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Abstract

In the existing spectral GNNs, polynomial-based methods oc-
cupy the mainstream in designing a filter through the Lapla-
cian matrix. However, polynomial combinations factored by
the Laplacian matrix naturally have limitations in message
passing (e.g., over-smoothing). Furthermore, most existing
spectral GNNs are based on polynomial bases, which strug-
gle to capture the high-frequency parts of the graph spec-
tral signal. Additionally, we also find that even increas-
ing the polynomial order does not change this situation,
which means polynomial-based models have a natural defi-
ciency when facing high-frequency signals. To tackle these
problems, we propose WaveNet, which aims to effectively
capture the high-frequency part of the graph spectral sig-
nal from the perspective of wavelet bases through recon-
structing the message propagation matrix. We utilize Multi-
Resolution Analysis (MRA) to model this question, and our
proposed method can reconstruct arbitrary filters theoreti-
cally. We also conduct node classification experiments on
real-world graph benchmarks and achieve superior perfor-
mance on most datasets. Our code is available at https://
github.com/Bufordyang/WaveNet

1 Introduction

Graph, as an abstract data structure, can efficiently represent
complex relational structures between information. There-
fore, it has been widely used in real-life scenarios. With
the advent of the deep learning era in artificial intelligence,
graph neural networks (GNNs) are specifically designed to
address graph-related problems such as traffic network pre-
diction (Bogaerts et al. 2020; Cui et al. 2020a), social net-
work recommendation (Do et al. 2022; Gao et al. 2022),
molecular structure analysis (Jiang et al. 2021; Yang et al.
2019), and more (Kipf and Welling 2017; Hamilton, Ying,
and Leskovec 2017; Velickovi¢ et al. 2018; Xu et al. 2019b).

Since a graph is composed of vertices set and edges set,
existing GNN methods can be roughly divided into spa-
tial domain GNNs and spectral domain GNNs. The former
mainly learn node representations through message passing
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paradigm or attention network structure (Wu et al. 2021;
Zhang et al. 2020; Rong et al. 2020). The latter utilizes the
laplacian matrix of the graph for spectral analysis, design-
ing networks by mapping the feature matrix to the spec-
tral domain through graph Fourier transform. While spa-
tial GNNs have demonstrated promising results on homo-
geneous graphs, they’re still tricky to deal with heteroge-
neous graphs. This is because the message passing paradigm
is based on the homogeneity hypothesis, which means the
same class nodes mostly links with same class neighbors.
However, in the case of a heterogeneous graph, aggregat-
ing the information from neighbor nodes will destroy the
model’s expressive ability (Zhu et al. 2021). Spectral GNNs
focus on dealing heterogeneous graph via designing a filter
in the spectral domain of the graph Laplacian matrix (Kipf
and Welling 2017; Defferrard, Bresson, and Vandergheynst
2016; Chien et al. 2021). The effectiveness of these filters
directly impacts the performance of downstream tasks. And
most methods rely on truncated polynomial bases encounter
difficulties in fitting high-frequency spectral signals (Feng
et al. 2022). We aim to improve this situation by using non-
polynomial bases.

Wavelets, as a powerful mathematical tool for analyzing
time-varying non-stationary signals, have received extensive
attention in signal processing and feature extraction (Guo
et al. 2022). Wavelet bases are mostly composed of sig-
nals with finite energy, which gives them a natural advan-
tage over polynomial bases when the signal changes dras-
tically (Boggess and Narcowich 2015). However, existing
wavelet-based GNNs model usually utilize Chebyshev poly-
nomials to approximate wavelets transform matrix (Ham-
mond, Vandergheynst, and Gribonval 2011; Xu et al. 2019a;
Donnat et al. 2018). However, this approach constrains the
wavelet’s ability to fit high-frequency graph spectral sig-
nals, resulting in previous work not achieving significant
improvements. In wavelet analysis, Multi-Resolution Anal-
ysis (MRA) establishes a connection between time and fre-
quency domains information. Therefore, we perform MRA
on graph spectral signals, and employ non-polynomial bases
(wavelets) to capture finer changes of spectral signal.

