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Abstract. Deep Q-learning often suffers from poor gradient estimations
with an excessive variance, resulting in unstable training and poor sam-
pling efficiency. Stochastic variance-reduced gradient methods such as
SVRG have been applied to reduce the estimation variance. However, due
to the online instance generation nature of reinforcement learning, directly
applying SVRG to deep Q-learning is facing the problem of the inaccu-
rate estimation of the anchor points, which dramatically limits the poten-
tials of SVRG. To address this issue and inspired by the recursive gradient
variance reduction algorithm SARAH, this paper proposes to introduce
the recursive framework for updating the stochastic gradient estimates
in deep Q-learning, achieving a novel algorithm called SRG-DQN. Unlike
the SVRG-based algorithms, SRG-DQN designs a recursive update of the
stochastic gradient estimate. The parameter update is along an accumu-
lated direction using the past stochastic gradient information, and there-
fore can get rid of the estimation of the full gradients as the anchors. Addi-
tionally, SRG-DQN involves the Adam process for further accelerating
the training process. Theoretical analysis and the experimental results on
well-known reinforcement learning tasks demonstrate the efficiency and
effectiveness of the proposed SRG-DQN algorithm.
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1 Introduction

Recent years have witnessed the dramatic progress of deep reinforcement learn-
ing (RL) in a variety of challenging tasks including computer games, robotics,
natural language process, and information retrieval. Amongst the RL algorithms,
deep Q-learning is a simple yet quite powerful algorithm for solving sequen-
tial decision problems [8,9]. Roughly speaking, deep Q-learning makes use of a
neural network (Q-network) to approximate the Q-value function in traditional
Q-learning models. The system state is given as the input and the Q-values of
all possible actions are generated as the output. The learning of the parame-
ters in Q-network amounts to sequences of optimization problems on the basis
of the stored agent’s experiences. Stochastic gradient descent (SGD) is often
employed to solve these optimization problems. That is, at each iteration of the
optimization, to calculate the parameter gradients, the agent samples an action
according to the current Q-network, issues the action to the environment, gathers
the reward, and moves to the next state. The reward is used as the supervision
information for calculating the gradient for updating the Q-network parame-
ters. The gradient points in the direction of maximum increase the possibility of
getting high accumulative future rewards.

In real-world applications, SGD method in deep Q-learning often suffers from
the inaccurate estimation of the gradients. The high variance gradient inevitably
hurts the efficiency and effectiveness of the deep Q-learning algorithms. How to
reduce the variance has become one of the key problems in deep RL. Research
efforts have been undertaken to solve this problem. For example, Averaged-
DQN [2] extends the traditional DQN algorithm by averaging the previously
learned Q-values estimates, achieving a variance reduced gradient estimation
with an approximation error guarantee. More recently, SVR-DQN [18] proposed
an optimization strategy by combining the stochastic variance reduced gradient
(SVRG) [5] technique and the deep Q-learning, called SVR-DQN. It has been
shown that reducing the variance leads to a more stable and accurate training pro-
cedure. The Adam [6] optimization algorithm is an extension to stochastic gradient
descent. Though it was mainly designed for optimizing neural networks, Adam can
also be directly applied to improve the training process of deep Q-learning. More
methods on variance reduction for deep Q-learning please refer to [12,14]. SVRG
has also been applied to policy gradient methods in RL as an effective variance-
reduced technique for stochastic optimization, such as off-line control [17], policy
evaluation [4], and on-policy control [11]. The convergence rate of the variance-
reduced policy gradient has been proved showing its advantages over vanilla meth-
ods [15]. [16] applied the recursive variance reduction techniques to policy gradi-
ent algorithms and proved the state-of-the-art convergence rate of policy gradient
methods.
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Though preliminary successes have been achieved, current methods are far
from optimal because they ignored the essential differences between RL and tra-
ditional machine learning. The SVRG-based methods need to pre-calculate full
gradients as the anchors. The anchors are crucial for finding more accurate gra-
dient direction estimations in the down-stream parameter update. When being
executed on a fixed training set, SVRG-based methods can easily estimate the
anchors by scanning all of the training instances. In deep Q-learning, however,
the anchors cannot be accurately estimated anymore because the learning is
conducted in an online manner: (1) In deep Q-learning, the training instances
(i.e., the sampled transitions) are gradually generated with the training goes
on, via issuing actions to the environment at each iteration. The algorithm can-
not access the instances that will be generated in the future iterations; (2) In
deep Q-learning, the selection of the actions is guided by the DQN with cur-
rent parameters. Therefore, the generated instances at different iterations can-
not be identically distributed, as the DQN parameters have been updated. The
phenomenon makes the problem of inaccurate estimation of the anchors more
severe. Empirical analyses also have shown that the inaccurate estimation of the
anchors greatly impacted the performances of the SVRG-based methods.

