79.0 86.9 90.6 98.7 99.7 76.5 93.9 96.6
BLIP-Base [15] 14M no 80.6 95.2 97.6 63.1 85.3 91.1 96.6 99.8 100.0 87.2 97.5 98.8

Uni-Task 14M no 80.60 94.20 96.84 63.53 85.19 90.58 96.00 99.70 99.90 87.08 97.48 98.70
VEMO-sum 14M yes 80.54 94.32 96.88 63.17 84.99 90.34 95.40 99.70 100.00 85.66 97.14 98.52
VEMO-log sum 14M yes 80.46 94.14 96.64 62.96 84.69 90.32 95.50 99.50 99.90 86.08 97.06 98.34
VEMO-DWA 14M yes 80.58 94.12 96.72 63.27 84.94 90.27 95.70 99.70 100.00 85.86 97.06 98.52
VEMO-iterative 14M yes 81.08 94.70 97.12 63.90 85.27 90.79 95.90 99.80 99.90 86.58 97.42 98.68

4.4 Selectable ITM Exits

To freely adjust the effect-efficiency trade-off for CMSS, we place multiple ITM
exits at top 6 layers of the multi-modal encoder (see Fig. 3(a)). Below we give a
detailed analysis of why we choose the top 6 layers.

In subfigures (a) – (d) of Fig. 4, we show results by uni-task CMSS training
of our VEMO on MSCOCO. The blue dash line shows the instance-level image-
text alignment result by only using separate uni-modal encoders (denoted as
dual-encoder result). The orange line shows the result by using the multi-modal
encoder only (denoted as single-encoder result). And the red line result is the
ensemble of dual-encoder and single-encoder.

In Fig. 4(a), the model is trained in two stages. We first train the model
with only one ITM head at the last layer. Then we place 11 ITM heads at every
previous layer and only train these 11 heads by freezing the trained model at
the first stage. We can see that single-encoder results (orange line) generally get
better as the layer is closer to the top, but only top 4 layers produce better results
than simple dual-encoder. It is also observed that the ensemble performance (red
line) first drops and then rises, because as the multi-modal encoder uses more
and more layers, the contribution of the dual-encoder decreases. In Fig. 4(b),
we train the model with all 12 ITM heads at once, where the performance of
2nd – 8th layers is improved a lot. This can be explained as: in Fig. 4(a), all
1st to 11th layers are only trained to provide information for the subsequent
layer, while in Fig. 4(b), these layers are also trained to classify. But still, only
the top 5 layers deliver better performance than simple dual-encoder. Another
interesting phenomenon is that the 1st layer result is still incredibly low, maybe
because it is very vital for the 1st layer to focus on passing information so that
later layers can learn well. After these two experiments, we want to know what
causes the bad performance of bottom layers. Is the simultaneous training of
12 exits too burdening, or the bottom layers themselves cannot master both
passing information and classification. So in Fig. 4(c), we place only 6 exits at
every other layer. It shows that the 2nd, 4th, and 6th layers perform similarly
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Fig. 4: (a) – (d) Results on MSCOCO for uni-task CMSS training with multiple ITM
exits at different multi-modal encoder layers: (a) two-stage training (training with the
last layer ITM head and then linear probing the other 11 heads); (b) training with 12
ITM heads; (c) training with 6 ITM heads at every other layer; (d) training with 6
ITM heads at top 6 layers. (e) Results on MSCOCO of multi-task trained VEMO-sum
with ITM exits at top 6 layers. (f) Evaluation time for exiting at each of the top 6
layers of VEMO-sum on MSCOCO 5K test set, with one NVIDIA A100 GPU. Note
that the image size is 224× 224 in (a) – (d), while 384× 384 in (e) – (f).

to those in Fig. 4(b), indicating their own capability limitations. Therefore, we
choose to place 6 exits at top 6 layers of the multi-modal encoder. Results in
Fig. 4(d) are more closer to ideal.

