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Abstract—Recently, large-scale pre-training has achieved great
success in multi-modal tasks and shown powerful generalization
ability due to superior semantic comprehension. In the field
of text-to-image synthesis, recent works induce large-scale pre-
training with VQ-VAE as a discrete visual tokenizer, which can
synthesize realistic images from arbitrary text inputs. However,
the quality of images generated by these methods is still inferior
to that of images generated by GAN-based methods, especially
in some specific domains. To leverage both the superior seman-
tic comprehension of large-scale pre-training models and the
powerful ability of GAN-based models in photorealistic image
generation, we propose a novel knowledge distillation framework
termed DiST-GAN to transfer the semantic knowledge of large-
scale visual-language pre-training models (e.g., CLIP) to GAN-
based generator for text-guided face image generation. Our DiST-
GAN consists of two key components: (1) A new CLIP-based
adaptive contrastive loss is devised to ensure the generated images
are consistent with the input texts. (2) A language-to-vision (L2V)
transformation module is learned to transform token embeddings
of each text into an intermediate embedding that is aligned with
the image embedding extracted by CLIP. With these two novel
components, the semantic knowledge contained in CLIP can
thus be transferred to GAN-based generator which preserves the
superior ability of photorealistic image generation in the mean
time. Extensive results on the Multi-Modal CelebA-HQ dataset
show that our DiST-GAN achieves significant improvements over
the state-of-the-arts.

Index Terms—Text-to-image generation, Knowledge distilla-
tion, Large-scale pre-training

I. INTRODUCTION

Generating images according to the given descriptive sen-

tences is a fundamental and meaningful task, which has signif-

icant potential in many real-world applications. Due to these

practical applications, text-to-image generation has become

an active research area in recent years [1]–[3]. Particularly,

with the tremendous success of Generative Adversarial Net-

works (GANs) [4] in image synthesis, GAN-based methods

have dominated the text-to-image generation task [2], [5]–

[8]. Although these methods can generate high-quality images,

their performance is still limited by the dataset size as well

as the model size, i.e., they tend to suffer from insufficient

semantic learning and comprehension.

Recently, large-scale pre-training has achieved great success

in multi-modal tasks (e.g., image-text retrieval [9], [10]), and

shown powerful generalization ability due to superior semantic

comprehension. In the field of text-to-image synthesis, recent

works [3], [11] induce large-scale pre-training by utilizing

VQ-VAE [12] as a discrete visual tokenizer, which can syn-

thesize high-quality images from arbitrary texts and compose

unrelated objects in semantically plausible ways. Although

these methods show superior performance in generating se-

mantically reasonable images, the quality of generated images

is still inferior to that of images generated by GAN-based

methods, especially in some specific domains (e.g., face). In

addition, when generating images from text inputs, these VQ-

VAE based methods rely on a large Transformer for predicting

image tokens one by one, which leads to significantly higher

computational cost than GAN-based methods.

In this paper, we propose a novel distillation-based frame-

work termed DiST-GAN to induce large-scale pre-training into

GAN-based generator for text-guided face image generation.

Different from VQ-VAE based methods, we choose to exploit

the semantic knowledge contained in the large-scale visual-

language pre-training models (e.g., CLIP [9]) instead of di-

rectly training our model on large-scale datasets. Note that

although these pre-training models show superior performance

on various downstream tasks without fine-tuning, it is still very

challenging to generalize them to text-to-image generation

because of the large gap between text-to-image generation and

text-image retrieval (widely-used for pre-training). To address

this challenge, we devise two key components for our DiST-

GAN: (1) A new CLIP-based adaptive contrastive loss is

devised to ensure that the generated images are consistent

with the input texts. Concretely, an adaptive contrastive loss is

defined over generated images and input texts, and the weight

of each negative sample is adjusted automatically according

to the similarity of the input texts. (2) A language-to-vision

(L2V) transformation module is learned to transform token

embeddings of each text into an intermediate embedding that

is aligned with the image embedding extracted by CLIP. With

these two novel components, we can transfer the seman-

tic knowledge contained in CLIP to GAN-based generator

through distillation (while the superior ability of GAN-based

generator is preserved). Besides, without using large Trans-

former as the backbone, our DiST-GAN can generate images

more efficiently than VQ-VAE based methods.