On the other hand, we have found through experiments
that in polynomial-based methods, the main contributing
bases are often limited to only the first few terms (usu-
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Figure 1: Different polynomial order K applied to the Cora
and Chameleon graph dataset. Mean accuracy is under 10
runs and the variance term is omitted.

ally orders 5 to 10 as Figure 1 showing), and the perfor-
mance of these methods even appear to decrease with in-
creasing polynomial order, which is counter-intuitive and
violates the theory of polynomial approximation (Powell
1981). We have a deep thought about why this phenomenon
appear: 1) Assuming the optimal filter’s shape is complex
and unsmooth, then increasing the polynomial order should
improve the situation according to polynomial approxima-
tion theory. However, Figure 1 demonstrates that this ap-
proach loses efficiency. We believe that this happens because
polynomial-based models are insufficient to learn complex
filter. We summarize this phenomenon as insufficient ca-
pacity of the model; 2) On the opposite, the optimal filter’s
shape is simple and smooth, which makes polynomial-based
models reach a bottleneck. About the truth of whether the
optimal filter is smooth or unsmooth still wait to solve, and
previous researches have shown that most heterogeneous
graph datasets have a unsmooth filter (He et al. 2021; He,
Wei, and Wen 2022) in experiments, such as band-rejection
and comb filters. In Specformer (Bo et al. 2023), the re-
sults show that learning more complicated filters, which ex-
hibit dramatic changes, is helpful and achieves better perfor-
mance. As a result, we suggest that polynomial-based mod-
els tend to learn smooth filters and struggle to cope with
spectral changes with high-variance. For concisely, we call
it as high-frequency spectral signals filtering. And we ex-
plore the wavelet bases for filtering to tackle this problem.

Before that, we will introduce a concept originating from
the Computer Vision (CV) domain: scale, which is differ-
entiate from its traditional meaning in the graph domain. In
the CV field, scale typically refers to the appearance of im-
ages or objects at different observation distances and reso-
lutions (Lowe 2004), which is distinct from the concept of
scalability in graphs. In this paper, scale refers to the com-
ponents of graph spectral signals at different resolutions as
the same conception in CV. Finer scale represents the higher
frequency components of graph spectral signal.

Therefore, we call polynomial bases are scaleless, like
but not Gibbs-Wilbraham phenomenon (Hewitt and He-
witt 1979) (overshoot occurs in discontinuous points). It
is more like underfitting. To validate our view, we con-
duct an additional synthetic graph experiment to explore the
scale of polynomials. We created a synthetic toy graph con-
sisting of 50 nodes, and node features are randomly sam-
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Figure 2: The illustration about the ability of 10-order
Chebyshev polynomial and 5-scale Haar wavelet to fit high-
frequency signals, which are sin20\+ 1 and sin20\-e~* +1
respectively.

pled from Gaussian distribution. We apply a pre-determined
high-frequency spectral signal f to generate the nodes la-
bels. Our goal is to reconstruct the pre-determined signal
f- In Figure 2, yellow curve is the pre-determined spectral
signal. We use the 10-order chebyshev polynomials and the
5-scale Haar wavelet to reconstruct the original signal. As
the Figure 2 showing: low-order polynomials bases are ex-
tremely struggle to fit the high frequency signal. While the
Haar wavelet (Haar 1909) fits well. The result demonstrates
that wavelets are more effective in handling high-frequency
signal. While polynomials’ curve shows scaleless and only
coarse part is represented. In a word, wavelets are born to
solve the high frequency components of signals.

To address those issue mentioned above, and capture scale
information more effectively, we propose a novel graph neu-
ral network called WaveNet. And our contributions are sum-
marized below:

* We perform MRA on graph spectral signals: As a re-
sult, we use the scaling function of Haar wavelet to re-
construct the graph spectral filter. Theoretically, wavelets
have the capability to learn arbitrary graph spectral fil-
ters. And WaveNet excels at capturing high-frequency
signals through the experiments results.

* A novel model proposed WaveNet: Our model leverages
wavelet bases filters on graph spectral signals. Through
our experiments, our model demonstrates the capability
to learn arbitrary graph spectral filters. Moreover, our
experiments reveal WaveNet possess a stronger ability
to capture scale information compared to polynomials-
based models.

* A new perspective of graph spectral filter: We open
a new discussion about non-polynomial and polynomial-
based methods, and trying to explore non-polynomial ap-
proaches. We analyze the graph spectral signal through
wavelets, and our experiments demonstrate the effective-
ness and superior performance of the wavelet-based ap-
proach. This can provide researchers with further insight
into graph spectral.



2 Preliminaries
2.1 Notations

We only consider in the undirected graph G = (V,E, X)
with node set V and edge set E. In the spectral GNNs, we
usually treat node feature matrix X € R™"*¢ as graph signal,
where (i) denotes the signal of node 4. The graph structure
information can be denoted as adjacency matrix A, and D
denote the diagonal degree matrix. Usually, we use A =
D~ /2AD~1/2 to denote the normalized adjacency matrix.
Especially, the normalized Laplacian matrix can be denoted
as L =1 — A, and the eigenvalues \; of L is in the interval
A €10,2].Let L = UAUT denote the eigendecomposition
of normalized Laplacian matrix, where U is the eigenvector
matrix, A = diag[A1,...,\,] is the diagonal eigenvalues
matrix.

