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ABSTRACT

In realistic application scenarios, existing methods for image-text
modeling have limitations in dealing with data stream: training on
all data needs too much computation/storage resources, and even
the full access to previous data is invalid. In this work, we thus
propose a new continual image-text modeling (CITM) setting that
requires a model to be trained sequentially on a number of diverse
image-text datasets. Although recent continual learning methods
can be directly applied to the CITM setting, most of them only
consider reusing part of previous data or aligning the output distri-
butions of previous and new models, which is a partial or indirect
way to acquire the old knowledge. In contrast, we propose a novel
dynamic historical adaptation (DHA) method which can holisti-
cally and directly review the old knowledge from a historical model.
Concretely, the historical model transfers its total parameters to the
main/current model to utilize the holistic old knowledge. In turn,
the main model dynamically transfers its parameters to the histori-
cal model at every five training steps to ensure that the knowledge
gap between them is not too large. Extensive experiments show
that our proposed DHA outperforms other representative/latest
continual learning methods under the CITM setting.
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Figure 1: (a) The results of catastrophic forgetting under the
CITM setting. (b) The results of cross-dataset evaluation after
independent training on four datasets.

1 INTRODUCTION

In the past few years, image-text modeling has drawn much at-
tention from both academia and industry with a fundamental role
in various cross-modal tasks, such as image-text retrieval [12, 24],
image captioning [20, 44], and text-image generation [21, 33]. Al-
though existing image-text modeling methods [5, 16, 18, 19, 25,
26, 30] have achieved great success in these tasks, most of them
assume that a full (fixed) set of image-text pairs are provided for
model training, which actually limits their deployment in realistic
application scenarios. That is, the training data often comes in a
stream way, and the current widely-used paradigm for image-text
modeling faces two limitations: (1) training on all data (i.e., both
previous and new data) severely increases the computational and
storage overhead; (2) the full access to previous data may be invalid.
To overcome these limitations, we thus propose a continual
image-text modeling (CITM) setting instead. Concretely, we recol-
lect four diverse image-text datasets respectively from MSCOCO [28],
CC3M [40], WIT [42] and GoodNews [6], each of which is split into
the training, validation, and test sets. We adopt the SimCLR-based
model [13] as the basic model which is also deployed in OpenAlI
CLIP [34]. Under the CITM setting, the model is sequentially trained
on each of the four image-text datasets, and is finally evaluated on
all datasets. To demonstrate the well-known catastrophic forgetting
problem, we measure the image-to-text retrieval performance with
the metric recall@1 (R@1) during sequential training on the four
datasets. The results in Figure 1 (a) clearly show that every time
the model is trained on a new dataset, its performance on previous
datasets has a distinct degradation (i.e., catastrophic forgetting).
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Figure 2: Schematic illustration of the realistic application of our proposed CITM setting in large-scale multi-modal pre-training
(like OpenAI CLIP) with the pre-training data being updated every year. Left: The traditional setting for large-scale pre-training
with annual data update. Right: Our CITM setting for large-scale pre-training with annual data update.

Among existing continual learning methods, rehearsal-based [7,
11] and regularization-based methods [8, 27, 36, 47] can be eas-
ily applied to the CITM setting, while architecture-related meth-
ods [31, 32, 38] generally need extra task-specific modules and
are unsuitable for CITM with a unified architecture. In this paper,
we thus devise baseline methods for CITM mainly by deploying
rehearsal-based and regularization-based methods. Note that these
two groups of continual learning methods have their own limita-
tions. Specifically, rehearsal-based methods set up a memory buffer
to replay previous data, and only preserve partial old knowledge due
to the sample selection imposed on the memory buffer. Moreover,
regularized-based methods can only convey the old knowledge by
aligning the output distributions of the previous and new models,
which indicates that the old knowledge from the previous model
can only be indirectly transferred through data-driven guidance.
Such an indirect approach is thus vulnerable to large domain shifts
across the previous and new tasks.