Our main contributions are three-fold: (1) We propose a

simple yet effective distillation-based framework to transfer

the semantic knowledge of large-scale visual-language pre-

training models to GAN-based generator, namely DiST-GAN,

for text-guided face image generation. (2) To better distill
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the semantic knowledge contained in CLIP to GAN-based

generator, we devise a novel CLIP-based adaptive contrastive

loss and a language-to-vision (L2V) transformation module

for our DiST-GAN. (3) Extensive results on the Multi-Modal

CelebA-HQ show that our DiST-GAN can generate and high-

quality images from texts and achieves new state-of-the-art.

II. RELATED WORK

Text-to-Image Generation. Generating images from given

descriptive texts has achieved great progress with the tremen-

dous success of deep generative models [4], [5], [13]. Due

to the powerful ability of GAN to generate photo realis-

tic outputs, text-to-image generation has been dominated by

GAN-based methods [1], [2], [6], [7], [14], [15]. However,

GAN-based methods still suffer from object distortion and

illogical object placement in some cases due to the limited

dataset/model size. Recently, VQ-VAE [12] based methods [3],

[11] have been proposed to introduce large-scale pre-training

into text-to-image generation to improve the model perfor-

mance. However, the quality of generated images is still

inferior to that of images generated by GANs, especially in

some specific domains (e.g., face). In this work, our proposed

DiST-GAN induces large-scale pre-training into GAN-based

models to leverage both the superior semantics comprehension

of large-scale pre-training models and the powerful ability of

GANs in generating photorealistic images for text-guided face

generation, a specific domain in text-to-image generation.

Large-Scale Pre-Training. Recently, many works introduce

large-scale pre-training to multi-modal task and achieve great

success [3], [9]–[11], [16], [17]. The models of these methods

are typically trained on large-scale datasets that contain over

one hundred million data, which show promising performance

with superior semantic comprehension. According to the pre-

training task, these methods can be roughly divided into two

groups: (1) Text-Image Retrieval Task: Methods in this

group [9], [10], [17] propose a two-stream framework with

contrastive loss to learn the joint text-image embedding space

and trains it on a dataset containing millions of image-text

pairs, which achieves significant improvements over the state-

of-the-arts on various down-stream tasks without fine-tuning.

(2) Text-to-Image Generation Task: DALL-E [3] introduces

large-scale pre-training into text-to-image generation with a

variation of VQ-VAE [12] as the discrete visual tokenizer,

which is trained on a dataset of 250 million text-image pairs.

DALL-E can generate high-quality images from arbitrary texts

and compose unrelated objects in semantically plausible ways.

However, the quality of images generated by them is still

inferior to that of images by traditional GAN-based methods,

especially in some specific domains. In this work, our proposed

DiST-GAN is a novel framework that introduces the first group

of large-scale pre-training models into text-guided face image

generation by transferring the semantics of large-scale pre-

training to GAN-based generator through distillation.

Knowledge Distillation. Knowledge distillation is firstly

proposed by [18], which aims to transfer knowledge from

a teacher network (typically more complicated with better

performance) to a student network (typically simple and

concise with less parameters), resulting in the student net-

work achieving great performance that similar to the teacher

network. In addtion to classification, knowledge distillation

has also been applied in other tasks in recent works (e.g.,
detection [19]). In this paper, to the best of our knowledge, we

firstly propose to transfer the semantic knowledge of CLIP to

GAN-based generator through distillation for text-guided face

image generation. This is still challenging because of the large

gap between the pre-training task used in CLIP and target task.