2.2 Graph Signal Filter and Spectral GNNs
For a graph signal X, the graph Fourier transform is defined

as X = UTX, and the inverse transform is X = UX (Shu-
man et al. 2013). When filtering on spectral graph signals,
we can utilize a filter function gs(-) on the Laplacian matrix.
This can be described as:

9o(L)X = Uge(A)UTX. (1)

In earlier works, filter function gy(+) is represented by using
various polynomial basis:

K—1
cxPoly;, (A @)
k=0
K—-1
L)X = ¢, UPoly, (A)UTX = chPolyk
k=0

2.3 Wavelet on Graph Neural Networks

Since the signals of graph are storing in the vertex domain,
and mapping them to the time and frequency domains is
the key to analyzing the graph signals. The spectral do-
main methods based on wavelet transform are proposed in
(Hammond, Vandergheynst, and Gribonval 2011; Xu et al.
2019a; Cui et al. 2020b). The main contribution here lies in
defining the graph wavelet matrix ¥, = UG,UT,G, =
diag(g(sXo),-.-,9(sAn—1))). And the graph convolution
based on graph wavelet transform is defined as

Tgy =V, z)o (T y)). 3)

However, the graph wavelet matrix ¥ relies on Chebyshev
polynomial approximation (Xu et al. 2019a). Therefore this
approach is still under polynomial bases which limits the
representation ability of wavelet. Different wavelets have
different expression function, and most wavelet corresponds
a “mother” wavelet function ¢(x) and a scaling function
¢(x). The ¢(sz — t) means that scaling function at scale
s and translation at ¢. For the same scale mother function
t(sx) and scaling function ¢(sx) satisfy [, ¥ (st)¢(st)dt =
0, which means they are orthonormal in L?(R) space. And
in next section, we will elaborate on how to perform MRA
on graphs from the perspective of spatial approximation the-

ory.

3 WaveNet

Wavelets are designed to represent finite-energy function in
terms of specific building blocks at different scales and po-
sitions. The advantage of wavelets is to capture information
about signals that change dramatically, which has signifi-
cantly better performance than polynomial bases. In previ-
ous work (Hammond, Vandergheynst, and Gribonval 2011;
Xu et al. 2019a), the wavelet transform on graph has been
defined. However, the inner connection between spectral do-
main GNNs and wavelets has not been thoroughly explored.
Specifically, there are still unexplored properties about the
relationship between wavelets scales and graph filters. In
this section, we use the MRA on graph to reconstruct the
spectral filter.

3.1 Multi-Resolution Analysis of Wavelet On
Graph

We define a finite-energy signal f which satisfies ||f||> =

J75, FA(t)dt < oo, let signal f(-) € L*(R), and then we

will introduce how to represent signal f in L? space and
how to split L? space via MRA.

Assuming {V;} ez is a subspace of L?(IR) space, and we
consider {V;};cz is a MRA of L?(R) space. For each sub-
space, is strictly contained layer by layer with j increasing
V;—1 C V}, and the information including in subspace V; 1
is completely contained in V;. The main idea of wavelet is
dividing the L?(R) space into finite number of subspaces,
and utilizing different scale wavelet basis to fit the informa-
tion which contain in the subspace.

We denote the wavelet scaling function ¢; 5 () € L*(R)
with the dilation j and translation k. The linear space V; can
be spanned by the set of integral translation of wavelet scal-
ing function. As for the dyadic wavelets, it can be described
as following:

Vi={..,02t+1),0(2t),6(2t—-1),...}. &
Notice that V} is the space of piecewise constant functions
of finite support whose discontinuities are contained in the
set {...—1/27,0,1/27,2/27 3/27 ...}, therefore we need
another space to fill the deficiency of V; in L? space.
Theorem 1 ( (Boggess and Narcowich 2015)) Let W; be
the space of all function form ), _, bep (27t — k), b € R,
where ¥ 1.(-) € L2(R) is called “mother” wavelet and only
finite number of by, are nonzero, W is the orthogonal com-
plement of V; in V11 and we have:

Vit =V & Wj. ®)
The space L*(R) can be decomposed as an infinite orthog-
onal direct sum

L2(R):VO@W0@W1€B.... (6)
Therefore f € L*(R) can be written uniquely as
f=Jo+ ij
. )
k j=0 k

ar, = (f(2), ¢(sox — k)), b, = (f(2),¥(s;2 — k)), (8)



where fo belongs to Vy and w; belongs to Wj, ay,bj, €
R, and subspace V is obtained by the linear combination
of scaling functions ¢(-), orthogonal complement space W
is obtained by the linear combination of “mother” wavelet

Sunctions ().