To avoid the drawbacks of the above baseline methods for CITM,
we thus propose a novel dynamic historical adaptation (DHA)
method which can holistically and directly review the old knowl-
edge from a historical model. The core idea of our DHA is to directly
transfer knowledge between the old and new models through pa-
rameter interaction. In our DHA, we name the model trained on
the current task as the main model, and the last (main) model on
the previous task as the historical model. During parameter inter-
action, we directly transfer the parameters of the historical model
to the main model and then train the main model with modified
parameters on the current task. Meanwhile, we dynamically update
the historical model with the guidance of the main model to ensure
that the knowledge gap between them is not too large. Specifically,
at every five steps, the parameters of the main model are passed to
the historical model for parameter modification. Overall, these two
parameter transfer strategies make up our DHA method. Compared
with existing methods [7, 8, 11, 27], our proposed DHA method
has two advantages: (1) DHA adopts direct parameter transfer in-
stead of indirect model aligning (deployed by regularization-based
methods), and thus it is more robust to large domain shifts across
the previous and new tasks. (2) DHA holistically reviews the old
knowledge from the historical model, which can overcome the
drawback of rehearsal-based methods for partial data selection (i.e.,
only partial old knowledge is reused). To the best of our knowledge,
we are the first to propose a direct parameter transfer method to
cope with the forgetting problem in the continual learning field.
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As we have mentioned, we construct a benchmark dataset for
the CITM setting by recollecting four diverse image-text datasets
respectively from MSCOCO [28], CC3M [40], WIT [42] and Good-
News [6]. Under a fair setting, we compare DHA with a number of
baseline methods [7, 8, 11, 27] on this benchmark dataset. Exten-
sive experiments prove that our DHA outperforms these baseline
methods under the CITM setting.

Overall, the main contributions of this paper can be summarized
as follows: (1) We propose a new continual image-text modeling
(CITM) setting for image-text modeling on data stream, which
has a realistic application in large-scale multi-modal pre-training
(with annual data update) as shown in Figure 2. (2) We devise a
novel dynamic historical adaptation (DHA) method under the CITM
setting. For the first time, we identify the important role of direct
parameter transfer (between the historical and main models) in
continual learning. (3) We construct a benchmark dataset of four
diverse sets of image-text pairs, which can facilitate the research
on CITM. (4) Extensive experiments demonstrate the effectiveness
of our DHA under the CITM setting.

2 RELATED WORK

Image-Text Modeling. Recent image-text modeling methods can
be summarized into two groups: single-stream and two-stream
methods. (1) Single-stream methods aim to learn the unified rep-
resentation of the image-text pair with a fusion module. Most of
existing single-stream methods [25, 26, 30, 43, 48] choose to con-
catenate the image and text embeddings as the input of the fusion
module (e.g., cross-attention transformer). Although model training
is easy for single-stream methods, it requires calculating the simi-
larities of all the possible query-candidate pairs during inference.
Therefore, they suffer from heavy computation burdens. (2) Two-
stream methods [5, 16, 18, 19, 34] adopt independent image and text
encoders to learn image and text embeddings that are aligned in a
joint space. Compared to single-stream methods, two-stream meth-
ods allow different depths and designs of network architectures
for the two modalities and enjoy much more efficient inference. In
this work, we follow the two-stream architecture for image-text
modeling: ResNet50 [17] is used as the image encoder, and BERT-
base [15] is used as the text encoder. We adopt SimCLR [13] as the
basic contrastive learning method for model training.

Continual Learning. By reviewing recent progress in conven-
tional continual learning, we can divide main-stream approaches
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Figure 3: Overview of the proposed DHA method for the CITM setting. At the beginning of task T;, the last main model in task
T;—1 is used to initialize both the historical and main models. During each training iteration, the main model first receives
the transferred parameters from the historical model and then learns on the dataset of task T;. Moreover, for every k training
iteration, the historical model is updated with the transferred parameters of the main model.

