
Mixup-Inspired Video Class-Incremental Learning
1st Jinqiang Long

Gaoling School of Artificial Intelligence
Renmin University of China

Beijing, China
longjinqiang@ruc.edu.cn

2nd Yizhao Gao
Gaoling School of Artificial Intelligence

Renmin University of China
Beijing, China

gaoyizhao@ruc.edu.cn

3rd Zhiwu Lu
Gaoling School of Artificial Intelligence

Renmin University of China
Beijing, China

luzhiwu@ruc.edu.cn

Abstract—Continual learning aims to learn a sequence of tasks
without forgetting the previously learned knowledge. Although
existing memory-based approaches can be easily deployed for
video Class-Incremental Learning (CIL), little efforts have been
made to explore how to better exploit the data from the previous
work (in the memory) for alleviating the catastrophic forgetting.
In this work, we thus propose a simple yet effective framework
called Mixup-Inspired Video Class-Incremental Learning (MIV-
CIL). The core idea of our MIVCIL framework is to impose
mixup on the current video data and the previous video data
(from the memory buffer) to mitigate the catastrophic forgetting.
By exploring different mixup strategies on the video data, our
MIVCIL framework has three instantiations for video class-
incremental learning. We further provide a detailed analysis
of the performance and computational overhead of the three
instantiations on the latest benchmark vCLIMB. Experimental
results show that all three instantiations achieve significant
improvements over the representative/state-of-the-art methods.

Index Terms—Continual learning, Video class-incremental
learning, Catastrophic forgetting, Mixup

I. INTRODUCTION

In recent years, deep learning has achieved a series of state-
of-the-art performance in computer vision with non-streaming
data [1], [2]. However, in real-world scenarios, a deep learning
model needs to evolve with streaming data, which means that
the data for different tasks often arrive in a certain order.
Owing to the fact that storing all of the old data and training
from scratch with both of the old data and new data are
expensive and time-consuming, it is a natural idea to fine-
tune the model trained on the old data with the newly-arrived
data. Under this setting, when the model is fine-tuned with
newly-arrived data to adapt to new tasks, the performance
of the model on the previously learned tasks will decline
sharply. This phenomenon is well known as catastrophic
forgetting in continual learning [3]–[6]. Continual learning
enables the model trained on a sequence of tasks to mitigate
the catastrophic forgetting so that the model can not only
perform well on the new tasks but also can maintain good
performance on the previously learned tasks. In this work,
we focus on a specific case of continual learning: class-
incremental learning (CIL), where the task-ids is invisible to
the model and the model needs to recognize the correct task-id
and the correct class-id for the data inputted into the model.

Existing methods for mitigating the catastrophic forgetting
in CIL can be divided into three groups: (1) Regularization-

Fig. 1. Schematic illustration of video class-incremental learning through
memory-based methods. A memory buffer with a fixed maximum size is
maintained to store video examples sampled from the data of the previous
tasks. When the model is trained on the current task, the data in the memory
buffer and the data of the current task will be mixed together and then fed
into the model for training.

based methods add a regularization term to the loss function
to penalize the catastrophic forgetting [3], [4]; (2) Memory-
based methods store some data samples [5], [6]or generate
pseudo data of the previously learned tasks [7], [8] for data
replaying; (3) Architecture-based methods assign different
subsets of model parameters to different tasks or extend
network for newly arrived tasks [9], [10]. More details are
given in Section II. Most of existing methods are designed
for continual learning with image data. However, continual
learning is still under-explored in the video domain. Villa et
al. [11] extended some methods from image domain to video
domain and evaluate them on a standard benchmark. Note
that the latest works on video CIL make main attempts to
overcome the catastrophic forgetting by designing new model
structures or new training strategies. Although memory-based
methods can be easily deployed for video CIL, little efforts
have been made to explore how to better exploit the data from
the previously learned tasks (in the memory) for alleviating
the catastrophic forgetting.