However, the coefficients ay, bj;, are difficult to obtain since
the filter f is agnostic. Our goal is to learn a filter through
neural network, thereby if we can learn the coefficients and
then we can attain a specific filter. Intuitively to explain the
Equation (7): if we make a MRA at resolution j, and em-
ploy MALLAT algorithm (Mallat 1989) with two channel
tower decomposition on signal f, then f can be decomposed
into detail component f; (obtained by high-pass filter) and
coarse component f,. (obtained by low-pass filter). By re-
peating this process on the coarse component, we have:

[ =Tfao+ fa,+- + fa, 0+ fa; + feys &)

which decomposes f as a series combination of signals at
different resolutions. The space V; contains all the related
information of signal at resolution j. If we choose a wavelet
with finite or compact support (e.g.Haar wavelet), with the
resolution increasing, the building block of haar basis will be
smaller, and more detail information will be contained in the
higher subspace. When j — +o0, each building block can
be represented as an impulse signal 6(+) in the V., subspace.
That means any signal can be fully represented under infinite
resolution.

Proposition 1 According to Theorem 1, the containment
Vi1 C Vj C Vjqq is strict, the lower subspace scale func-
tion ¢(-) and the “mother” wavelet V(-) can be composed
by higher space scale function ¢(-) as follows:

o(sx) = Zk ckd(sj1x — k), (10)
P(sjz) = Zk ck@(sj1x — k). (11)

The orthogonal complement space W can use scaling func-
tions instead of “mother” wavelet by using Equation (11).
Combining Equation (7) and Equation (11), the signal f €
L?(R) can be represented by the scaling function family:

Zakd) sox—k) JrZijkgb sjt1z—k). (12)

J=0 k

As a result, we propose to only use the scaling function to
obtain a agnostic filter f. And Pro. 1 also embodies the idea
of filtering. We can truncate Equation (12) at resolution sj
to filter out noise from s;~. To simplify the reconstruction
process of the filter f, we chose the Haar wavelet as the basis
with dyadic scale and shows in the next.

3.2 Spectral Filter Reconstruct via Scaling
Functions
In this section, we will use the simplest Haar wavelet to

reconstruct a finite-energy spectral filter f(A). The scaling
function of Haar wavelet is defined as follows:

. < 90\ —
¢(21)\—k)={1 0<27A—-k<1

13
0 otherwise, (13)

where, 27 is called scaling or dilation parameter, k is the
translation parameter. We use ¢; 1 (-) to denote dilation at
scale 2/ and translation to position &, and it can yield an
orthogonal basis in L2(IR) as follows:

V; = span{¢, 1(-), k € Z}. (14)

And ;_1 () € V;_1 can be represented by ¢, x(-) as
Equation (11). We aim to use the wavelet basis to reconstruct
the filter function through scaling function of Haar wavelet.
We denote the optimal filter is f*(A), it can be written simi-
larly to Equation (12) as follows:

Zak%k +Zzb3k¢j+1k/\' (15)

=0 k

Theoretically, we can use Equation (15) to reconstruct any
functions. But in practice, it is not necessary to decompose a
finite-energy signal at infinite resolution since finite-energy
signal’s highest component can be fully represented in the
V7 subspace. This shows that we can truncate Equation (15)
at resolution J. Combining with Equation (10) and Equa-
tion (15). Consequently, we have:

2
M~

DN, 5k (V)65 (N)
k
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(16)
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where 6 is the coefficient leaerned by network. Let
L = UAUT denote the eigendecomposition of normal-
ized Laplacian matrix, where U is the eigenvector matrix,

J

A = diag[A1, ..., \,] is the diagonal eigenvalues matrix.
We use
“+o0
PX=U Y 6iosr(AU'X (17)
k=—o0

to reconstruct propagation matrix P and filter on graph sig-
nal X, we aim for the the network can learn the correct co-
efficients 6, through gradient descent. The WaveNet archi-
tecture detail is described in Appendix A.3.

3.3 Complexity

Our model has two steps of filtering: spectral decomposi-
tion and filter learning process. Since the complexity of the
spectral decomposition is O (n3), we perform the decom-
position as a preprocessing step. The filter learning process
can be separated as two part: reconstruction of propagation
matrix and forward linear layers. The complexity of learn-
ing a propagation matrix by scaling function is O (nz) And
the forward linear layers’ complexity is O (d x h + h X ¢),
where d is the node feature dimensions, /& corresponds the
hidden dimensions, and ¢ denotes the number of classes.

4 Related Work
4.1 Spatial GNNs

Spatial GNNs are based on message passing paradigm and
aggregate graph information in the spatial domain. They



usually focus on conducting various aggregation methods
on vertex or edge domain to capture the graph information.
GCN (Kipf and Welling 2017) is one of the earliest work
on spatial domain and uses the graph adjacent matrix to
aggregate one-hop neighbors. Geom-GCN (Pei et al. 2020)
conducts geometric aggregation scheme to attain long-range
dependencies in heterogeneous graphs. H2GCN (Zhu et al.
2020) model focus on improve the efficiency of neighbor ag-
gregation. GGCN’s (Yan et al. 2022) main idea is to make
full use of the edges. This is achieved by assigning positive
or negative signs to the edges, and makes a superior perfor-
mance on heterogeneous graphs.