into three groups: (1) Rehearsal-Based Methods. Early classic
rehearsal-based method [37] proposes to store part of exemplars of
previous classes in order to acquire better class means. [11] finds
that retraining a subset of old data on new tasks can help address
the forgetting problem and also provides several memory update
strategies. [3, 7, 10] further explore the approaches to selecting
representative samples from old tasks. In addition, pseudo-data
rehearsal generating approaches [4, 23, 29, 35, 41] are proposed
to avoid extra storage and generate more representative samples
for training, whereas generating pseudo-data actually increases
the training time. Note that the rehearsal-based methods suffer
from the drawback that only partial historical knowledge is trans-
ferred by the memory buffer. (2) Regularization-Based Methods.
This group of methods mainly aim to distill the knowledge of the
previous models. [27, 36, 47] align the output features or logits
between the previous and the current models with an extra regular-
ization penalty. Since the domain shifts exist across different tasks,
such regularization penalty brings additional training difficulty [14].
Other methods [1, 9, 22] constrain part of the parameters of the
model. Since most of these methods are designed for classification
tasks, they are hard to be directly applied to our CITM setting. (3)
Architecture-Related Methods. This group of methods mitigate
the difference in new tasks in two ways. [31, 32, 39] mask different
parameters while training different tasks. [2, 38, 45] extend net-
work architecture for new tasks. A potential drawback of these
methods is that they generally need extra task-specific modules
and are unsuitable for CITM with a unified architecture. Other than
the above approaches with a single strategy, recent works [7, 8]
start to design combined strategies for continual learning based
on rehearsal-based and regularization-based methods. Finally, we
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notice that most of existing continual learning approaches have a
common characteristic that the old knowledge is expressed with
(partial) data, which means that the model update to mitigate forget-
ting may be affected by partial/indirect guidance. In contrast, our
proposed DHA provides a new perspective of continual learning
that the old knowledge could be holistically preserved by direct
parameter transfer.

3 PROPOSED METHOD

3.1 Preliminary

We first define our proposed CITM setting formally. Given a se-
quence of n image-text datasets D = {D1, Dy, ..., D} coming from
n domain sources like a stream, a model for CITM is supposed to be
sequentially trained on . Each dataset D; (1 < t < n) is defined
as Dy = {(x{ , xiT)}fi’l, where xl.I and xiT respectively denote the
image and text samples in the i-th image-text pair, and N; denotes
the number of data pairs. The image-text retrieval task [12, 24] on
each dataset Dy is denoted as T; (1 < t < n). For each task T;, a
model for image-text retrieval typically learns to align the image
and text embeddings with contrastive loss [13]. Under the CITM
setting, the model only concentrates on the current task during se-
quential training, leading to the catastrophic forgetting of previous
knowledge. For performance evaluation, the obtained final model
(trained across all tasks) is tested on each of the n tasks.

3.2 Network Architecture

Under the CITM setting, we propose a novel dynamic historical
adaptation (DHA) method which can holistically and directly re-
view the old knowledge from a historical model. The core idea of
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our DHA is to directly transfer knowledge between the old and new
models through parameter interaction. To this end, our DHA model
is devised to have two key components: the historical model and the
main model, which are illustrated in Figure 3, respectively. These
two models share the same architecture while only the main model
requires the backward update. We follow the two-stream network
architecture like CLIP [34], which has achieved remarkable perfor-
mance in image-text retrieval tasks. Concretely, the image encoder
takes ResNet50 as the backbone and the text encoder takes BERT-
Base as the backbone, which are both initialized with unimodal
pre-trained models.

Image and Text Encoders. Formally, the backbone ResNet50 of
the image encoder is denoted as flges Nep Meanwhile, the backbone
BERT-Base of the text encoder is denoted as fBTe »;- Given an input
text xiT, we first tokenize it into a sequence as [tkl.l, tkl.z, . tkf"],
where [; denotes the length of sz' To ensure that the text and
image embeddings have the same dimension, we append linear
projection layers f; and fg to the image encoder ResNet50 and
the text encoder BERT-Base, respectively. Given an image-text pair
(x{ , xiT), the final image and text embeddings are given by:

et = fp fesner (D)5 1)

el = LA, (kL k2, L k). @)

Contrastive Loss Function. Since our DHA has the two-stream
architecture, it can be effectively trained by the well-known con-
trastive learning method SimCLR [13]. Concretely, given a batch of
B image-text pairs {x{ , x?}?: ; during training, the loss function is
constructed as follows. For each input image in , we define the con-
trastive loss between its image embedding e{ and the embeddings

of all positive/negative texts in the batch as an InfoNCE loss:

o 1N
L = —— lo s

¢ B ; & exp(e{ . el.T/r) +]§i exp(e{ . ejT/T)

exp(e{ . el.T/T)

©)

where 7 denotes the temperature hyperparameter, and the vector
similarity is measured by dot product (-). Similarly, for each input
text xiT, the InfoNCE loss is given by:

B

1
LéZl = _E ZIO

exp(e{ . eiT/r)
s g exp(e{ . el.T/'[) + Y exp(e§ . e?/‘[).
J#i

4)

The total contrastive loss for training our DHA is thus defined as:
Le =L 4 1%, (5)

In this work, for fair comparison, all the competitors for CITM
adopt the same network architecture and the same basic contrastive
loss function as our DHA. More details can be found in Sec. 4.