When the model learns a new task in video CIL, existing
memory-based methods simply mix the video data in memory
with the video data for the current task to train the model,
as shown in Fig. 1. We believe that this simple mixing does
not effectively utilize the video data in memory that contains
information from the previous tasks. To make more efficient
use of the video data in memory and further mitigate the
catastrophic forgetting, we attempt to perform interpolation
on the new video data (for the current task) and the old video



data (from the memory buffer) instead of the simple mixing
operation. With such data interpolation, we thus propose a
simple yet effective framework called Mixup-Inspired Video
Class-Incremental Learning (MIVCIL) by imposing mixup
[12] on the current video data and the old video data (from
the memory buffer). When different mixup strategies are
applied over the video data, our MIVCIL framework has three
instantiations for video CIL. Note that our MIVCIL framework
is simple to implement and is flexible to be fused with any
memory-based methods. For fair comparison, we evaluate the
three instantiations of our MIVCIL on the latest video CIL
benchmark vCLIMB [11], and find that our proposed MIVCIL
methods achieve significant improvements over the state-of-
the-art methods under the video CIL setting.

The main contributions of this work can be summarized
as follow: (1) Following memory-based methods, we propose
a simple yet effective framework called MIVCIL to mitigate
the catastrophic forgetting for video CIL, which applies mixup
[12] to the training data through three different strategies. (2)
By evaluating the obtained three instantiations of MIVCIL on
the latest benchmark vCLIMB, we demonstrate the effective-
ness of our MIVCIL in video CIL. (3) We provide a detailed
analysis of the performance and computation overhead of the
three instantiations of our MIVCIL.

II. RELATED WORK

Continual Learning. Continual Learning aims to learn
novel concepts continually on a sequence of tasks without for-
getting the previously learned knowledge. Existing continual
learning approaches can be divided into three categories: (1)
Regularization-based methods [3], [4] attempt to penalize
the catastrophic forgetting by adding a regularization term to
the loss function to constrain the updating of each parameter
of the model. Different methods make difference in how to
estimate the importance of the parameters. Memory Aware
Synapses (MAS) [3] measures the importance of parameters
according to the influence of parameter’s change on the output
of model, while Elastic Weight Consolidation (EWC) [4] uses
the second derivative of loss function with respect to the
parameters. (2) Memory-based methods [5]–[7] maintain
a memory buffer to store a few of examples sampled from
the data of the previous tasks or generate pseudo data for
data replay (see Fig. 1). Existing methods try to find better
strategies to manage the memory buffer. Incremental Classifier
and Representation Learning (iCaRL) [5] selects samples that
are closest to the feature mean of each class and uses a nearest-
mean-of-exemplars classifier. Bias Correction (BiC) [6] pro-
poses that there will be an imbalance between old and new
classes on large-scale data and adds a bias correction layer
based on the iCaRL model to mitigate the class imbalance in
large-scale data. While iCaRL [5] and BiC [6] sample from
real data, DGR [7] uses a generative model to generate pseudo
data for data replay. (3) Architecture-based methods [9],
[10] assign different subsets of model parameters to different
tasks or extend networks for new tasks. In Progressive Neural
Networks (PNN) [9], the network trained on each task is frozen

and its parameters will not be further updated. When a new
task arrives, a new network will be instantiated.

Video CIL. Although continual learning has been thriving
in the field of image processing, video CIL is a new continual
learning setting that needs to be further explored [13], [14].
Note that a new video CIL benchmark vCLIMB has been
proposed in [11]. Since video examples contain a temporal
dimension whose size could be greatly various from each other
unlike image instances, vCLIMB redefines the memory size in
terms of the stored frames for memory-based methods to favor
fair comparison among them. Moreover, vCLIMB extends
four widely-used continual learning methods (i.e., iCaRL [5],
BiC [6], MAS [3], and EWC [4]) to the video CIL setting,
and also propose a stronger baseline which adds a temporal
consistency loss item to the loss function to reduce the gap
between the representation of the origin video clip and the
temporally down-sampled version. In this paper, we also make
performance evaluation on the benchmark vCLIMB.

Mixup. Mixup [12] is an effective strategy for data augmen-
tation in computer vision research. For two examples (x1, y1)
and (x2, y2) randomly selected from the dataset, the following
operation is performed for mixup:

x̃ = λx1 + (1− λ)x2 (1)
ỹ = λy1 + (1− λ)y2 (2)

where λ ∼ Beta(α, α), for any α ∈ (0,∞). Through the
above simple linear transformation of the input examples,
the generalization ability of a model can be increased, and
the robustness of the model against adversarial attack can be
improved simultaneously. Even though mixup has already been
widely used in traditional image tasks, there is still no good
strategy to apply mixup to the video CIL setting at present,
which is the focus of our work.

