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Abstract. Class incremental learning (CIL) requires a model to
learn the knowledge of new classes without overwriting that of
old classes. The main challenge thus lies in catastrophic forgetting.
Among all advances in addressing this challenge, rehearsal-based
methods are the most widely-used due to their convenience and ef-
fectiveness. However, the (classification) scores bias between the old
and new classes, known as the main cause of catastrophic forgetting
for rehearsal-based methods, is still not fully addressed. Although
some recent strategies are proposed to reduce the scores bias, they
either take extra training time or sacrifice too much performance on
the current task. In this paper, we propose a novel Robust Self-Taught
Task-Wise Reweighting (R-STAR) method, which can act as a flexi-
ble and key component for improving existing rehearsal-based meth-
ods. Concretely, on top of the standard training process, it measures
the forgetting degree of the model over the augmented buffer (for
robust evaluation) on each task. Further, following the self-taught
paradigm, it directly activates the task-wise forgetting degree into
a reweighting ratio for scores bias reduction during the inference
stage. Extensive experiments show that our R-STAR can improve
most rehearsal-based methods with remarkable margins, but with (al-
most) no extra training cost or excessive performance sacrifice on the
new task. Moreover, it also shows its advantages over existing scores
bias correction strategies.

1 Introduction

Continual learning aims at enabling a model to learn in the way of
human beings on continuously arriving data: new knowledge is con-
tinuously learned while no old knowledge is overwritten. Among all
continual learning settings, the class incremental learning (CIL) set-
ting meets most real application scenarios and is the most challeng-
ing one. Under the CIL setting, the model is required to learn about
sequentially arriving tasks, where the data in each arriving task be-
long to unseen-before classes. Thus, the key challenge of the CIL lies
in the catastrophic forgetting of old classes.

Over the past few years, various approaches have been pro-
posed to solve this challenge. Among all sorts of existing ap-
proaches, rehearsal-based approaches are the most widely-used due
to their convenience and effectiveness. Concretely, rehearsal-based
approaches attempt to preserve the old knowledge by a continuously
updated memory buffer where limited samples are selected from all
previous tasks and then available in the new task. Among recent ad-
vances of rehearsal-based methods, most of them focus on designing
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a proper updating strategy of the buffer [26, 27, 19, 6] and exploiting
the buffer data with extra regularization constraints [26, 7, 6, 24, 6].
Although these efforts indeed contribute to mitigating catastrophic
forgetting, the main cause of this challenge for rehearsal-based CIL
is still not fully addressed.

As some recent works [31, 1, 6] point out, the main cause of catas-
trophic forgetting for rehearsal-based CIL is the classification score
bias. Specifically, the bias is due to data imbalance between old
data in the memory buffer and new data in the current task. When
the model learns on such unbalanced data, it tends to give higher
classification scores for new classes. Regarding this, recent meth-
ods [31, 1, 6] propose new strategies to solve the scores bias. [31]
train a linear model on a balanced dataset after each task and use it to
correct the classification score bias in the last fully connected layer.
Although the scores bias between all past classes and new classes is
reduced, this method spends much more training time and its over-
all improvement is also limited. [1] propose to adopt the Separated-
Softmax output layer and the task-wise knowledge distillation strat-
egy. [8] propose a separated cross-entropy loss. These two methods
aim at blocking the score gradients between the old and new classes.
Despite their remarkable achievements in improving the scores of
past classes, the data of the new task are only learned by classify-
ing within new classes, which leads to a distinct degradation of the
new task performance compared with other methods. Therefore, the
overall improvements of these two methods are also affected.

In this paper, we thus devise a novel Robust Self-Taught Task-
Wise Reweighting (R-STAR) method, which can act as a flexible
and key component for improving existing rehearsal-based meth-
ods. The core idea of our R-STAR is to make the model aware of
the scores bias and then reduce it with a task-wise reweighting ratio
in a single self-taught step. Concretely, we first measure the scores
bias with the task-wise forgetting degree evaluated on the memory
buffer in the training stage. In this stage, an augmentation strategy
is adopted to increase the robustness of scores bias evaluation when
our R-STAR is combined with different rehearsal-based approaches.
In the inference stage, we design an activation function to activate
the recorded forgetting degree into a task-wise reweighting ratio.
Thus, the model could teach itself with the guidance of the ratio and
then modify the biased scores. Different from the original self-taught
paradigm, our R-STAR takes only one self-taught step in the infer-
ence stage, which can help avoid the overfitting problem raised from
repeated finetuning in the original self-taught paradigm. As a result,
this choice is empirically found to further enhance the robustness of
our R-STAR. To show the effectiveness of R-STAR, we conduct ex-

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230448

1648



tensive experiments on three commonly-used CIL benchmarks. The
obtained results show that: (1) Our R-STAR is indeed effective for
reducing score bias and consistently improves the performance of
most rehearsal-based CIL methods. (2) Compared with other scores
bias correction strategies, our R-STAR yields almost no extra train-
ing time or excessive performance sacrifice on the new task but could
either further improve their performance or outperform them when
combined with the same baseline method.