3.3 Dynamic Historical Adaptation

As we have mentioned, our motivation of method design is to trans-
fer the holistic knowledge contained in the historical model to the
new model, without suffering from the drawbacks of existing contin-
ual learning methods. Concretely, data rehearsal approaches [7, 11]
attempt to preserve the previous data distribution, but retaining
a memory buffer of limited size may cause the overfitting to the
partial samples of the previous task. Moreover, regularization-based
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approaches [8, 27, 36, 47] attempt to store the historical knowledge
by aligning the historical and main models with regularization-
based penalty terms, but such an indirect way to addressing the
forgetting problem is thus vulnerable to large domain shifts across
the previous and new tasks. In this paper, we thus propose a novel
dynamic historical adaptation (DHA) method which can holisti-
cally and directly review the old knowledge from a historical model.
Below we introduce the details of the two update strategies applied
in our DHA throughout training.

Adaptation of Main Model with Historical Model: Since all the
learned knowledge has been held and expressed by model param-
eters, we believe that directly transferring the parameters of the
historical model to the main model is a direct and effective approach
to preserving the historical knowledge. The direct parameter trans-
fer process is shown in Figure 3. Formally, let 0y, 0, 9]*\4 denote
the parameters of the historical model, the main model, and the
last main model in the previous task, respectively. Moreover, let Gliq
and Gliw denote the parameters of the historical model and the main
model at the end of the i-th training iteration in the current task,
respectively. At the beginning of the current task, we initialize the
main model and the historical model with the parameters of the last
main model in the previous task (i.e., 924 =0y, and 921 = 63). For
each training iteration (i > 1) before data load, we choose to update

9; ! with part of 9;; ! and obtain G;Zre as the new intermediate
parameters of the main model. After such parameter update, the
main model is trained on the input data and backward updated
normally to obtain jSw as the final parameters of the i-th training

iteration. We define the gradient function w.r.t. O as:

dL¢
Oy

Gr, (Om) = (6)

Oni=bn
The above adaptation strategy for the main model with the histori-
cal model can be formulated as:

0.7 = 116" + (1- )6l )
6L, = 617 — G (017), ®)

where 1 denotes the learning rate, and A; denotes the weighting
coeflicient. By combining Eq. (7) and Eq. (8), we have the adaptation
process from 6}/ Lto 0}, as follows:

04y = MO + (1= A0 — nGr, (M0 + (1 - )0 ). (9)

Dynamic Update of Historical Model: Currently, the main model
has received the guidance from the historical model. However,
since the parameters of the historical model remain static in the
current task, this may cause two concerns: (1) Since the main model
always learns better on the current task as the training process goes
on, the knowledge gap between the historical and main models
is gradually enlarged. Therefore, the parameters transferred from
the unchanged historical model tend to cause degradation to the
retrieval performance of the main model on the current task. (2)
Such performance degradation to the main model on the current
task would finally affect the performance of the final model (i.e.
the last main model across all tasks) when it is evaluated on this
task. To address these concerns, we choose to make the parameters
of the historical model gradually change by updating it with the
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Algorithm 1: Sequential Training with DHA

Input: the dataset for sequential tasks {Di}iT:1
the main model with parameters 0,4in
the historical model with parameters 0y;;
the last model of the last task with parameters 0;,;
max iterations imqy in each task
hyperparameters k, 11, A2
Output: the learned 07, ..
initialize O4in by training the main model on Dy;
initialize 0;,5; < Omain;
for D; € {Dy,...,Dr} do
initialize Op;s; < O14st> Omain — Olast;
for i « 1 toimqx do
if i%k = 0 then
‘ 0 /Izefufslt +(1- )01

hist main
else
i i-1
‘ ehist - ehist
end
update Ofn ain according to Eq. (9);
end

obtain Omain 0jasi — Omain;

end
.

return the 9m ain’

parameters of the main model (but not so frequently). This dynamic
update of the historical model at the i-th iteration is given by:

i—1 i—1 e
%z{xze;{ +0 =20 fi=mkmen

i-1 .
GH , otherwise

where k denotes the step interval for model update, and 1, denotes
the weighting coefficient.