In Fig. 4(e) and (f), we present the results and evaluation time on MSCOCO
of multi-task trained VEMO-sum, respectively. We can see that all 6 layers of
the multi-modal encoder perform better than dual-encoder. As expected, using
more layers gets higher results but costs more time. Selectable ITM exits blur
the boundary between recall and ranking, making the model more elastic.

4.5 Further Evaluation

To demonstrate the ability of VEMO on different search tasks other than seman-
tic search, we resort to two types of text-to-image search: (1) entity-based image
search (EIS) – given a named entity, EIS aims to find images containing this
entity; (2) character-based image search (CIS) – given a piece of text, CIS aims
to find images that literally have this text in them. For EIS, we randomly sam-
ple 5,000 images with their captions from GoodNews [2], which is originally an
image-text dataset collected from New York Times. For each image, we employ
a strong news NER model [44] to extract named entities from its paired caption,
which are regarded as the “ground-truth” entities for this image. We name this
processed dataset as GoodNews-5K. For CIS, we directly use an STS dataset
CTW1500 [25], which consists of 1,500 images (each image has several curved
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Table 3: Results for EIS on GoodNews-5K and CIS on CTW1500.

Method
# PT
Images

Search
Type

GoodNews-5K CTW1500
R@1 R@5 R@10 R@Mean R@1 R@5 R@10 R@Mean

BLIP-Base 14M CMSS 1.10 3.42 5.00 3.18 1.19 3.65 5.53 3.46
BLIP-Base 129M CMSS 1.88 4.51 6.21 4.20 11.92 21.35 26.73 20.00
BLIP-Large 129M CMSS 2.26 6.05 8.40 5.57 15.24 26.98 32.24 24.82
VEMO-sum 14M CMSS 1.72 3.56 4.73 3.34 2.61 5.27 6.53 4.80
VEMO-sum 14M EIS/CIS 28.67 38.15 40.48 35.77 30.24 42.46 46.33 39.68

text annotations). As a result, GoodNews-5K and CTW1500 are essentially of
the same format, i.e., each image has several short text annotations.

We adopt three BLIP models [15] as compared methods for EIS and CIS
by directly conducting CMSS. For our VEMO-sum, besides directly conducting
CMSS, we can employ the NER/STS ability to address EIS/CIS more gracefully.
Specifically, for EIS, VEMO-sum first extracts named entities from all captions
as candidates. Then for each entity query, we use the uni-modal text encoder of
VEMO-sum to calculate text-to-text similarities between it and all candidates.
Finally, we assign the similarity scores to each entity candidate’s corresponding
image and get the search results. Similarly, for CIS, VEMO-sum first recognize
texts in all images as candidates. Then we calculate text-to-text similarities,
assign them to corresponding images, and finally obtain the evaluation results.

We report R@1, R@5, R@10, and R@Mean in Table 3, which clearly shows
that semantic search is not suitable for either EIS or CIS. On the contrary,
VEMO-sum with NER/STS ability outperforms strong semantic search methods
(even with large models and 129M training data) by huge margins, validating
the general applicability of our VEMO framework on different search tasks.

5 Conclusion

In this work, we investigate how to deal with multiple types of search tasks simul-
taneously with a single multi-modal model. Specifically, we propose a Versatile
Elastic Multi-mOdal model termed VEMO for search-oriented multi-task learn-
ing. VEMO integrates cross-modal semantic search, named entity recognition,
and scene text spotting in a unified framework, where the latter two can be
further adapted to entity-based and character-based image search tasks, respec-
tively. Furthermore, we place multiple image-text matching exits to offer more
choices on the effect-efficiency trade-off for cross-modal semantic search. Ex-
tensive experiments validate the effectiveness of our VEMO with significantly
fewer network parameters. We believe that search-oriented multi-task learning
is meaningful, especially for devices with limited resources.
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