Overall, our main contributions are four-fold: (1) We devise
a novel Robust Self-Taught Task-Wise Reweighting (R-STAR)
method, which can act as a flexible and key component to reduce
the scores bias and further improve existing rehearsal-based methods
under the CIL setting. (2) We introduce a novel robust self-taught
paradigm to reduce the scores bias. Without the overfitting problem
in the original self-taught paradigm, it makes the model aware of the
scores bias and then reduces this bias in a one-step self-taught way.
(3) Our R-STAR outperforms existing scores bias correction strate-
gies while leading to almost no extra training time or excessive per-
formance sacrifice on the new task. (4) Extensive experiment results
on four commonly-used CIL benchmark datasets show the effective-
ness of our R-STAR.

2 Related Work

Rehearsal-Based Approaches. Among all approaches for continual
learning, the rehearsal-based approaches are the most widely used
due to their convenience and effectiveness. In order to tackle the
catastrophic forgetting issue, rehearsal-based approaches [27, 11, 9,
2, 19, 31, 22, 24, 26, 7, 1, 5, 8, 6, 10, 4] attempt to preserve the old
knowledge from all previous tasks by a memory buffer and replay it
when the model learns on a new task. [27] propose to save a small
subset of old data and replay it in new tasks. They also provide sev-
eral basic memory update strategies which are widely adopted in later
works. [19] propose inter-class separation which encourages a large
margin to separate the old and new classes for a more harmonized
classifier. [7] propose to match the logits saved throughout the opti-
mization trajectory and further reinforce the regularization by align-
ing logits with their corresponding labels. [24] utilize the rehearsal
data to train the pre-allocated classifier heads for better overall per-
formance. In the very latest work, [6] extends the previous work [7]
by modifying the past-future heads of saved logits and restricting the
activation on the future and past classifier heads. This work com-
bines the advantages of almost all the above-mentioned methods and
makes remarkable improvements to [7] and performs as a very strong
benchmark. In addition to these typical rehearsal-based methods, the
pseudo-rehearsal methods [28, 14, 23, 32, 21, 20, 17] are proposed to
avoid storing original images and privacy issues. This sort of methods
usually adopt modified generated network to produce pseudo images
and features [23, 32] for reviewing old knowledge. However, these
works pay little attention to the scores bias, and our R-STAR thus
could act as an effective component for them to reduce the scores
bias and make further improvements.
Scores Bias Correction Methods. For the rehearsal-based CIL ap-
proaches, the main cause of catastrophic forgetting is classification
score bias. As recent works [31, 1, 6] point out, the bias is due to
data imbalance between the data in the rehearsal buffer and those
in the current task. To deal with this problem, [19] propose to re-
duce the bias of norm weights in classifier between old classes and
new classes by replacing the common softmax layer with cosine nor-
malized layer. [31] construct a balanced dataset with the novel and
buffer data. After each task, they retrain a linear model on the bal-

anced batch and then adopt the linear model in the next task to cor-
rect the bias in the last fully-connected layer. Although this approach
contributes to the scores bias reduction, it takes much extra train-
ing time and achieves limited performance. Recently, [1] propose a
Separated-Softmax output layer and replace the general knowledge
distillation loss with a task-wise distillation loss to block the score
gradients between the old and new classes. Similarly, [8] adopt a
separated cross-entropy loss to prevent the effects of the gradient on
the past classes. These two methods perform well in preserving the
learned knowledge. However, since most of the data in the current
task are only learned by classification within new classes, the model
actually sacrifices too much on the current task knowledge and has
much lower performance compared with other rehearsal-based meth-
ods like [7]. Thus, their overall improvements are affected.
Self-Taught Learning Paradigm. The original concept of the self-
taught learning paradigm is proposed by [25]. For better representa-
tion, they first train an auto-encoder with unlabelled data and then
finetune the classifier layer of the auto-encoder repeatedly on lim-
ited labeled data in order that the bias between unlabelled data and
labeled data is reduced. In this original self-taught paradigm, the
model is required to teach itself to modify the biased class representa-
tion with few labeled data. Similar but not identical, in our proposed
Robust Self-Taught Task Reweighting method the model is required
to teach itself to reduce the scores bias among classes of all tasks
with saved buffer data. Although they all utilize partial data for fur-
ther modification, the key difference between our robust self-taught
paradigm and the original self-taught paradigm is that we only make
a one-step reweighting in the reference stage while the original self-
taught needs to finetune repeatedly with the labeled data. This means
that we could largely avoid the overfitting problem in the original
self-taught learning paradigm, which actually enhances the robust-
ness of our proposed R-STAR.

3 Methodology

3.1 Preliminary

We first give the formal problem formulation of class incremental
learning. Supposing there are n sequentially arriving tasks, we as-
sume {Dt}nt=1 as the data set of the n tasks, where Dt indicates the
data for task Tt. All samples in Dt are denoted as {(xi

t, y
i
t)}|D|

i=1,
where xi

t denotes the i-th image in Dt, yi
t denotes the ground truth

label of the i-th image in Dt, and |D| denotes the number of samples
in each task. Consistent with {Dt}nt=1, we denote all the classes in
n tasks as {Ct}nt=1, where Ct is composed of the classes contained
in Dt and we use |C| to denote the number of classes in each task.
In the CIL problem, each Ct includes disjoint classes for the other
(n − 1) class sets. In class incremental scenarios, the model is re-
quired to learn sequentially on these n tasks and good grasp of all
the classes in {Ct}nt=1. Therefore, the key issue of the CIL problem
is to alleviate catastrophic forgetting of the model on old classes.