Overall, our proposed DHA is composed of the above two update
strategies, which have been shown to be effective in Sec. 4.3 and
Sec. 4.4. We believe that direct parameter transfer is another promis-
ing way to handling the continual learning problem in image-text
modeling. The pseudocode of the full algorithm for our proposed
DHA is given in Algorithm 1.

4 EXPERIMENTS

4.1 Experimental Setup

Datasets. To mimic the realistic application of the CITM setting
in multi-modal pre-training (like OpenAI CLIP), we recollect four
image-text datasets for benchmark construction from the following
large diverse datasets of image-text pairs: (1) MSCOCO [28] is
an image-text dataset that consists of 123, 287 images with their
captions. Each image is annotated with 5 captions. Most images
are related to the nature and common objects in daily life. (2)
CC3M [40] is a well-known image-captioning dataset for image-
text pre-training. It is composed of about 3M image-text pairs,
which are collected from the Internet with weak relation between
images and their textual descriptions. (3) WIT [42] is a large mul-
timodal multilingual dataset collected from the Wikipedia website.
This dataset has a total of 11.5M images. Each image is annotated
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with the corresponding textual description or contextual informa-
tion. (4) GoodNews [6] is a large news image-captioning dataset.
It is collected from the New York Times. Unlike the other datasets,
the captions in GoodNews are written by professional journalists
and are thus claimed to have implications for the style and richness
of the news. In this paper, based on the aforementioned four image-
text datasets, our benchmark dataset of four sequential tasks is
constructed as follows: (1) For task Tj, we randomly select 100, 000
images with corresponding captions from MSCOCO as the training
set, 13, 287 as the validation set, and 5, 000 as the test set. (2) For the
other tasks T — Ty, we construct the three task-specific datasets
from CC3M, WIT, and GoodNews, respectively. Concretely, the
training/validation/test set is formed to have 130, 000/13, 000/5, 000
image-text pairs uniformly for each task of T, — Tj.

To directly demonstrate the domain shift across the four datasets
used in our CITM setting, we conduct cross-dataset evaluation
experiments. Concretely, we train the model (with the same archi-
tecture described in Sec. 3.2) independently on the train set of each
dataset, and then evaluate it on the test sets of all four datasets to
show its performance on the seen dataset and the other unseen
datasets. As shown in Figure 1 (b), the model achieves the highest
performance on its seen dataset and much lower performance on
unseen datasets. Therefore, we validate that there do exist domain
shifts, in other words, the domain gap across the four datasets. Over-
all, our CITM setting reasonably mimics the realistic application
scenarios of image-text modeling.

Evaluation Metrics. We adopt Recall@mean (R@mean) and For-
getting Rate (FR) as our evaluation metrics. R@mean indicates
the mean value of Recall@1, Recall@5, and Recall@10, where Re-
call@K (K=1,5,10) denotes the percentage of correct matching in the
top-K retrieved results. The R@mean on each task indicates the re-
trieval performance of the final model on this task. Moreover, for the

t_pn
final model tested on task T;, FR is defined as FR} = R R[R £
t
Rf denotes the R@mean of the last main model in task T; on the test
set of task T, and R;’ denotes the performance of the final model

t_pn
on the test set of task T;. The average FR is FR = ﬁ Z;’z_ll %

, where

4.2 Implementation Details

Under the CITM setting, we train our DHA model on a sequence of
four datasets: MSCOCO (Task T;), CC3M (Task T), WIT (Task T3),
and GoodNews (Task Ty). After the main model has completed its
training on task T;_1, we find the last main model on the validation
set of T;—1. At the beginning of task T;, this main model is used to
initialize both the main and history models on this new task. For a
fair comparison, we set the memory buffer to have 5% samples of
the train set of each task for our DHA (if a buffer is used) and all
competitors. The core idea of our memory buffer update strategy is
similar to ER-ring [11] and we keep the buffer evenly containing
image-text pairs from all the previous datasets instead. To make a
comprehensive study, we implement our DHA with and without
memory buffer to validate its effectiveness under the CITM setting.

We adopt BERT-Base [15]/ResNet50 [17] as the backbone of
text/image encoder. They both use corresponding unimodal pre-
trained models for initialization. The images are resized to 224x224
pixels, and the max length of the text descriptions is set to 256
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Table 1: Comparative results between our proposed DHA and other representative/latest methods under the CITM setting. ‘T2I’
denotes text-to-image retrieval and ‘I2T’ denotes image-to-text retrieval. All methods adopt the same network architecture.