III. METHODOLOGY

A. Framework Overview

As illustrated in Fig. 1, the main components of our

DiST-GAN model are text encoder TE, image encoder IE,

Language-to-Vision Transformation module (L2V module) T,

generator G, and discriminator D. Given an input text t, we

firstly embed them into a sequence of token embeddings

vw = (v1w, v2w, . . . , vnw) by text encoder. Meanwhile, we use

the image encoder to embed image x corresponding to t
into image embedding vx. In this work, our text and image

encoders can be formed with the large-scale vision-language

pre-training model CLIP, both of which are frozen during

training. To better meet the two requirements of text-to-image

generation (i.e., photo realism as well as alignment with text),

we propose to transfer the semantic knowledge contained in

CLIP to our novel L2V module, which transforms vw into an

intermediate embedding vm to align with the image embedding

vx. The generator G generates the output image x̃ according to

the intermediate embedding. Our model for text-guided face

image generation is defined as:

x̃ = G(vm) = G(T(TE(t))). (1)

Note that the paired image x is only used for training. Our

model does generate image without using it in the test phase.

B. CLIP-Based Adaptive Contrastive Learning

To transfer the semantic knowledge contained in CLIP to

the generator G so that the generated images can be more

consistent with input texts in semantics, we apply an InfoNCE

loss [20] over the generated images and input texts. Let the set

of generated images and input texts be respectively denoted

as X̃ = {x̃i|i = 1, ..., N} and T = {ti|i = 1, ..., N}, where

N = |X̃ | = |T |. The i-th generated image corresponds to the

i-th input text. The InfoNCE loss is defined as:

LNCE = −E
[
log

exp(S(x̃i, ti))
N∑

j=1

exp(S(x̃i, tj))

]
, (2)

where S(·, ·) denotes the score function to measure the sim-

ilarity between two vectors. Specifically, we define the score

function as the cosine similarity between text and image

vectors extracted by CLIP [9].

Note that, for each generated image x̃i ∈ X̃ , contrastive

learning with the InfoNCE loss considers all texts in T as the

negative samples except the corresponding input text ti, and
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Intermediate 
Embedding

Text Embedding
(Embedding of EOT token)

VL Loss

Generated Image  
Embedding

Image Embedding

Adversarial 
Loss

Input Image

Generated Image

 Alignment

Generator

Discriminator
 (CLIP) 
Image 

Encoder

L2V 
Module

Adaptive 
Contrastive Loss

Input Text

“She has mouth slightly 
open, arched eyebrows, 

and wavy hair and is 
wearing heavy makeup. 

She is smiling.”

Distillation

Distillation

(CLIP)
Text 

Encoder

 (CLIP) 
Image 

Encoder

Token Embeddings

...

Fig. 1. A schematic illustration of our DiST-GAN model. Our novel CLIP-based adaptive contrastive loss and L2V module are the key components for
knowledge distillation in text-guided face image generation. The red dotted lines denote the direction of knowledge distillation. Note that the input image is
only used in the training phase (but not in the test phase).

simply minimizes the scores of the obtained negative image-

text pairs with the same weight. However, when it is applied to

the face datasets (e.g.., Multi-Modal CelebA-HQ [21]) which

contain many similar texts, the texts similar to the input text

ti should not be seen as negative samples (for x̃i) as the

other texts. In this case, simply minimizing the scores of

all these pairs with the same weight in the InfoNCE loss is

problematic. To alleviate this issue, we thus propose a novel

adaptive contrastive loss:

Lcon = −E
[
log

exp(S(x̃i, ti))
N∑

j=1

σi,j exp(S(x̃i, tj))

]
, (3)

where σi,j denotes the weight for the image-text pair (x̃i,

tj). In this work, we choose to adjust σi,j according to the

similarity between ti and tj . Concretely, we first compute the

pairwise cosine similarity matrix M = [mi,j ]N×N between all

texts in T , where mi,j is the similarity between the i-th and

j-th texts. We then define the weight σi,j as:

σi,j =
1

mi,j
. (4)

That is, the negative pair (x̃i, tj) becomes less important when

the corresponding two texts are more similar.

C. Language-to-Vision Transformation

Besides transferring the semantic knowledge contained in

CLIP to the generator G with our CLIP-based adaptive con-

trastive loss, we also propose to transfer that from CLIP

to our novel L2V module T based on distillation. To make

L2V module learn the semantic knowledge from CLIP better,

we adopt the feature-based and response-based distillation.