In this paper, to address the issue and inspired by the variance reduction
algorithm SARAH [10], we propose to adopt the recursive gradient estimation
mechanism in SARAH into the training iterations of deep Q-learning, achiev-
ing a novel deep Q-learning algorithm called SRG-DQN. Specifically, SRG-DQN
contains an outer loop which samples N training instances (i.e., N transitions
including the state, action, reward, and next-state) based on the current Q-
network and from the experience replay, and an inner loop which first estimates
the stochastic gradients recursively and then updates the Q-network parame-
ters. Besides, the Adam process is executed at the end of the outer loop for
further improving the efficiency of the training. Theoretical and experimental
analyses demonstrate that the recursive gradient estimation mechanism success-
fully addresses the problem of inaccurately anchors in SVRG-based methods. It
also heritages the advantages from SARAH including the fast convergence rate,
and the stable and reliable training. We conduct experiments on RL benchmark
tasks to evaluate the proposed SRG-DQN algorithm. Experimental results show
that SRG-DQN outperforms the state-of-the-art baselines including SGD-based
and SVRG-based deep Q-learning algorithms, in terms of reward scores, con-
vergence rates, and training time. Empirical analyses also show that SRG-DQN
dramatically reduces the variance of the estimated gradients, discovering how
and why SRG-DQN can improve the performance of the baseline algorithms.

2 Related Work

2.1 SGD for Deep Q-Learning

In Q-learning, it is assumed that the agent will perform the sequence of actions
that will eventually generate the maximum total reward (return). The return is
also called the Q-value and the strategy is formalized as:
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Q(s, a) = r(s, a) + γ max
a′∈A(s)

Q(s′, a′), (1)

where γ ∈ [0, 1] is a discount factor which controls the contribution of rewards in
the future, s is the current state, A(s) contains all of the candidate actions under
state s, a is the selected action, r(s, a) is the received reward after issuing a at s,
and s′ is the next state that the system moves to after issuing a. The equation
states that the Q-value yielded from being at state s and performing action a is
the immediate reward r(s, a) plus the highest Q-value possible from the next state
s′. It is easy to see that Q(s, a) helps the agent to figure out exactly which action
to perform.

Traditionally, Q-value is defined as a table with which the agent figures out
exactly which action to perform at which state. However, the time and space
complexities become huge when facing large state and action spaces. Deep neural
networks have been used to approximate the Q-value function, called deep Q-
learning. The learning of the parameters in the Q-network amounts to a serious
of optimization problems. Specifically, assuming that at time step t, the system
is at state St and the agent issues an action At. After that at the time step
t + 1, it receives a reward Rt+1 and transits to state St+1. Therefore, we collect
a transition tuple (St, At, Rt+1, St+1). The loss function, therefore, is defined
as the mean squared error of the Q-value predicted by the Q-network and the
target Q-value, where the target Q-value is derived from the Bellman equation

y(St, At) = Rt+1 + γ max
a∈A(St)