‘Mem’ denotes the data rehearsal with 5% buffer.

Task Ty Task T, Task T Task Ty Average
Method Mem
R@mean FR R@mean FR R@mean FR R@mean | R@mean FR
Joint training - 31.61 - 32.39 - 18.86 - 22.98 26.46 -
Baseline N 13.64 68.30 12.78 64.82 13.63 40.25 22.62 15.67 57.79
LwF [27] N 16.81 60.94 15.69 56.31 15.33 31.41 22.68 17.63 49.55
ToI ER [11] Y 16.30 62.12 16.15 55.08 14.37 36.42 21.57 17.10 51.21
DER [7] Y 20.52 52.31 20.92 41.74 16.31 24.07 21.04 19.70 39.37
CO2L [ Y 19.64 54.35 18.95 46.14 16.13 24.94 22.95 19.42 41.81
DHAT (ours) N 21.31 50.48 21.82 37.15 15.64 27.09 21.37 20.04 38.24
DHA (ours) Y 24.58 42.88 22.95 33.82 16.15 24.50 21.22 21.29 33.73
Joint training - 41.89 - 32.27 - 20.82 - 23.83 29.70 -
Baseline N 17.26 66.48 11.55 68.60 13.48 42.02 23.72 16.50 59.03
LwF [27] N 21.59 58.07 15.36 57.58 15.42 34.69 23.29 18.92 50.11
2T ER 11 Y 21.23 58.57 15.17 57.79 14.79 37.83 22.03 18.31 51.40
DER [7] Y 27.55 46.49 19.08 47.31 16.34 26.43 21.99 21.24 40.08
CO2L [ Y 26.23 49.06 17.09 52.18 16.33 27.67 23.59 20.81 42.97
DHAT (ours) N 27.91 45.80 17.69 50.28 15.60 30.11 22.02 20.81 42.06
DHA (ours) Y 32.72 36.45 21.01 39.50 16.45 24.71 22.25 23.11 33.55

(tokens). We set the learning rate at the beginning of each task to
5e-5 and multiply it by 0.1 as the validation loss does not decrease.
We adopt the optimizer Adam for gradient propagation, with the
weight decay 1e . The batch size is set to 320 for each training
iteration. A1, A2, and k are empirically selected as 0.995, 0.985, and
5, respectively. The main model is trained for 15 epochs on the
training set of each task. The total training time on four datasets
is around 12 hours with 8 Tesla V100 GPUs. The dataset and code
will be released soon.

4.3 Main Results

We compare our DHA with other representative/latest methods,
including the classic regularized-based method LwF [27], the classic
rehearsal-based method ER [11], and two fusion methods DER [7]
and CO2L [8] which combine the regularized-based and rehearsal-
based strategies (the implementation details of these competitors
are included in the suppl. material). For a clear comparison, we
first provide the results of joint training on four datasets as the
approximate upper bound. Besides, the basic method (denoted as
‘Baseline’) denotes training the same network sequentially on four
tasks but without any continual learning strategy. The comparative
results in Table 1 (see more results in the suppl. material) show
that: (1) Our DHA beats all the competitors according to average
R@mean and average FR over all tasks. The margins between our
DHA and all the competitors are especially significant on average
FR. This suggests that our direct parameter transfer strategy used
for designing DHA is indeed effective for the CITM setting. (2) Our
DHA outperforms the second best method DER by 1.59% - 1.87%
on average R@mean and 5.64% — 6.53% on average FR. This further
validates the effectiveness of our direct parameter transfer strategy
used for designing DHA. (3) Our DHA" (without memory buffer)
achieves better results than most of the other approaches. When the
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rehearsal-based strategy is fused, our DHA achieves the state-of-the-
art results. That is, our DHA provides a new promising approach
to continual image-text modeling. (4) On the most previous tasks
(e.g., T1 and Tz), our DHA performs significantly better than all the
competitors in preserving much earlier knowledge. This superior
ability would make a greater difference in realistic applications
when there are more tasks in the data stream. (5) On the newest task
Ty, nearly all the methods cause a drop on R@mean as compared
to ‘Baseline’. Such performance drop is mainly due to the trade-off
between preserving previous knowledge and learning the current
task, which is a common practice in continual learning scenarios.
(6) We can find that there exist 5-6% gaps between our DHA and the
upper bound in terms of the average performance (over all tasks),
which implies further explorations could be made in future work.