4.2 Spectral GNNs

Spectral GNNSs are based on filtering graph signal in spectral
domain. ChebyNet (Defferrard, Bresson, and Vandergheynst
2016) is based on Chebyshev polynomial to approximate a
filter. APPAP (Klicpera, Bojchevski, and Giinnemann 2019)
conduct Personalized PageRank to attain the propagation
matrix, and its a kind of fixed filter. GPR-GNN (Chien et al.
2021) is a learnable filter model by learning the Monomial
basis combination coefficients. BernNet (He et al. 2021) uti-
lizes the Bernstein basis to learn a filter function, which is
more strong than monomial basis. JacobiConv (Wang and
Zhang 2022) employs Jacobi polynomials basis for conduct-
ing convolutions in the spectral domain. ChebyNetll (He,
Wei, and Wen 2022) aim to revise the Chebyshev basis by
interpolation to avoid runge phenomenon, and make a signif-
icant improvement than ChebyNet. While these polynomial-
based method are limited as they are scaleless of graph spec-
tral signals.

4.3 Wavelet GNNs

Wavelet GNN via spectral graph theory is proposed
in (Hammond, Vandergheynst, and Gribonval 2011). This
work defines the wavelet transform on graph and inspire
many works. GWNN (Xu et al. 2019a) applies graph
wavelet transform to design a spectral GNN. GWGR (Cui
et al. 2020b) use the LSTM structure with wavelet trans-
form to capture network-scale and traffic prediction. Graph-
Wave (Donnat et al. 2018) employs the heat kernel wavelet
to learn a low-dimensional embedding. WNNs (Hy and
Kondor 2022) propose a Multiresolution Matrix Factor-
ization(MMF) learning algorithm to learn wavelet basis.
Research (Opolka et al. 2022) constructs Gaussian pro-
cess model using spectral graph wavelets to capture dif-
ferent scales information of neighborhood. However, the
wavelets methods mentioned above are mainly use Cheby-
shev polynomials to do approximation, and limit the ability
of wavelets basis. So we propose a novel way to use scaling
function of wavelets to capture the different scale informa-
tion of graph spectral signals.

5 Experiments

In this section, we conduct three main experiments. 1)
We evaluate WaveNet’s ability to learn complex filters,
such as comb, band-rejection and low-band-pass filters, etc.

2) We conduct node classification experiments to evalu-
ate WaveNet’s capability to reconstruct spectral filter on
real world datasets. 3) Additionally, we evaluate the effec-
tiveness of WaveNet in capturing high-frequency spectral
signals. At last we visualize the filters’ shape learned by
WaveNet.

5.1 Learning Complex Filters on Images Graph
with WaveNet

Data: We follow the data collection in (He et al. 2021), 50
real images with the resolution of 100 x 100 from the Image
Processing Toolbox in Matlab. Each image can be consid-
ered as a 2D regular 4-neighborhood grid graph, each im-
age’s pixel is a node in the graph and the pixel intensity

. 4 . .
translates to a signal vector z; € R, Since each image
has the same size and node position, 50 images share the

same adjacent matrix A € R**10" and we preproccess
the eigenvalues decomposition for convenience.

Setup: To verify the performance of WaveNet fitting com-
plex filter, we set five filters illustrated in Table 1 We
choose five polynomial-based spectral GNNs as baselines:
GCN (Kipf and Welling 2017), ChebyNet (Defferrard, Bres-
son, and Vandergheynst 2016), GPR-GNN (Chien et al.
2021), BernNet (He et al. 2021), and JacobiConv (Wang and
Zhang 2022). Training data is 50 images’ pixel intensity ma-
trix mentioned above, and training goal is minimizing the
sum of squared error between model prediction &; and pre-
filtered pixel intensity vector @;. More detail can be found
in Appendix A.3.

Results: We use the sum of squared error and R? score as
evaluation metrics. In training, we found that our model usu-
ally reached early stopping within 500 epochs earlier than
polynomial-based models, which validates that our model
has a stronger learning ability. Table 1 shows the node re-
gression results. Specially, we found that WaveNet excels
at fitting complex filters (e.g., band or comb filters) com-
pared to simpler ones (e.g., low or high filters). This obser-
vation validates wavelets are inherently designed to handle
high-frequency component signals. In addition, we visual-
ize the graph filters learned by BernNet and WaveNet in Fig-
ure 3, providing further validation of our claims. These re-
sults are based on the identical quantity of bases, with the
number of bases set at 10 in both models. And WaveNet
has achieved better filter fitting performance than BernNet.
As the number of wavelet bases increases, WaveNet fits the
ground truth more precisely, visualization results show in
Appendix A.l, demonstrating its superior learning capabil-
ity over polynomial-based models.