Q(St+1, a; θ), (2)

where Q(St+1, a; θ) is the Q-network with parameters θ that predicts the Q-
value for the next state with the same Q-network. Stochastic gradient descent
has been employed for conducting the optimization. Given a sampled transition
(S,A,R, S′), the stochastic gradient can be estimated as:

g = ∇(y(S,A) − Q(S,A; θ))2 = 2(y(S,A) − Q(S,A; θ))∇Q(S,A; θ), (3)

where ∇Q(S,A; θ) calculates the gradient of Q w.r.t. the parameter θ.

2.2 Variance Reduced Deep Q-Learning

The original stochastic gradient descent based on a single transition often hurts
from the problem of high gradient estimation variances. There are many ways
to accelerate SGD convergence from the perspective of reducing variance, such
as SAG [13], SAGA [3], and SVRG [5]. Researchers have combined the vari-
ance reduction techniques proposed in traditional machine learning with deep
Q-learning. For example, Zhao et al. [18] proposed an algorithm called Stochas-
tic Variance Reduction for Deep Q-learning (SVR-DQN) which combines SVRG
with utilizes the optimization strategy of SVRG during the learning. Specifi-
cally, at each outer iteration s = 1, 2, · · · , S, the algorithm samples a batch of N
training transitions D = {(Si, Ai, Ri+1, Si+1)}N

i=1, and calculates a full gradient
according to Eq. (3) on D as the anchor:
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g̃ =
1
N

N∑

i=1

2(yi − Q(Si, Ai; θs
0))∇Q(Si, Ai; θs

0), (4)

where yi = Ri+1 + γ maxa′∈A(Si+1) Q(Si+1, a
′; θs

0), and θs
0 is the network param-

eter at the beginning of the s-th outer iteration. In its inner iteration indexed by
m, for each sampled transition (S,A,R, S′) ∈ D, the stochastic gradients w.r.t.
up to date parameters are calculated:

gs
m = 2(ym − Q(S,A; θs

m))∇Q(S,A; θs
m), (5)

where ym = R + γ maxa′∈A(S′) Q(S′, a′; θs
m). Similarly, the stochastic gradients

w.r.t. ‘old parameters’ are also calculated:

gs
0 = 2(y0 − Q(S,A; θs

0))∇Q(S,A; θs
0), (6)

wherey0 = R + γ maxa′∈A(S′) Q(S′, a′; θs
0). Finally based on Eq. (4), (5) and (6),

the variance reduced gradient is calculated as

Δ = gs
m − gs

0 + g̃. (7)

Besides, at each outer iteration, SVR-DQN obtains a more accurate estimation
of the gradient using Adam process, which can accelerate the training of deep
Q-learning and improve the performances [18].

3 Our Approach: SRG-DQN

In this section, we analyze the limitations of the variance reduction mechanism
in SVR-DQN and propose a novel deep Q-learning algorithm called SRG-DQN.

3.1 Problem Analysis

In SVR-DQN, the accurate estimations of the anchors g̃ are crucial they provide
stable baselines to adjust the stochastic gradient. In traditional machine learning,
the SVRG anchors can be accurately estimated based on the whole train data
(i.e., full gradients). In deep Q-learning, however, the training instances are
not fixed in advance but we need to collect them at each parameter change.
Therefore, the estimated anchors are only based on N instances sampled at the
previous and current iterations.

The phenomenon inevitably makes the estimated anchors inaccurate due to
the following two reasons.
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Fig. 1. Training curves of “SVR-DQN”,
“SVR-DQN with exact anchors” and DQN
baseline. The shaded area presents one stan-
dard deviation. We focus on the influence of
anchors and omit the Adam process in these
algorithms.

First, deep Q-learning algorithms
are usually run in an online man-
ner by nature. At each iteration,
the algorithm samples an (or some)
instance(s) as the new training data.
Therefore, it is impossible for the
algorithm to estimate the full gradi-
ents as the anchors, because only a
part of the whole training instances
(the instances sampled at the past
iterations) are accessible.