To show more detailed performance of all methods in alleviating
forgetting, we provide the results of the main model (of all methods)
on task T; during sequential training on the four tasks in Figure 4
(more results on task T and task T3 are shown in the suppl. material).
It actually shows the change tendency of R@mean on task T; of the
main model when it is being trained on the later tasks sequentially.
Specifically, the left sub-figure shows the text-to-image retrieval
performance on task Ty when the main model is trained from task
Ti to task Ty, while the right sub-figure shows the corresponding
image-to-text performance. It can be clearly seen that: (1) Our
DHA helps the main model forget with the slowest speed during
sequential training among all the methods under the CITM setting.
(2) Even without memory data, the forgetting speed of our DHAT is
still slower than that of most of the other competitors. Overall, these
observations provide further evidence that our direct parameter
transfer strategy (used in DHA) is indeed effective in alleviating
forgetting, and our DHA can be deployed as a new promising
approach to continual image-text modeling.
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Figure 4: Illustration of the results of the main model on Task T; during sequential training on the four tasks. ‘T2I’ denotes
text-to-image retrieval and ‘12T’ denotes image-to-text retrieval. It can be seen that our DHA forgets with the lowest speed.

Table 2: Direct retrieval results on the test set of Flickr30K obtained by our DHA and other representative methods. Note that all
methods are trained sequentially on four image-text datasets (i.e., {[MSCOCO, CC3M, WIT, GoodNews}) under the CITM setting.

Method T2l 12T

R@1 R@5 R@10 R@mean R@1 R@5 Recall@10 R@mean
Baseline 11.04 29.70 40.42 27.05 16.30 36.60 47.00 33.30
ER 1] 12.46 32.74 44.30 29.83 17.90 40.80 51.30 36.67
DER [7] 16.52 39.28 51.46 35.93 22.70 47.60 59.40 43.23
DHAT (ours) 16.02 36.58 47.52 33.52 21.50 47.10 58.80 42.47
DHA (ours) 17.76 41.30 54.22 37.76 24.00 48.90 63.10 45.33

Additionally, we conduct direct retrieval experiments on the test
set of Flickr30K [46], which has no overlap with the sequence of four
image-text datasets (i.e., {MSCOCO, CC3M, WIT, GoodNews}) under
the CITM setting. Such a downstream task is commonly adopted as
an evaluation task for current pre-training works. We compare our
DHA with Baseline, ER, and the best competitor DER, which are all
sequentially trained on the four datasets. The comparative results
in Table 2 show that our DHA achieves the best performance, i.e.,
our DHA has the strongest generalization ability due to the direct
parameter transfer strategy used for alleviating forgetting.

4.4 Ablation Study

Our proposed DHA is composed of two main strategies: (1) adap-
tation of the main model with the historical model (shortened as
‘Adapt with Hist’), i.e., the main model keeps reviewing the his-
torical knowledge by receiving the parameters of the historical
model; (2) dynamic update of the historical model (shortened as
‘Dynamic Hist’), i.e., the historical model is renewed by updating its
parameters with the parameters of the main model. To clearly show
the influence of each strategy on the model performance and also
study the effect of the memory buffer, we provide the ablation study
results for our full DHA on image-to-text retrieval in Table 3. We
only show the results (R@mean) of the final model (trained across
all four tasks) on each task under the CITM setting. We can observe
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that: (1) The most basic method with no DHA strategies and no
memory buffer has the lowest performance on average R@mean.
(2) Only adopting the strategy of ‘Adapt with Hist’ yields a 3.85%
improvement on average R@mean, showing that it can well retain
the knowledge of the previous tasks. (3) Adopting both ‘Adapt with
Hist’ and ‘Dynamic Hist’ strategies brings further improvements
on average R@mean. Particularly, such fusion yields performance
gains on tasks T3, T3, and T4 out of all the four tasks. This actually
validates the effectiveness of ‘Dynamic Hist’: by controlling the gap
between the historical and main models, the last main model of task
Ty suffers from much less degradation (caused by ‘Adapt with Hist’)
on task T;. In other words, adopting both of the two strategies can
ensure a good trade-off between the previous tasks and the current
task during sequential training. (4) The extra memory buffer yields
improvements in most cases. Moreover, even if the memory buffer
is used, the two strategies of our DHA are still effective. This means
that our DHA is complementary to the rehearsal-based methods.
We further conduct experiments to explore the effect of step
k on the performance of our DHA. Intuitively, if k is too small,
the historical model would be updated too frequently with the
parameters of the main model. Therefore, although the knowledge
gap is too small to affect the performance of the main model on the
current task, the historical model is hard to preserve the historical
knowledge. On the contrary, if k is too large, the historical model
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Table 3: Ablation study results (R@mean) for our full DHA under the CITM setting. ‘Adapt with Hist’ denotes adaptation of the
main model with the historical model. ‘Dynamic Hist’ denotes dynamic update of the historical model. ‘Mem’ denotes the data
rehearsal with 5% buffer. The second best results are highlighted by underline.