5.2 Node classification

Data: We conduct node classification task on real-world
datasets following (He et al. 2021). Including three cita-
tion network Cora, CiteSeer and PubMed (Sen et al. 2008;
Yang, Cohen, and Salakhudinov 2016) and the Amazon
co-purchase graph Computers and Photo (McAuley et al.
2015).We also include the Wikipedia graph Chameleon and
Squirrel (Rozemberczki, Allen, and Sarkar 2021), the Ac-
tor co-occurrence graph is attained from (Pei et al. 2020).



Table 1: Node regression results, mean of the sum of squared error(lower is better) & R? score(higher is better).

Low-pass High-pass Band-pass Band-rejection Comb
exp(—10A2) 1 —exp(—10A2) exp(—10(A —1)?) 1 —exp(—10(\ — 1)) | sin(mA)|
GCN 3.4799(.9872)  67.6635(.2364) 25.8755(.1148) 21.0747(.9438) 50.5120(.2977)
GPR-GNN  0.4169(.9984) 0.0943(.9986) 3.5121(.8551) 3.7917(.9905) 4.6549(.9311)
ChebNet 0.8220(.9973) 0.7867(.9903) 2.2722(.9104) 2.5296(.9934) 4.0735(.9447)
BernNet 0.0314(.9999) 0.0113(.9999) 0.0411(.9984) 0.9313(.9973) 0.9982(.9868)
JacobiConv  0.0003(.9999) 0.0064(.9999) 0.0213(.9999) 0.0156(.9999) 0.2933(.9995)
WaveNet 0.0090(.9999) 0.0088(.9999) 0.0076(.9997) 0.0074(.9999) 0.0813(.9996)
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Figure 3: An illustration of learned filters by BernNet and WaveNet

And all the datasets are processed by the Pytorch Geomet-
ric library (Fey and Lenssen 2019) into a unified process-
ing format. Datasets’ detail information can be found in Ap-
pendix A.2.

Setup: We adopt the randomly splitting the node set into
train/validation/test set with ratio 60%/20%/20%, and con-
duct full-supervised node classification task with each base-
line model. For fairness, we also use the same evaluate set-
ting as fowling (He et al. 2021): we generate 10 random
splits by random seeds and evaluate all models on the same
splits, and report the average metric for each model. The
baseline models are: MLP, GCN, GAT (Velickovi¢ et al.
2018), GPR-GNN, BernNet, ChebyNetll (He, Wei, and Wen
2022), SplineCNN (Fey et al. 2018), ACMII-GCN (Luan
etal. 2021) and GWNN (Xu et al. 2019a). We evaluate each
baseline models through public github repository, and each
hyperparameters are set as same as their official researches.
Specifically, GWNN occurs gradient explosion when train-
ing since the official repository use the older version ten-
sorflow package which makes challenging to reproduce. For
other models, we use the corresponding Pytorch Geomet-
ric library implementations. More details are showing in the
Appendix A.3

Results: WaveNet achieves the best performance on Com-
puters and Photo datasets among the mentioned models.
Although the performance is not the best on citation net-
works, WaveNet still attains superior performance. The per-
formance on heterogeneous graphs (e.g., Chameleon and
Squirrel) achieves approximately 1.23% and 5.25% accu-
racy improvement. These results demonstrate that WaveNet
has an excellent performance in handling complex graph
spectral signals. Regarding the poor performance on Actor
dataset, we have more discussions in Appendix A.4.

5.3 High-frequency Spectral Signal Node
classification

Our synthetic toy graph is based on cSBM (Deshpande et al.
2018). We employ ¢cSBM(¢ = —0.25, number of nodes
is 50, features dimension is 6) to generate a graph G with
its Laplacian matrix L. And then we define pre-determined
spectral signals with high-frequency to reconstruct nodes la-
bels. We choose sin(10-\)+1 and sin(10-\)-e~* 41 as the
ground truth signals to evaluate whether WaveNet capture
the fast changes in the graph. The baseline models are Bern-
Net and ChebyNetIl which are representative polynomial-
based model in Spectral GNNs domain. For fairness, the or-
der of polynomial filter K = 10 and the number of wavelet
bases as well.