Second, the instances sampled at
different iterations are based on the
Q-network with different parameters.
That is, at each iteration, the agent
first sample an action guided by the
Q-network Q(s, a; θ) (for example, ε-
greedy), and then use the sampled
instance to update parameters. Therefore, the Q-network is continuously
updated during the training, and the sampled instances at different iterations
would belong to different distributions. This will make the estimated anchors
cannot reflect the directions that the exact gradients should point to.

We conduct an experiment to show the impact of the inaccurate anchors.
Specifically, based on the Mountain Car task, we compared the performances of
deep Q-learning with SVRG (SVR-DQN) and its variation in which the anchor
points could be exactly estimated. To do this, we first ran the existing SVR-DQN
and recorded all of the sampled transitions. Then, we re-ran SVR-DQN using iden-
tical settings and training transitions at each iteration, except estimating the g̃
in line 5 with all of the recorded transitions (denoted as “SVR-DQN with exact
anchors”).

In this way, the anchors g̃ are estimated on the whole training data as that
of in traditional machine learning Fig. 1 shows the training curves of the two
models”. We can see that compared with “SVR-DQN”, “SVR-DQN with exact
anchors” converged faster, better, and with lower variances. The results clearly
indicate that the inaccurate estimation of the anchors can hurt the power of
SVRG. We conclude that directly applying SVRG to deep Q-learning violates
the basic assumptions of SVRG, and therefore limits its full potentials.

3.2 Recursive Gradient Deep Q-Learning

To address the problem and inspired by the algorithm of SARAH [10], in this
paper we propose a novel algorithm called Stochastic Recursive Gradient Deep
Q-Network (SRG-DQN). Different from the SVRG-based methods, SRG-DQN
resorts to the recursive gradients rather than the full gradients, as the anchors.
In this way, SRG-DQN gets rid of the inaccurate estimation of the anchors.
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As shown in Algorithm 1, SRG-DQN contains an outer loop indexed by s.
At each outer loop, N training instances D are sampled and the initial anchor
point Δs

0 is calculated based on all of the N sampled instances:

Δs
0 = ∇

(
1

N

N∑
i=1

(yi − Q(Si, Ai; θ
s
0))

2

)
=

1

N

N∑
i=1

2(yi − Q(Si, Ai; θ
s
0))∇Q(Si, Ai; θ

s
0) (8)

where each of the targets yi = Ri+1 + γ maxa′∈A(Si+1) Q(Si+1, a
′; θs

0) is the
Q-value derived from the Bellman equation, for i = 1, · · · , N . Δs

0 is first used to
update the parameters.

At each iteration of its inner loop m, the algorithm first randomly samples
one training instance (S,A,R, S′) ∈ D. The stochastic gradient w.r.t. current
up-to-date parameters, denoted as θs

m, is calculated as follows:

gs
m = ∇(ym − Q (S,A; θs

m))2 = 2 (ym − Q(S,A; θs
m)) ∇Q(S,A; θs

m), (9)

where the target ym = R+γ maxa′∈A(S′) Q(S′, a′; θs
m) . Similarly, the stochastic

gradient w.r.t. the previous inner loop parameter θs
m−1 is also calculated:

gs
m−1 = 2

(
ym−1 − Q(S,A; θs

m−1)
) ∇Q(S,A; θs

m−1),

where ym−1 = R + γ maxa′∈A(S′) Q(S′, a′; θs
m−1).