Adapt with Hist Dynamic Hist Mem Task Ty Task T Task T3 Task Ty Average

17.59 12.33 12.12 22.80 16.21

v 32.30 17.09 12.29 18.57 20.06

v v 27.91 17.69 15.60 22.02 20.81

v 21.23 15.17 14.79 22.03 18.31

v v 36.29 2041 13.69 18.30 22.17

v v v 32.72 21.01 16.45 22.25 23.11
Table 4: Effect of step k (for updating the historical model)
on the performance of our proposed DHA. We only show the

I2T results (R@mean) of the final model (trained across all 24| EPER s

four tasks) on each task under the CITM setting.

k Tl Tz T3 T4 AVg.
1 22.62 15.21 14.20 22.39 18.60
3 28.01 17.69 14.45 22.22 20.59
5 32.72 21.01 16.45 22.25 23.11
7 33.01 21.28 16.23 21.69 23.01

Table 5: Effect of coefficients A; and A, on the performance of
our proposed DHA. We only show the I2T results (R@mean)
of the final model (trained across all four tasks).

M A2
0.98 0.985 0.99 0.999
0.98 20.68 21.01 20.93 20.87
0.99 21.24 22.23 21.64 21.33
0.995 22.15 23.11 22.28 22.12
0.999 21.43 22.84 21.97 22.08

would only have few updates with the parameters of the main model.
As a result, a huge knowledge gap between the historical and main
models would harm the performance of the main model on the
current task. Overall, a good trade-off can be ensured by selecting
the best k. Indeed, this analysis is validated by the 12T results
(Average R@mean) in Table 4. Specifically, the performance of our
DHA on task Ty is the best when k = 1 and gradually decreases
when k increases from 1 to 7, while the performance on the previous
tasks T1-T3 grows higher at the same time. We thus select k = 5
with the highest average R@mean in this paper.

Moreover, we show the ablative 12T results (Average R@mean)
of our DHA model with different values of A; and A3 in Table 5.
According to their definitions in Sec. 3.3, A; controls the update
speed of the main model with the historical model, and A, controls
the update speed of the historical model with the main model. Thus,
the balance should be made between the two coefficients. We can
see that the best performance could be obtained when A; = 0.995
and Ay = 0.985. Moreover, most of the combination groups in
Table 5 lead to better results than DER [7] (21.24), which further
indicates that our DHA is indeed a promising approach to CITM.
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Figure 5: Results of DHA with extra memory buffer.

Finally, to investigate the effect of the buffer size, we make a
comparison among ER [11], DER [7], and our DHA with different
buffer sizes (0%, 1%, 5%, and 10% of the training data). We show the
comparative results (average R@mean) in Figure 5. It can be seen
that DHA beats ER and DER in all cases. Furthermore, our DHA
with 1% buffer and 0% buffer even perform better than DER and ER
with up to 10% buffer, respectively. This validates the effectiveness
of direct parameter transfer (used in DHA) in continual learning.

5 CONCLUSION

In this paper, we propose a continual image-text modeling (CITM)
setting, under which the model is required to be trained sequen-
tially on four diverse image-text datasets and finally evaluated on
all previous datasets. This new continual setting has a realistic
application in large-scale image-text pre-training. We devise an
effective dynamic historical adaptation (DHA) approach to cop-
ing with the forgetting problem in CITM. Different from existing
continual learning methods, our DHA proposes to preserve the
historical knowledge with direct parameter interaction between
the historical and main models. Extensive experiments demonstrate
the effectiveness of our DHA under the CITM setting.
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