Among all the approaches to dealing with this issue, the rehearsal-
based approaches are the most widely-used due to their simplicity
and effectiveness. In this sort of method, a memory buffer B of a
fixed size |B| is constructed to restore and replay samples of old tasks
when the model learns on a new task. Concretely, in task Tt(t ≥ 1),
buffer B is updated to include data of new classes in Ct. Meanwhile,
in each new task Tt(t ≥ 2), buffer B is available to replay the sam-
ples of previous (t−1) tasks for reviewing the old knowledge. Since
B is updated in each task, we use {Bt}nt=1 to denote the updating
memory buffer in n sequential tasks, where Bt denotes the memory
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Figure 1. Overview of the proposed R-STAR method. In the training stage, the model is evaluated at the end of task Tt (1 ≤ t ≤ n) on the augmented buffer
BAug

t for each seen task to record their corresponding accuracy. The accuracy AccTt
t of task Tt is selected to form the initial accuracy Accini. In the

reference stage, the difference between the initial accuracy Accini and the final accuracy Accn on BAug
n is calculated to obtain the forgetting degree ϕfgt.

It is then activated by the designed function Frwt(·) to calculate the task-wise reweighting ratio ω. Finally, it is used to reweight the softmax-normalized
output score of the test sample xtest to reduce the scores bias for a better classification prediction.

buffer acquired at the end of task Tt.
Although recent rehearsal-based works do make progress in deal-

ing with catastrophic forgetting, the scores bias between old and new
classes, known as the main cause of the catastrophic forgetting for
the rehearsal-based methods is still not fully addressed. Such scores
bias is caused by unbalanced samples between those in the current
buffer Bt−1 and new task data Dt. Trained with such unbalanced
data, the model tends to give higher prediction scores for classes in
the new task and much lower scores for those classes in the previous
tasks, which leads to limited overall performance.

3.2 Self-Taught Task-Wise Reweighting

In order to remedy the scores bias, we decide to introduce a robust
self-taught paradigm for help. In this paradigm, the model is expected
to be aware of the scores bias and reduced it before the model gives
the final prediction scores. To achieve this goal, we first need to find
a proper evaluation means to measure the bias degree for all tasks
during the training stage so that it could be learned for later modi-
fication. Since the task that is more severely affected by scores bias
tends to have a more severe performance degradation, we suppose it
is reasonable to measure the scores bias degree for each task with the
task-wise forgetting degree.

In order to evaluate the forgetting degree of the model on previous
tasks, the direct way is to evaluate the model on part of the data of
previous tasks. Given the fact that the memory buffer has been well-
designed and saved in each rehearsal-based method, we decide to
utilize the memory buffer to measure the forgetting degree of the
model for each task. Since the memory buffer Bt (1 ≤ t ≤ n)
contains samples from all previous t tasks, it could be written in a
task-wise split way, which is represented as:

Bt = {BT1
t , BT2

t , ..., BTt
t }, (1)

where BTi
t denotes the data saved from task Ti (1 ≤ i ≤ t) in Bt.

Once the performance of the model on BTi
t has a decline compared

with its previous performance on BTi
i (i < t), we could infer that

the model also suffers a degradation on the corresponding task Ti.
Therefore, we could measure the task-wise forgetting of the model
with the accuracy evaluated on the buffer along the whole training.

As shown in Figure 1, assuming the model acquired at the end
of task Tt as Mt, we evaluate Mt on each BTi

t (1 ≤ i ≤ t) after
training on task Tt. We use Acct to denote the accuracy of model
Mt on Bt, and it is written as:

Acct = (AccT1
t , AccT2

t , ..., AccTt
t ), (2)

where AccTi
t denotes the accuracy of model Mt on BTi

t (1 ≤ i ≤ t).
Since the model Mt has just been trained on task Tt, AccTt

t actually
indicates the initial accuracy of the model on task Ti. Therefore, we
collect all the initial accuracy AccTt

t from task T1 to task Tn and
define the final initial accuracy over n tasks as:

Accini = (AccT1
1 , AccT2

2 , ..., AccTn
n ). (3)

Given the initial accuracy Accini on buffer for each task, we mea-
sure the forgetting degree of the model on each task by calculating
the drop from Accini to Accn. ϕfgt is defined to denote the task-
wise forgetting degree and is calculated by:

ϕfgt = max(0, (Accini −Accn))

= (ϕT1
fgt, ϕ

T2
fgt, ..., ϕ

Tn
fgt),

(4)

where ϕTi
fgt (1 ≤ i ≤ t) denotes the task-wise forgetting degree of

the final model on task Ti. We set the maximum threshold as zero for
ϕTi

fgt to avoid the effect of overfitting.
With the task-wise forgetting degree acquired, the next problem is

how could the model learn from it to reduce the scores bias for each
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task. Since the result of the final prediction is determined by the max-
imum classification score in the output logits, task-wisely reweight-
ing the output logits could contribute to the reduction of score bias for
all the tasks. Regarding this, we devise an activation function Frwt(·)
to calculate a reweighting ratio ω with the task-wise forgetting result
ϕfgt. Formally, the activation function is written as:

ωTi = Frwt(ϕ
Ti
fgt) =

{
e
(k+ϕ

Ti
fgt

)
, if ϕTi

fgt �= 0

1, otherwise
, (5)

where ωTi denotes the value of the reweighting ratio for task Ti, k
is the hyperparameter to adapt the compensation ratios for different
rehearsal-based methods. The selection range and the effect of k are
discussed in ablation experiment section. Note that if ϕTi

fgt is zero,
we keep the original scores of classes in task Ti by setting ωTi to 1.
Formally, ω is written in the form of:

ω = (ωT1 , ωT2 , ..., ωTn), (6)

With the task-wise reweighting ratio, the model could teach it-
self to modify the biased scores. Assuming output logits as p =
(p0, p1, ..., pn|C|−1), since the logits scores in p may be nega-
tive values, directly reweight p with ω could not correctly mod-
ify the scores of classes in each task. Therefore, a softmax layer
is added after the output layer to obtain normalized output logits
ps = (p0s, p

1
s, ..., p

n|C|−1
s ) in which score pis (0 ≤ i ≤ n|C| − 1)

for class i is calculated by:

pis =
ep

i∑n|C|−1
j=0 epj

. (7)

Finally, the normalized output logits ps is reweighted by ω to get the
final output logits pf :

pf = (ωT1p0s, ω
T1p1s, ..., ω

Tnpn|C|−1
s ). (8)

In this way, task-wise reweighting is applied to the final prediction
score ps in the inference stage. Since our R-STAR only has one self-
taught step in the inference stage, it could be directly applied to most
of the rehearsal-based approaches without any change to their initial
idea and effectively help them alleviate the scores bias problem.

3.3 Augmented Buffer for Reweighting

For some rehearsal-based methods like RPC[24], LUCIR [19], and
Der [7], R-STAR could measure the task-wise forgetting degree
ϕfgt of the model by directly evaluating Mn on Bn and calculating
the task-wise drop from Accini to Accn. However, for ER [27],
Derpp [7], and X-Der [6], the samples saved in the buffer from pre-
vious tasks are more fully utilized with extra regularization restric-
tions and retraining in new tasks. Therefore, the model may overfit
the buffer data as training goes on, even if it suffers severe forgetting
on previous tasks. This leads to an unexpected result as concerned in
Eq.( 4): most of the values in ϕfgt become zero, which hinders our
task-wise forgetting measurement.

In order to alleviate this problem, we add an augmentation pro-
cess to Bt and get BAug

t . Note that BAug
t is only used for the task-

wise forgetting degree measurement and the original Bt is used for
training. In order to choose an effective augmentation strategy, we
try several proposed strategies (like AutoAugment [15], RandAug-
ment [16], and the augmentation strategy in SimCLR [13]) and em-
pirically adopt the augmentation strategy in SimCLR [13] as our aug-
mentation strategy. We compare the results of ϕfgt between measur-
ing with no-augmented buffer and augmented buffer. The visualized

Figure 2. Comparative results of ϕfgt across 10 tasks on Split Cifar-100
between reweighting without augmentation ("w/o Augment") and

reweighting with augmentation ("w/ Augment"). We adopt two typical
rehearsal-based approaches Der (top) and Derpp (bottom) to show the

effectiveness of the augmentation strategy to measure task-wise forgetting.

results in Figure 2 show that: (1) The augmentation strategy effec-
tively alleviates the overfitting problem on the buffer data when mea-
suring the ϕfgt for those approaches with full use of the buffer. (2)
The augmentation strategy also makes improvements to the measure-
ment of ϕfgt for those methods with light use of the buffer. These
observations further prove that our augmentation strategy indeed en-
hances the robustness of our R-STAR and makes it a robust approach.

4 Experiments

4.1 Datasets and Evaluation Metrics

Following previous works [6, 7, 12], we evaluate our proposed
method on four commonly-used benchmark datasets:
Split CIFAR-100 [33] contains totally 100 classes. It splits the
CIFAR-100 dataset into 10 consecutive tasks and each task contains
equally 10 classes. In each task, 500 and 100 images in the size of
32x32 are prepared for training and testing respectively.
Split miniImageNet [12] splits miniImageNet [29], a 100-class sub-
set of the popular ImageNet dataset into 20 sequential tasks. Each
task includes 5 different classes and all the images are in the size
84x84 with 3 channels.
Split tinyImageNet splits Tiny ImageNet [3], a 200-class subset of
the popular ImageNet dataset, into 10 classification tasks with 20
classes in each task. Each image is in the size 64x64 with 3 channels.
Split CUB-200 derives from the Caltech-UCSD Birds-200-
2011 [30] as a 200 classes subset. It is organized in the sequence
of 10 tasks, each including 20 classes. Due to the larger image size
of 224x224, it is a more challenging benchmark compared with the
others and is adopted in many well-known works [12, 5, 34].
Metrics. We first report the performance of Final Average Accuracy
(FAA) across all tasks which is also used in previous works [6, 5].
Assuming at

i as the top-1 accuracy of model Mt on the i-th task after
training on task Tt, the FAA is formally written as:

FAA =
1

n

n∑
i=1

an
i , (9)

where n denotes the total number of tasks. FAA reflects the overall
performance of the model on each whole dataset.