Following the recursive gradient defined in [10], the final gradient at current
loop, Δs

m, can be defined recursively. That is, using the previous loop gradient
Δs

m−1 as the anchor point to estimate the current loop gradient:

Δs
m = gs

m − gs
m−1 + Δs

m−1. (10)

Note that the anchor for the first loop (i.e., Δs
0,m = 0) is the full gradient cal-

culated in the outer loop. To further improve the performances and in light of
Adam optimizer [6], we also propose to introduce the Adam process in SRG-
DQN. Specifically, after the ending of each inner loop, an Adam process is exe-
cuted for further updating the parameters, including calculating a biased first
moment, a biased second raw moment, a bias-corrected first moment, and a bias-
corrected second raw moment, and finally conducting the parameter updating.
Detailed description of Adam process in SRG-DQN can be found in the supple-
mentary material. Following the practices in [7,10], SRG-DQN takes θS

M+1 as
its final output. The algorithm is also suitable for a mini-batch version.

3.3 Theoretical Analysis

We analyze the convergence of SRG-DQN as follows. Proof of Theorem 1 can
be found in the supplementary material. In the inner loop, the optimization in
DQN can be formulated as the empirical risk minimization problem:

min
θ∈Θ

F (θ) :=
1
M

M∑

i=1

fi(θ), (11)
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where fi(θ) = [yi − Q(Si, Ai; θ)]
2. The optimization problem in DQN is noncon-

vex due to the composite structure of neural networks. Given the error parameter
ε > 0, the goal is to search for an ε-optimal point θ ∈ Θ such that

E[‖∇F (θ)‖2] ≤ ε. (12)

First, similar to that of in [1], we give the definition of the Incremental First-
order Oracle (IFO):

Definition 1. IFO takes a point θ ∈ Θ and an index i ∈ {1, 2, . . . ,M} as inputs
and returns the pair ∇fi(θ).

Then the convergence rate of the algorithms can be measured by the oracle com-
plexity. The oracle complexity is defined as the smallest number of queries to IFO
leading to an ε-optimal point. Further assuming that each function fi(θ) is βi-
smooth and bounded for i ∈ [M ] (that is, ∇fi(θ) is βi-Lipschitz continuous and
|fi(θ)| ≤ Bi, i ∈ [M ], θ ∈ Θ), we have the following Theorem 1 for SRG-DQN:

Theorem 1. Let μ =
∑M

i=1 β2
i /M and Bmax = supi∈[M ]{Bi}. For SRG-

DQN within a single outer loop (in outer iteration s ∈ [S]), setting η ≤
2/[

√
μ(

√
4M + 1 + 1)] to attain an ε-optimal point requires Ω

(√
M/ε

)
queries

to IFO.

Algorithm 1. Stochastic Recursive Gradient for Deep Q-Learning (SRG-DQN)
Require: Deep Q-function Q, # epochs S, epoch size M , discount factor γ, step size η
Ensure: Model parameters θ

1: Initialize θ0M+1 ← θ0
2: for s = 1 to S do
3: θs0 ← θs−1

M+1

4: sample N transitions D = {(Si, Ai, Ri+1, Si+1)}Ni=1 according to Q(s, a; θs0)

5: Δs
0 ← 1

N

∑N
i=1 2(yi − Q(Si, Ai; θ

s
0))∇Q(Si, Ai; θ

s
0)

where yi = Ri+1 + γ max
a∈A(Sk+1)

Q(Sk+1, a; θs0)

6: θs1 ← θs0 − ηΔs
0{update with full gradient}

7: for m = 1 to M do

8: randomly select a transition (S, A, R, S′) ∈ D
9: ym ← R + γ max

a′∈A(S′)
Q(S′, a′; θsm)

10: gs
m ← 2(ym − Q(S, A; θsm))∇Q(S, A; θsm) {gradient w.r.t. up-to-date parameters}

11: ym−1 ← R + γ max
a′∈A(S′)

Q(S′, a′; θsm−1)

12: gs
m−1 ← 2(ym−1 − Q(S, A; θsm−1))∇Q(S, A; θsm−1) {gradient w.r.t. previous-

iteration parameters}
13: Δs

m ← gs
m − gs

m−1 + Δs
m−1{recursive gradient which using the previous one as the

anchor}
14: θsm+1 ← θsm − ηΔs

m {update parameters}
15: end for

{Adam process}
16: end for

17: return θSM+1
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Remark 1. While the oracle complexity of SVRG is Õ
(
M + M2/3/ε

)
for the

optimization problem in DQN [7], SRG-DQN achieves a lower oracle complexity
w.r.t. the number of the epoch size M , which indicates SRG-DQN has a faster
convergence rate than that of SVRG for DQN.