Concretely, the L2V module T takes the token embeddings vw
as the input and transforms it into the intermediate embedding

vm = T (vw). For feature-based distillation, the intermediate

embedding vm is subject to the L1 constraint w.r.t. the cor-

responding image embedding vx (paired with vw) following

previous works. For response-based distillation, we consider

the similarity between the corresponding image and the texts

in a batch as the key information for semantic comprehension.

Therefore, we compute the cosine similarity matrix Mm and

Mi respectively for intermediate embedding and corresponding

image embedding, and then minimize the L1 distance between

these two matrices. The VL loss can be defined as:

Lvl = E‖T (TE(t))− IE(x)‖1 + E‖Mm −Mi‖1. (5)

Our overall loss can then be summarised as:

min
G,TE,IE,T

max
D

Ladv + λconLcon + λvlLvl, (6)

where λcon and λvl denote the weight hyperparameters and

Ladv is the adversarial loss:

Ladv = E
[
logD(x) + log(1− D(G(T(TE(t))))

]
. (7)

EXPERIMENTS

D. Evaluation Metrics

We adopt the Frechét Inception Distance (FID) [23] to

evaluate the image quality, which calculates the Frechét dis-

tance between two multivariate Gaussians fit to Inception [24]

features of generated and real images. Moreover, as in [1], [2],

[8], we adopt R-precision to assess how the generated images

are aligned with the input texts in semantics. Concretely, for

each generated image, we use it to retrieve the paired input text

from a subset of 100 candidate texts from the test set, including

the paired input text and another 99 texts. We then examine

if the input text falls in the top-5 ranked retrieval results and

set the accuracy as 1 or 0. R-precision is the average accuracy

of all generated images. Note that R-precision is originally

computed with the image and text encoders trained on a small

dataset in [1], [14], [15]. For better evaluation, we follow

GODIVA [25] to adopt CLIP to calculate the similarity for

retrieval instead. Both ViT [26] and ResNet-50×4 (not used

for training) from CLIP are used to compute R-precision,
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MirrorGAN

She wears heavy 
makeup. She has 
brown hair, rosy 

cheeks, high 
cheekbones, and 
arched eyebrows.

The man is 
smiling and has 

mustache, goatee, 
high cheekbones, 
and bags under 

eyes.

This person has 
blond hair, and 
pointy nose and 

wears heavy 
makeup. 

She is young.

Text DM-GAN DAE-GANTediGAN DiST-GANReal Image AttnGAN

Fig. 2. Qualitative results for text-guided face image generation on Multi-Modal CelebA-HQ [21]. The first two columns show the input texts and corresponding
images, respectively. The other columns are the generation results of all competitors.

TABLE I
QUANTITATIVE RESULTS FOR TEXT-GUIDED FACE IMAGE GENERATION ON MULTI-MODAL CELEBA-HQ [21]. R-PREC (VIT) AND R-PREC (RN50×4)
DENOTE THE R-PRECISION COMPUTED WITH VIT AND RESNET-50×4 FROM CLIP [9] AS IMAGE ENCODER, RESPECTIVELY. THE SUM OF REALISM OR

ACCURACY IS NOT 100% DUE TO THE CHOICE OF “NONE OF THESE METHODS PERFORM WELL”. * DENOTES THAT CLIP (WITH VIT AS IMAGE

ENCODER) IS USED TO DIRECTLY OPTIMIZE THE FINAL GENERATED IMAGES DURING THE TEST PHASE.

Method
Automated Metrics User Study

FID ↓ R-prec (ViT) ↑ R-prec (RN50×4) ↑ Realism (%) ↑ Accuracy (%) ↑
AttnGAN [1] 25.73 21.97 22.83 12.70 13.10
DM-GAN [14] 27.90 24.70 27.07 5.20 8.40
MirrorGAN [15] 27.07 18.70 20.60 10.40 8.40
TediGAN∗ [21] 54.51 91.73 29.37 6.40 2.50
DAE-GAN [22] 23.53 23.77 25.37 13.10 12.60
DiST-GAN (ours) 19.32 57.00 47.87 40.90 38.90

and the obtained results are denoted as R-prec (ViT) and R-

prec (RN50×4), respectively.

Although the above automated metrics are useful to evaluate

the effectiveness of generation models, the gap between them

and human evaluation still exists. Therefore, we also conduct

the user study to evaluate the generated images under human

perception. The results of user study are reported as the Real-

ism and Accuracy for image quality and semantic consistency

evaluation, respectively.