Then, we also follow previous work [6] to adopt Final Forgetting
rate (FF) as another metric which indicates the forgetting on previous
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Table 1. Comparative results on Final Average Accuracy (FAA) and Final Forgetting (FF) by combining R-STAR with various rehearsal-based methods. We
show the results in the form of "basic performance + improvement" and also give the average improvement ("Avg. Improv.") across three benchmark datasets.

The positive improvement for FAA is shown in red, while the decrease in FF is shown in blue.

Methods Split Cifar100 Split miniImagenet Split tinyImagenet Split CUB-200 Avg. Improv.

Upper bound 70.44 53.55 59.99 78.54 -
Lower bound 9.43 4.51 7.92 8.56 -

Buffer size 500 2,000 2,000 5,000 500 2,000 500 2,000 -
Final Average Accuracy -

ER [27] 21.70 +2.75 38.32 +3.04 14.57 +2.03 24.92 +2.00 9.99 +3.05 17.82 +3.55 45.01 +3.89 61.10 +2.53 +2.86
BIC [31] 36.12 +1.78 47.48 +3.53 12.96 +1.73 14.49 +1.96 12.28 +2.37 14.81 +1.90 49.41 +3.46 55.80 +3.09 +2.48
RPC [24] 23.08 +2.70 39.79 +2.79 15.60 +1.51 26.13 +1.25 10.30 +1.02 18.11 +2.37 50.30 +4.00 65.21 +1.39 +2.13
LUCIR [19] 39.19 +2.37 48.61 +2.33 14.97 +1.08 17.06 +1.18 29.55 +1.87 31.40 +0.63 51.43 +1.52 65.01 +1.09 +1.51
Der [7] 36.60 +1.66 49.88 +2.07 22.96 +1.53 30.12 +1.57 17.75 +1.83 29.68 +1.73 51.61 +1.65 64.12 +2.03 +1.76
Derpp [7] 37.85 +1.17 51.69 +2.23 23.44 +1.99 30.83 +2.04 19.78 +1.88 30.97 +1.76 52.48 +1.68 66.05 +0.93 +1.71
X-Der [6] 48.08 +0.39 57.58 +0.02 28.19 +0.68 32.32 +0.67 29.77 +1.03 40.76 +0.85 59.23 +0.71 68.35 +0.67 + 0.63

Final Forgetting -
ER [27] 83.70 -3.57 62.07 -3.83 86.48 -2.50 70.14 -3.00 97.36 -1.49 86.02 -3.43 51.71 -5.31 27.70 -3.54 -3.33
BIC [31] 59.16 -4.63 47.68 -4.36 87.37 -2.45 84.59 -3.30 90.62 -3.17 87.60 -3.19 44.50 -5.80 34.56 -4.62 -3.94
RPC [24] 82.42 -3.17 60.42 -3.68 83.92 -2.65 66.46 -2.32 96.64 -1.53 84.10 -4.08 42.94 -5.60 15.69 -2.18 -3.15
LUCIR [19] 64.59 -5.34 43.79 -3.94 75.91 -2.65 53.42 -1.92 49.67 -3.81 33.49 -0.67 29.42 -1.93 12.07 -0.78 -2.63
Der [7] 65.05 -4.80 41.70 -3.57 70.79 -3.76 59.61 -1.98 88.27 -3.02 64.93 -4.05 40.17 -2.41 17.59 -0.92 -3.06
Derpp [7] 61.39 -3.56 41.01 -4.25 69.54 -2.81 58.66 -2.70 84.57 -4.18 60.37 -3.94 39.96 -2.35 15.59 -1.02 -3.11
X-Der [6] 33.31 -1.69 10.54-0.32 44.20 -1.73 26.02 -1.50 62.83 -1.41 35.80 -0.51 10.34 -1.36 5.57 -0.98 -1.19

(n− 1) tasks of the final model. The FF is formally written as:

FF =
1

n− 1

n−1∑
j=1

fj , s.t. fj = max
l∈{1,...,n−1}

al
j − an−1

j . (10)

FF measures the average degradation for all tasks, where the degra-
dation refers to the gap between the best performance and the final
performance of the model during the whole training for each task.