4 Experiments

4.1 Experimental Settings

We follow [16] to conduct the experiments on benchmark RL environments,
including the Cartpole, Mountain Car and Pendulum problems. Following the
setups in [9], ε-greedy strategy is used for the exploitation and exploration, where
ε decreases linearly from initial value 0.1 to 0.001. The transfer instances gener-
ated during the interactions between the agent and the environment are stored
in the experience replay memory, which adopted a first-in-first-out mechanism
to store the transition data. When performing the gradient descent, the algo-
rithm sampled 64 transition instances from the experience replay uniformly as
the training batch data. The learning frequency is set to 16, which means that
the batch data is sampled once every 16 rounds. In all the experiments, the
DQN algorithm in [9] is adopted as the main architecture. Our algorithms are
called “SRG-DQN” and “SRG-DQN without Adam Process”. The DQN opti-
mized by SGD (called “DQN with SGD”) and DQN optimized by SVRG (called
“SVR-DQN”) are chosen as the baselines.

Fig. 2. Performance curves of DQN with SGD (blue), SVR-DQN (green), SRG-DQN
without Adam process (purple) and SRG-DQN (orange) for three tasks, where the
shaded area represents standard deviation, the ‘Steps’ represents the outer iteration
s in Algorithm 1 and the ‘Avg Reward’ represents the average rewards, the ‘Episode’
represents a complete trajectory and the ‘Avg Reward’ represents the average return
per trajectory. (Color figure online)

4.2 Experimental Results

We conduct average reward experiments in three tasks, in which the average
reward is used to measure the performance of the agent. For fair comparisons,
DQN structures in all algorithms are set with the same parameters.
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The left part of Fig. 2 compares the performance of the four algorithms on
the Mountain Car task. To encourage the car to explore, we replace the reward
function from the original discrete value to a continuous function that is cor-
related with the car’s position. Without limiting the episode length, the four
algorithms all run 100,000 steps which means the faster the car reaches the goal,
the higher average reward of each action will get. We omit the standard devia-
tion of DQN with SGD in this figure, which is obviously poor. The middle part
of Fig. 2 compares the performance of the four algorithms on Pendulum task.
To facilitate DQN for choosing the action, we decompose it into 12 parts with
equal distances. All the four algorithms do not limit the number of episodes,
run 20,000 steps, and repeat 50 rounds. From the results, our algorithm achieves
a fast convergence rate and has the optimal average reward with reduced vari-
ances. The right part of Fig. 2 compares the performance of the four algorithms
under Cartpole task in which we need to keep the pole standing, and once it
falls, the task is terminated. So we replace the average rewards for each step with
the average reward for each episode. To accelerate convergence, we replace the
reward function from the discrete value of 0/1 to a continuous function related to
observations. The score is higher when the pole is straighter. All four algorithms
run 800 episodes and repeat 10 rounds. From the results, our algorithm has an
excellent average reward while significantly reducing the variance.

Fig. 3. Results of the experimental analysis on Mountain Car. Left : average steps
w.r.t. episodes; Middle: �2 distances between the exact anchors and recursive anchors
in SRG-DQN and SVR-DQN. Right : SRG-DQN with different optimizer processes.