E. Comparison to State-of-the-Arts

Qualitative Results. The qualitative results on Multi-Modal

CelebA-HQ [21] are shown in Figure 2. We can obeserve

that: (1) AttnGAN, DM-GAN, MirrorGAN and DAE-GAN

can generate images in relatively high quality in most cases,

but they always make mistakes in generating the color of

hair according to the texts and tend to generate blurs and

artifacts. (2) TediGAN easily generates low-quality images

with overfitted semantics of texts due to its instance-level

optimization. In addition, the quality of generated results of

TediGAN highly depend on the initialization of latent codes.

(3) Our DiST-GAN transfers the semantic comprehension

ability of CLIP to GAN-based model, and thus generates high-

quality images with sharper details w.r.t. given texts precisely.

More qualitative results can be found in the supp. material.

Quantitative Results. The quantitative results are shown in

Table I. It can be seen that: (1) Our DiST-GAN outper-

forms the other methods with large margins on FID and R-

prec (RN50×4), indicating that it can generate images with

the highest quality that are more aligned with the input texts.

(2) When R-prec (ViT) is concerned, TediGAN achieves the

highest score, but at the cost of image quality degradation (see

its FID = 54.51 and its qualitative results in Figure 2). This

is mainly due to the fact that TediGAN adopts instance-

level optimization during synthesizing images and directly

maximizes the cosine similarity between generated images

and input texts using CLIP (with ViT as image encoder).

Therefore, TediGAN tends to overfit on R-precision computed

by the same model (see R-prec (ViT) vs. R-prec (RN50×4)),

where the much lower R-prec (RN50×4) means that TediGAN

does not perform semantic alignment well. Ignoring TediGAN,

our DiST-GAN outperforms the second best competitor with

over 30% improvement on R-prec (ViT).

We also conduct human evaluation in addition to automated

metrics on Multi-Modal CelebA-HQ. Table I shows the user

study results. It can be clearly seen that our DiST-GAN
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TABLE II
ABLATION STUDY RESULTS FOR OUR FULL DIST-GAN ON

MULTI-MODAL CELEBA-HQ [21]. PRE-TRAINED DENOTES EMPLOYING

PRE-TRAINED CLIP AND STYLEGAN V2 [27] WITHOUT FURTHER

TRAINING. BASE DENOTES THE MODEL WITH ONLY STYLEGAN V2. CL
DENOTES THE INFONCE LOSS. L2V AND ADA DENOTE OUR PROPOSED

L2V MODULE AND ADAPTIVE CONTRASTIVE LOSS, RESPECTIVELY.

Method FID ↓ R-prec (ViT) ↑ R-prec (RN50x4) ↑
Pre-trained 54.30 4.97 4.87
Base+CL 20.85 39.17 34.50
Base+Ada 19.92 41.23 35.60
Base+L2V+Ada (Full) 19.32 57.00 47.87

significantly outperforms all competitors in both Realism and

Accuracy. Although TediGAN achieves the highest score in

semantic consistency on R-prec (ViT), it leads to the lowest

accuracy (only 2.5%) in user study, which further shows that

TediGAN cheats CLIP on R-prec (ViT) but can not generate

images aligned with input texts well. More details of our

experiments can be found in the supp. material.

F. Ablation Study

To demonstrate the contributions of the proposed compo-

nents, we conduct ablation study for our full DiST-GAN.

Firstly, follow StyleCLIP [28], we use the frozen pre-trained

StyleGAN v2 [27] and CLIP to directly generate images

from given texts, whose results are denoted as Pre-trained.

Note that StyleCLIP focuses on attribute manipulation but can

not directly generate images from given texts. Therefore, we

random initialize a latent code to generate a initial image with

tyleGAN v2 and then follow StyleCLIP to edit it with the

given text. Secondly, on the top of StyleGAN v2, we add

various components and train the models from scratch. We

denote the model with only StyleGAN v2 as Base. CL denotes

the InfoNCE loss defined with CLIP. L2V and Ada denote

our L2V module and CLIP-based adaptive contrastive loss,

respectively. Our full DiST-GAN is actually Base+L2V+Ada.