Results: The results presented in Table 3 indicate that
the wavelet-based filtering approach significantly outper-
forms the polynomial basis method. Figure 4 illustrates
that our proposed model, WaveNet, demonstrates the abil-
ity to capture the scale of graph spectral and exhibits sen-
sitivity to rapidly changing signals. It shows that WaveNet
is particularly effective when dealing with high-frequency
spectral graph signals. This experiment demonstrates that
polynomial-based models have limited ability to fit com-
plex filters, whereas WaveNet leverages wavelet-based meth-
ods to overcome the constraints of polynomial-based models
and effectively capture rapidly changing components in the
graph spectral.

5.4 Visualize the Filters

In this section, we further explore polynomial-based and
wavelet-based spectral domain filtering methods. By visual-
izing the scaling function coefficients learned by our model



Table 2: Results on real world benchmark datasets: Mean accuracy (%) £ 95% confidence interval.
explosion when training.

number means gradient

Cora CiteSeer PubMed  Computers Photo Chameleon Squirrel Actor
Spectral GNNs
GCN 87.14i1_01 79.86i0_67 86.74i0_27 83.32i0_33 88.26i0,73 59.61i2.21 46.7810_87 33-23il.16
GAT 88.03 1079 80.524071 87.041024 83324030 90944065  63.1314193 44494083  33.934047
MLP 76961095 76581088 8594102 82.85i038 84.72.034 46.8511s51  31.031118  40.1910s6
GPR-GNN 88.57+060 80.124083 88.464033 86.85+025 93.851028 67284109  50.154192  39.9240¢7
BernNet 88.524095 80.094079 88.4841041 87.641044 93.631035 68291158  51.354073 41.79+101
ChebyNetII 88. 714093 80.531079 88931020 91.271045 94.061037 71371100 57724050 417541107
SplineCNN 86.904+047 78431064 86.731039 82.08 472 93.6640.41 51.90+35 37.7514002 35.1110s2
ACMII-GCN  89.00+072 81.79+095 90.741¢.50 - - 68.38+136  54.534200 41.84111s
Wavelet GNNs
GWNN 86.21+000 78994000 81.65+000 84.77+000 86.1840.00
WaveNet(ours) 88.4610s51 80221071 90261020  92.061033 9442931 72.601118 62971062 39.691154
Table 3: Node classification task in 50 nodes synthetic toy Pubmed Computer
graph. Labels are generated by two high-frequency spectral B T Ve
signals . Mean accuracy (%) £ 95% confidence interval. =f 20
sin(10A) +1  sin(10A)e™> + 1
BernNet 63.57 1500 5091777 ) 03
ChebyNetII 70.71 +10.00 47'27i7427 Ov}o 0 05 10 5 SRR 05 o 5 20
WaveNet 74.29 571 68.1819.09 A By
Chameleon Squ‘irrel
sin(10A) + 1 sin(10A)e™ + 1 B :O P

Figure 4: Illustration of high-frequency spectral signals
learned by BerNet and WaveNet.

and their corresponding shapes as shown in Figure 5, we
gain a better understanding of their behavior. By visualiz-
ing the learned filters, we can observe high-frequency varia-
tions occurring locally across different datasets. This obser-
vation further reinforces our initial proposition: 1) real world
datasets’ filter is more complex and exist local mutations;
2) since polynomial-based models are scaleless, they are
struggle to capture this dramatic changes. However, these
high-frequency variations can be effectively captured in a
comprehensive manner by using a wavelet-based approach.
The visualizations provide valuable insights into the superi-
ority of wavelet-based methods in modeling and represent-
ing local variations across datasets with varying degrees of
complexity. More datasets’ filter shape can be found in Ap-
pendix A.5

L L L
0.0 0.5 1.0 15 2.0 0.0 0.5 L0 15 2.0
A A

Figure 5: Illustration of filters learned from real-world
datasets by WaveNet.

6 Conclusion

Our work breaks the dominance of polynomial-based ap-
proaches in Spectral GNNs and introduces a novel perspec-
tive for researchers. We employ MRA on spectral graph
signal, and demonstrate wavelets’ strong capacity on high-
frequency signals fitting. Then we utilize scaling function to
reconstruct the spectral signals in graph. Through our exper-
iments, First, we validate the effectiveness of the wavelet-
based approach on learning complex filters by image graph
experiment. Second, the node classification results demon-
strate the superiority of wavelet-based methods over tradi-
tional polynomial-based methods. Third, synthetic toy ex-
periment further validate WaveNet has a better capability to
capture fine components compared to polynomial methods.
Last, we visualize the learned filters. Future research will
aim to tackle computational complexity and try to integrate
alternative wavelet bases like Daubechies wavelet family
into WaveNet. We also want to explore wavelets’ potential
in small molecular graphs.
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A Appendix
A.1 Visualization Results about Node Regression

We further explore the influence about node regression with
the number of wavelet bases changes. We conduct WaveNet
to learn more complex filters and the visualization results
shows in Figure 6.

sin(mA)| low-band pass filter

Figure 6: Illustration of complex filters learned by WaveNet
with the number of wavelet bases changing.