4.2 Implementation Details

In order to evaluate the real merits of our proposed method when
it is combined with existing CIL methods, we follow the settings
in previous well-known works [7, 6] to provide reasonable basic
performances of those CIL methods. For network architecture, we
adopt ResNet18 [18] for Split CIFAR-100 and Split tinyImageNet,
EfficientNet-B2 for Split miniImageNet, and Resnet50 [18] for Split
CUB-200. Most the models are trained from scratch except the one
for Split CUB-200 which is pretrained on Imagenet like previous
works [12, 5] does. For memory buffer size, we also obey the ini-
tial settings in [6] for Split CIFAR-100 and Split miniImageNet, and
set similar buffer sizes (i.e. 500 and 2000) for Split tinyImageNet
and Split CUB-200. For training hyperparameters, we reproduce al-
most all the methods on Split Cifar100, Split miniImagenet, and Split
tiny Imagenet with the reported hyperparameters in [7, 6] except
SSIL [1] which has not been reproduced under these datasets and
training protocols. The training hyperparameters for all the methods
on Split CUB-200 are searched by ourselves and will be released
with the code. Note that we avoid taking results directly from previ-
ous works [7, 6] and instead run all experiments 10 times with the
released code for each method and adopt the average results as the
final results. All the experiments are conducted on TITAN RTX 3090
GPUs. We will make our code public soon.

4.3 Main Results

For clear comparisons, we first provide the best and the poorest re-
sults achieved by training jointly on all data (Upper-bound) and

sequentially on each task with no remedy to catastrophic forget-
ting (Lower-bound), respectively. Moreover, we adopt several well-
known and state-of-the-art rehearsal-based approaches to combine
or compare with our proposed R-STAR, including ER [27], LU-
CIR [19], BIC [31], RPC [24], Der [7], Derpp [7], SSIL [1], ER-
ACE [8], and X-Der [6]. All these approaches, depending on whether
they adopt strategies for score bias reduction and the bias reduction
results they achieve, could be divided into the following three groups.
Approaches with no extra strategy for scores bias reduction: The
approaches ER [27], RPC [24], Der [7], Derpp [7] focus on propos-
ing an effective way to construct and utilize memory buffer to pre-
serve the old knowledge. Since no extra strategy for the scores bias
reduction is adopted by these methods, the improvements made by
our R-STAR are remarkable when it performs as a component of
these methods. It can be observed from Table 1 that R-STAR im-
proves the FAA performance of all these methods by at least 1.71%
higher accuracy and reduce the FF by at least 3.11% on average
across the four datasets. For simple methods like ER [27], R-STAR
even makes over 3% improvements for it on the challenging Split
tinyImagenet dataset and reduce FF for it by more than 5% on the
challenging Split CUB-200 dataset. All these observations provide
evidence that R-STAR plays an important role in score bias reduc-
tion and greatly helps these methods reach better performance (i.e.
higher FAA and lower FF).
Approaches with weak strategies for scores bias reduction: We
also combine our R-STAR with BIC [31], LUCIR [19] and X-
Der [6], which adopt relatively weak strategies. For these three meth-
ods, the scores bias could still be observed under most of the settings
of four benchmark datasets and we find R-STAR could make further
improvements to their performance. From the results in Table 1, we
find that our R-STAR improves the FAA performance of BIC, LU-
CIR and X-Der by 2.48%, 1.51% and 0.62% on average across four
datasets, respectively. Meanwhile, our R-STAR also helps to reduce
the FF performance of BIC, LUCIR and X-Der by 3.94%, 2.63%
and 1.19% on average across four datasets, respectively. For BIC and
LUCIR, such improvement is as remarkable as that of the approaches
with no bias correction strategy, which proves the advantages of the
task-wise reweighting strategy over its original strategy. For X-Der,
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Table 2. Comparative results (FAA) among various scores bias correction methods. For fair comparison, we choose to compare the improvements obtained
by combining Derpp with different scores bias correction strategies.

Methods Split Cifar100 Split miniImagenet Split tinyImagenet Split CUB-200 Avg. Improv

Buffer size 500 2000 2000 5000 500 2000 500 2000 -
SSIL [1] 38.21 49.07 23.18 30.89 20.86 31.33 51.12 66.03 -
ER-ACE [8] 38.75 49.93 22.60 29.93 20.22 31.26 50.04 66.21 -
Derpp [7] 37.85 51.69 23.44 30.83 19.78 30.97 52.48 66.05 -
Derpp + SSIL 38.31 52.05 24.17 31.37 21.11 31.83 52.77 66.07 +0.57
Derpp + ER-ACE 38.43 51.82 24.03 31.32 21.02 31.68 53.63 66.18 +0.62
Derpp + R-STAR (ours) 39.02 53.92 25.43 32.87 21.66 32.73 54.16 66.98 +1.71

Figure 3. Visualized results among tasks T1 − T10 with three scores bias correction strategies on Split Cifar100 (buffer size = 2000): (a) Derpp + SSIL vs.
Derpp, (b) Derpp + ER-ACE vs. Derpp, (c) Derpp + R-STAR vs. Derpp.