The results of ablation study are shown in Table II. We can

see that: (1) Although StyleCLIP achieves great success in

text-guided image manipulation, it produces unsatisfied results

in text-guided face image generation due to the large gap

between text-guided face image generation and generic text-

image retrieval (used for pre-training CLIP). In addition, when

we generalize StyleCLIP to text-guided face image generation,

we need to carefully select initial images so that it can generate

plausible images. (2) Compared to the simple contrastive loss,

our proposed CLIP-based adaptive contrastive loss is more

beneficial to both the semantic consistency and the visual

quality for text-guided face image generation. (3) The com-

bination of L2V module and CLIP-based adaptive contrastive

loss further improves R-precision with large margins. More

ablation studies are given in the supp. material.

G. Further Evaluations

Results for Similar Texts. Although we only apply the

constraint of text-vision alignment on sentence and image

level, our DiST-GAN can capture the fine-grained semantic

She has wavy hair, and 
blond hair. She wears 
lipstick. She is young.

She has wavy hair, and 
black hair. She wears 
lipstick. She is young.

Interpolation

She has brown hair. 
She is young.

He has brown hair. 
He is young.

Interpolation

Fig. 3. Results for similar texts of our DiST-GAN. The first and last columns
show the generated images with the texts below them. The other columns
show the interpolation results.

This man has sideburns. He is young.

She has wavy hair, and blond hair. She wears lipstick. She is young.

Fig. 4. Diverse results obtained by our DiST-GAN. Each row shows the
images generated by the text below them.

TABLE III
RESULTS OF TEXT-TO-IMAGE GENERATION ON CUB.

Method FID ↓ R-prec (ViT) ↑ R-prec (RN50x4) ↑
AttnGAN 23.45 13.10 13.17
DM-GAN 24.05 13.86 13.86
MirrorGAN 24.16 10.14 11.09
DAE-GAN 30.30 6.03 6.00
DiST-GAN (ours) 22.67 42.55 28.79

information in words. To demonstrate this advantage, we

synthesize images with two similar input texts. Specifically,

we edit only one word from each given text and synthesize

images according to the resultant two texts, respectively. In

addition, we also generate the interpolation results of the two

images generated with similar texts. As shown in Figure 3, the

generated images with two similar texts are both well aligned

with the input texts, providing evidence that our DiST-GAN

can capture the fine-grained semantic information in words.

Moreover, the interpolation results show that the generated

images can gradually change from one to another as the text

transformation, which means the latent space is continuous

and semantically meaningful.

Diversity of Generated Images. Given an input text, our

DiST-GAN can synthesize diverse images (while coherent

with the text) by simply injecting different noises into the

intermediate embedding and different intermediate feature
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maps during generation process. Note that our model can

achieve this without refining the generated images in multi-

stages. The diverse generated results are shown in Figure 4.

Results on the CUB Dataset. To further show the effec-

tiveness of our DiST-GAN, we also make evaluation on the

widely-used CUB [29] dataset. We follow the standard split

of CUB. The quantitative results on the CUB [29] dataset are

shown in Table III. Note that TediGAN [21] are not considered

as a competitor on CUB because it focuses on face image

generation. We can observe that our DiST-GAN outperforms

the other methods on both FID and R-precision, indicating that

our model can generate images with best photo-realism and

semantic consistency on this non-face dataset. The qualitative

results on CUB can be found in the supp. material.

CONCLUSION

In this work, we have proposed a novel distillation-based

framework to transfer the knowledge of semantics in large-

scale visual-language pre-training models to GAN-based gen-

erator, called DiST-GAN. It is a simple but effective frame-

work for face image synthesis according to textual descrip-

tions. Due to the proposed CLIP-based adaptive contrastive

loss and language-to-vision transformation module, our DiST-

GAN can effectively learn the semantic comprehension from

CLIP, which thus generates higher-quality images that better

match the corresponding input texts. Extensive results show

that our DiST-GAN can generate diverse and high-quality

images and significantly outperforms the state-of-the-arts in

both automated metrics and human evaluation.
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