4.3 Experimental Analysis

We experimentally analyze the reasons why SRG-DQN is effective. We first con-
duct the episode-average size experiment, in which four algorithms are run with
150 episodes and 100 rounds under the same model parameter settings. The con-
vergence rate is measured by the average size of the episode, and the stability
is evaluated by the standard deviation. The experimental results are shown in
the left part of Fig. 3, where the bold line represents the average episode size
of multiple experiments, and the shading represents the standard deviation. We
can observe that SRG-DQN has significantly improved the convergence rate and
the stability compared to the traditional DQN with SGD. Compared with SVR-
DQN, SRG-DQN further shortens the average episode length, reduces the stan-
dard deviation. The orange line represents SRG-DQN. From the results, Adam
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process and variance reduction algorithm can play a complementary role, and
their combination can further accelerate the algorithm convergence and improve
the stability of the agent. In addition, we computed the 
2 distances between
the exact anchors and the recursive anchors in SVR-DQN and SRG-DQN. From
the results about distances in the middle part of Fig. 3, we can observe that
the recursive anchors in SRG-DQN can significantly reduce the distances from
the exact anchors, which is another reason why SRG-DQN can achieve better
performances. We also compared the effects of the combined use of variance
reduction methods and different optimizer processes. As shown in the right part
of Fig. 3, adding an optimization process will further improve the performance of
the algorithm, and due to the combined use of first-order gradient and second-
order gradient information, the Adam process has proven to be a better choice
than the Adagrad.

In order to explore whether our method really reduces the variance of gradi-
ent estimation, we compared the performances of SRG-DQN with SVR-DQN on
the variance reduction for gradients. We calculated the standard deviations of
the gradients with respect to the parameters on each dimension separately and
then summed them up. From the results in Table 1, we can find that, compared
with SVR-DQN, SRG-DQN significantly reduces the standard deviation, and it
is almost completely superior to SVR-DQN at most steps. Thus, we can con-
clude that SRG-DQN converges to the function controlling the variance of the
gradients, and achieves an improvement on SVR-DQN for variance reduction,
which demonstrates the effectiveness of our stochastic recursive gradient for the
variance reduction in DQN.

Table 1. The comparisons between SVR-DQN and SRG-DQN in terms of the stan-
dard deviation of the gradients on Mountain Car task, where the standard deviation
is computed by summing the standard deviations of each element in the first-layer
network gradient vector. We recorded the standard deviation once every 1,000 steps
for the first 10,000 steps (first three rows) and last 10,000 steps (last three rows).

# Steps (first) 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

SVR-DQN 0.229 0.790 0.430 0.474 0.626 1.176 0.500 0.388 0.638 0.739

SRG-DQN 0.122 0.395 0.389 0.520 0.625 0.632 0.966 0.966 0.394 0.562

# Steps (last) 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

SVR-DQN 0.306 0.286 0.293 0.212 0.188 0.318 0.443 0.271 0.193 0.205

SRG-DQN 0.225 0.334 0.254 0.353 0.154 0.247 0.182 0.229 0.188 0.203

5 Conclusion

This paper proposes a novel deep Q-learning algorithm using stochastic recur-
sive gradients, which reduces the variance of the gradient estimation. The pro-
posed algorithm introduces the recursive framework for updating the stochastic
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gradient and computing the anchor points. Adam process is involved for achiev-
ing a more accurate gradient direction. Theoretical analysis and empirical com-
parisons showed that the proposed algorithm outperformed the state-of-the-art
baselines in terms of reward scores, convergence rate, and stability. The proposed
stochastic recursive gradient provides an effective scheme for variance reduction
in reinforcement learning.
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learning problems using stochastic recursive gradient. In: Proceedings of the 34th
International Conference on Machine Learning, pp. 2613–2621 (2017)

11. Papini, M., Binaghi, D., Canonaco, G., Pirotta, M., Restelli, M.: Stochastic
variance-reduced policy gradient. In: Proceedings of the 35th International Con-
ference on Machine Learning, pp. 4023–4032 (2018)
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