the scores bias is smaller due to its constraint on past and future clas-
sifier heads. Note that on Split Cifar100, X-Der has a balanced final
performance among all tasks when adopting a large buffer size and
suffers almost no score bias. Thus, R-STAR could only show minor
advantages of the scores bias reduction under this setting. However,
on the more challenging Split miniImagenet (more tasks), Split tiny-
Imagenet (more classes per task), and Split CUB-200 (larger image
size), where the X-Der still suffers from the scores bias problem,
we find that R-STAR continues to help X-Der achieve better perfor-
mances on these three challenging benchmark datasets by reaching
around 1% FAA improvement and around 1.5% FF reduction. Over-
all, these results make a more convincing proof of the effectiveness
of our R-STAR for it further improves the performance of these ap-
proaches with weak strategies for score bias reduction.
Approaches with strong strategies for scores bias reduction:
SSIL [1] and ER-ACE [8] are recent works specifically proposed
to avoid scores bias. The core idea of these approaches is to split
the backward gradients among old and new tasks. To illustrate the
advantages of our R-STAR over these two methods, we make com-
parisons from two perspectives. First, we want to illustrate that the
R-STAR could help the methods with no bias correction (like Derpp)
reach higher performance than the two strong bias correction meth-
ods. We thus provide their performance in Table 2, from which we
could find that the performance of these two methods is higher than
the original performance (shown in Table 1) of the best "no-bias-
correction" method Derpp on all three datasets. However, by com-
bining with our proposed R-STAR, Derpp could easily outperform
these two methods on all the datasets by over 1% on average. That is
to say, R-STAR provides a new effective way to reduce the scores
bias for reaching higher performance. Second, we make a fairer
comparison to prove the superiority of our R-STAR over these two
methods and analyze the reason behind this. Specifically, We con-
duct two extra experiments with the two combinations of their pro-
posed strategies and the Derpp to check if they could make higher
improvements than R-STAR does. The two combinations are named

"Derpp+SSIL" and "Derpp+ER-ACE" respectively. Concretely, we
set Derpp+SSIL by replacing the original softmax with their pro-
posed "Separate Softmax" and modifying logits distillation with their
"Task-wise Knowledge Distillation". For Derpp+ER-ACE, we adopt
"Separated Cross Entropy" for novel classifier heads when train-
ing the data of novel classes. Similarly, we name the combination
with R-STAR as "Derpp+R-STAR". It can be observed from Ta-
ble 2 that all three combinations outperform the original Derpp but
Derpp+R-STAR reaches a higher average improvement (1.71%) than
that (0.57% and 0.62%) of the other two combinations. For further
analysis, we visualize the final task-wise accuracy of Derpp+SSIL,
Derpp+ER-ACE, and Derpp+R-STAR among all tasks on Split tiny-
Imagenet in Figure 3. Although Derpp+SSIL and Derpp+ER-ACE
achieve more balanced performance among tasks and make further
improvements to earlier tasks, they both have huge sacrifices in the
current task performance. Rethinking their practice of only classify-
ing the new samples within the new classes, we deduce that the rel-
atively lower overall improvement owes to their worse performance
on new tasks compared to the baseline Derpp during training on all
sequential tasks. On the contrary, our R-STAR steadily improves the
previous task performance with minor sacrifice on that of the latest
task, which finally leads to the highest overall improvements. Over-
all, from these two perspectives, our R-STAR actually proves its ad-
vantages over these existing best bias correction methods.

4.4 Ablation Study

Our proposed R-STAR is composed of a task-wise reweighting strat-
egy and an augmentation strategy. We ablate the two strategies com-
bined with three other methods to show their influence on the final
performance across three datasets. As can be observed from Table 3,
we find that: (1) Adopting task-wise reweighting with no-augmented
buffer could improve the performance of methods like LUCIR [19]
and Der [7] which makes light use of memory buffer while hav-
ing no effect on X-Der which makes full use of memory buffer.
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Table 3. Ablation results (FAA) of different strategies in R-STAR on four benchmark datasets. "Reweight" indicates adopting the task-wise reweighting
strategy, and "Augment" indicates applying an augmented buffer for reweighting.

Methods Reweight Augment
Split Cifar100 Split miniImagenet Split tinyImagenet Split CUB-200

500 2000 2000 5000 500 2000 500 2000

LUCIR [19]
39.19 48.61 14.97 17.06 29.55 31.40 51.43 65.01

� 39.19 48.61 15.74 17.77 31.32 31.85 52.07 65.68
� � 41.56 50.94 16.05 18.24 31.42 32.03 52.95 66.10

Der [7]
36.60 49.88 22.96 30.12 17.75 29.68 50.36 64.12

� 37.87 50.92 24.30 31.27 18.89 30.87 52.01 65.62
� � 38.26 51.95 24.49 31.69 19.58 31.41 52.86 66.15

X-Der [6]
48.08 57.58 28.19 32.32 29.77 40.76 59.23 68.35

� 48.08 57.58 28.19 32.32 29.77 40.76 59.23 68.35
� � 48.47 57.54 28.87 32.99 30.80 41.61 59.94 69.02

Table 4. Comparative results (FAA) of the variations of R-STAR on Split
tinyImagenet. We compare our R-STAR with R-STAR-Avg and R-STAR-FB

to demonstrate the effectiveness and rationality of our design.