A.2 Datasets Detail

All the datasets can be found in Pytorch Geometric library,
and detail information show in Table 4.

Table 4: Dataset statistics.

Nodes Edges Features Classes

Cora 2708 5278 1433 7
CiteSeer 3327 4552 3703 6
PubMed 19717 44324 500 5

Computers 13752 245861 767 10
Photo 7650 119081 745 8
Chameleon 2277 31371 2325 5
Squirrel 5201 198353 2089 5
Actor 7600 26659 932 5

A.3 The WaveNet Architecture Detail

In this section, we will introduce WaveNet’s architecture. Let
X () ¢ R™*? be an input matrix of graph node feature. We
employ linear layer to map the input feature to hidden space,
which can be easily describe as following:

X! = o(WXU=D 4 B, (18)

Since the Haar wavelet is not a continuous function in the
interval of [0, 2], we pre-compute an eigendecomposition
of the Laplacian matrix, and conduct scaling function of
wavelets to reconstruct the spectral signal of graph. And the
message propagation process is described as following:

y = sofmax(LX"). (19)

WaveNet Setup Detail When Learning Complex Filter:
To ensure fairness, all baseline models are using two con-
volutional units and a linear output layer. The convolutional
units’” hidden dimension is (32,64) respectively. The num-
ber of polynomial and wavelet bases is kept at 10. The maxi-
mum number of training epochs is set to 2000, and the early

stopping threshold is set to 200 epochs if the loss does not
decrease. The Adam optimizer is selected and learning rate
is set to 0.01 for all models, loss function is the sum of
squared error. To force the model to learn the correct coeffi-
cients of the ground truth filters, we remove all linear layers
from the model, retaining only the propagation and convolu-
tional layers. Although this setup increases the squared error,
it helps the model learn the correct coefficients.

WaveNet Setup Detail When Node Classification: For
fairness, we employ WaveNet the same architecture using 2-
layer linear with 64 hidden units on the graph nodes feature
matrix X. After we get the hidden dimensions representa-
tion of nodes feature, the propagation matrix P will apply
on hidden feature matrix X', Last, we utilize a MLP layer to
do classification. And this kind of network structure is men-
tioned in (He et al. 2021). We follow the same framework as
previous work employed. We use the micro-F1 score with a
95% confidence interval as the evaluation metric. The rele-
vant results are summarized in Table 2.

A.4 Analysis of the Actor dataset

Table 5: Eigenvalues distribution of Actor dataset.

Eigenvalue Interval Number of Eigenvalue

[0.0,0.2) 63
[0.2,0.4) 439
[0.4,0.6) 796
[0.6,0.8) 951
[0.8,1.0) 2116
[1.0,1.2) 2081
[1.2,1.4) 1030
[1.4,1.6) 865
[1.6,1.8) 373
[1.8,2.0] 35

Previous works show that the filter of Actor is a line-like fil-
ter which is called all-pass-alike filter (He et al. 2021; Chien
etal. 2021; Bo et al. 2023). Theoretically, wavelets basis can
sensitively capture the fluctuation of spectral signals. And
the true filter of the Actor dataset is indeed high-frequency,
then WaveNet can effectively learn an appropriate filter to
handle it. While our model, similar to the current state-of-
the-art model, also failed to achieve significant improvement
in terms of accuracy. Therefore it is essential to analyze the
underlying reasons for this phenomenon.

As demonstrated in Table 5, we obtained the eigenvalue
distribution of the Laplacian matrix. It is evident that the dis-
tribution is predominantly concentrated around A = 1. Ad-
ditionally, out of the total eigenvalues, there are 1135 eigen-
values that equal 1, which accounts for approximately 15%
of the eigenvalue spectral. This observation implies that ap-
proximately 15% of the nodes are connected to the same
neighbors in the graph (Banerjee 2008), suggesting that the
Actor dataset represents a highly isomorphic graph. We be-
lieve that the strong isomorphism of the graph is one of the
main factors contributing to the current poor prediction per-
formance on the Actor dataset.
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Figure 7: An illustration architecture of WaveNet. The signal reconstruct process is based on wavelet bases and we utilize the
Haar wavelet to filter on graph data.
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Figure 8: Illustration of filters learned from real-world datasets by WaveNet.

Considering our model WaveNet, is not specifically de-
signed to address graph isomorphism. Therefore, the per-
formance of WaveNet is acceptable. To verify whether our
model can effectively capture the high-frequency compo-
nents of graph data, we conduct experiments on artificially
synthesized spectral graph data with high-frequency spectral
signals.

A.5 Filter Learned by WaveNet

Figure 8 plots the filters learnt from real-world datasets by
WaveNet. And most filters exhibit localized mutation prop-
erties