Methods
Reweighting

Strategy

Split tinyImagenet

500 2000

ER [27]

Original 9.99 17.82
+ R-STAR-Avg 10.35 18.72
+ R-STAR-FB 12.63 19.85
+ R-STAR 13.04 21.37

Derpp [7]

Original 19.38 30.97
+ R-STAR-Avg 19.58 31.07
+ R-STAR-FB 20.88 31.76
+ R-STAR 21.66 32.73

X-Der [6]

Original 29.77 40.76
+ R-STAR-Avg 29.35 40.11
+ R-STAR-FB 30.04 40.89
+ R-STAR 30.80 41.61

That is to say, task-wise reweighting with no-augmented buffer is
an effective strategy but it still needs further modifications for bet-
ter generalization ability. (2) The augmentation strategy helps the
task-wise reweighting strategy make further improvements for the
SOTA method X-Der [6]. Since the main challenge for reweighting
strategy is the overfitting problem on buffer data (as discussed in
Sec. 3.3), these improvements prove that the augmentation strategy
indeed helps the task-wise reweighting strategy alleviate the overfit-
ting problem and enhance its robustness. (3) Moreover, the augmen-
tation strategy could consistently further improve the performance of
LUCIR [19] and Der [7], which indicates that the augmented buffer
steadily optimizes the task-wise forgetting measurements. Overall,
all these results prove the reasonability and effectiveness of each
strategy in our R-STAR.

For further discussion, we adopt three rehearsal-based methods as
basic methods and compare R-STAR with two variations on the Split
tinyImagenet to ablate its design details. First, we want to highlight
the difference between task-wise reweighting and trivial reweighting
(reweighting with the average forgetting degree value) of the output
scores. We thus set all ϕTi

fgt (1 ≤ i ≤ n) to a constant average value

as 1
n

n∑
i=1

ϕTi
fgt and name this variation "R-STAR-Avg". It can be ob-

served from Table 4 that R-STAR makes 3% improvements while the
R-STAR-Avg only makes around 1% improvement for ER and Derpp
and even has a bad effect for X-Der. Therefore, task-wise reweight-
ing is proved to be an effective and reasonable design. Second, we
want to illustrate that the changing size of BTi

t across t tasks makes
no bad effect on measuring ϕfgt. To ablate this, we sample a subset
Bfix

t = {BFTi
t }ti=1 from Bt, where BFTi

t is sampled from BTi
t and

is in the fixed size of 1
n
|B|. We then evaluate on augmented Bfix

t to
obtain Acct and name such variation "R-STAR-FB". It can be ob-

Table 5. Effect of k on the performance of our R-STAR when combined
with different methods. "Ori." denotes the basic performance of the

rehearsal-based methods. We show the final results (FAA) of the model on
Split tinyImagenet and Split CUB-200 both with buffer size of 2000.

Datasets Methods Ori.
k

0 0.5 1 1.5 2

Split tinyImagenet

ER + R-STAR 17.82 18.17 18.94 20.91 21.37 20.98
Derpp + R-STAR 30.97 31.02 31.86 32.52 32.73 32.00
X-Der + R-STAR 40.76 40.87 41.61 41.37 40.99 40.79

Split CUB-200

ER + R-STAR 61.10 61.26 62.22 63.5 63.63 62.90
Derpp + R-STAR 66.05 66.14 66.56 66.98 66.51 66.09
X-Der + R-STAR 68.35 68.42 69.02 68.78 68.54 68.41

served from Table 4 that R-STAR reaches higher improvements than
R-STAR-FB, which proves that our evaluation on augmented BTi

t

without fixed size is a better choice. Overall, the comparison results
further prove the details of our R-STAR design are reasonable.

Moreover, we show extra experiment results in Table 5 with three
typical rehearsal-based methods (i.e. ER, Derpp, and X-Der) on two
challenging benchmark datasets (i.e. Split tinyImagenet and Split
CUB-200) to ablate the effect of the hyperparameter k. As we in-
troduced in Sec. 3.2, k is set to help R-STAR adapt to different meth-
ods on different benchmark datasets. In our experiments, we search
for the value of hyperparameter k for most of the methods on four
benchmark datasets in the range of [0, 2]. From the results in Ta-
ble 5, we can easily find that: (1) For the rehearsal-based methods
suffering from more severe scores bias problem (i.e. ER and Derpp),
larger value of k (i.e. 1.5) could better assist R-STAR to make higher
improvement. In reverse, for the rehearsal-based methods with slight
scores bias problem, smaller value of k (i.e. 0.5) makes better help.
(2) In the whole selection range of k, R-STAR could consistently
improve the performance for these rehearsal-based methods, and the
improvements keeps remarkable in the range of [0.5, 1.5]. Overall,
all these observations provide a clear understanding on the effect of
k and a clear definition of the auxiliary role of k for our R-STAR.

5 Conclusion

In this paper, we propose a novel Robust Self-Taught Task-Wise
Reweighting (R-STAR) method. It introduces a robust self-taught
learning paradigm which makes the model aware of the scores bias
and reduces the bias in a self-taught way. Acting as a flexible and
effective component for most rehearsal-based approaches, R-STAR
takes almost no extra training time and excessive performance sacri-
fice on the new task while making consistent improvements for these
approaches. Additionally, we also prove its superiority over existing
bias correction methods and ablate its design details and the effect of
key hyperparameters. Extensive results on the commonly-used CIL
benchmarks demonstrate the effectiveness of our R-STAR.
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