III. PRELIMINARIES

A. Problem Definition
Considering a continual learning problem in video domain,

we train a neural network on a continuum of data consisting
of T tasks. Each task τ (τ = 1, 2, ..., T ) contains its cor-
responding dataset Dτ = {(x1, y1), (x2, y2), ..., (xnτ

, ynτ
)}

with nτ examples, where xi is the input video, and yi is the
corresponding label, for each example (xi, yi) ∈ Dτ . And each
video x = {f1, f2, ..., fnx} consists of nx frames. Considering
a neural network fΘ parameterized by Θ and a classifier gΦ
parameterized by Φ, we can define the cross-entropy (CE) loss
on Dτ as follows:

L =
∑

(xi,yi)∈Dτ

CE(gΦ(fΘ(xi)), yi) (3)

Our work focus on the memory-based methods for class-
incremental learning (CIL), which will select and store
examples from dataset Dτ into a memory buffer Mτ

with a fixed maximum size Sm. When the model is
train on task τ , the memory can be defined as Mτ =
{(x1, y1), (x2, y2), ..., (xmτ

, ymτ
)} with mτ examples, where

mτ should be limited by the constraint mτ ≤ Sm.



B. Evaluation Metrics

We use two standard metrics proposed to evaluate the model
performance: Final Average Accuracy (Acc) and Backward
Forgetting (BWF).

Final Average Accuracy is the average test accuracy of all
the tasks after the last task τT is completed. Let aτ ′,τ denotes
the accuracy of task τ after the task τ ′ is completed. The Acc
can be defined as follows:

Acc =
1

T

T∑
τ=1

aT,τ (4)

Backward Forgetting can evaluate average accuracy de-
crease between the maximum accuracy and the minimum
accuracy of each task after the last task is completed. BWF
can be defined as follows:

BWF =
1

T − 1

T−1∑
τ=1

max
τ ′∈{1,...,T}

(aτ ′,τ − aT,τ ) (5)

IV. METHODOLOGY

The memory-based methods maintain a memory buffer that
stores some samples from the previous tasks for data replay to
mitigate the catastrophic forgetting. Since the memory buffer
is empty when the model is trained on the first task (τ = 1),
we focus on how to impose mixup when the model is trained
on task τ (τ ∈ {2, ..., T}).

Specifically, when the model is being trained on task τ ,
the training data consists of two parts: the data of the current
task Dτ = {(x1,D, y1,D), (x2,D, y2,D), ..., (xnτ ,D, ynτ ,D)},
and the examples stored in the memory buffer Mτ =
{(x1,M, y1,M), (x2,M, y2,M), ..., (xmτ ,M, ymτ ,M)}. The tra-
ditional memory-based methods [5], [6] choose to simply mix
Dτ and Mτ together, and then train the model with the mixed
data, which can effectively mitigate the catastrophic forgetting
in continual learning. In this work, inspired by such memory-
based methods, we propose a stronger framework MIVCIL
by imposing mixup [12] on the data in Mτ and Dτ by three
different strategies instead of the traditional simply mixing.

A. Mixup on Data

The first strategy distinguishes between the data in Dτ and
Mτ , and utilizes Mixup on the Data of the current task (MoD).
We do not make any modification to the data in the memory
buffer, while augmenting the data of the current task by
implementing mixup during training.

For each example of the current task (xi,D, yi,D) ∈ Dτ ,
we select an example (xj,M, yj,M) ∈ Mτ randomly from the
memory buffer and interpolate between them as:

x̃i,D = λxi,D + (1− λ)xj,M (6)

where λ ∼ Beta (α, α), for any α ∈ (0,∞). Whereupon,
we train the model on the data in the memory buffer and the

Fig. 2. Illustration of MoD. Given a data batch from the current task, MoD
randomly samples a data batch from the memory buffer, and then implements
mixup between the two batches to obtain the interpolated data. The model is
trained with the interpolated data and the data in memory buffer.

Fig. 3. Illustration of MoDaM. Based on the setting of MoD, MoDaM
additionally samples a data batch from the current task and implements mixup
between this batch and the data batch from the memory buffer.

Fig. 4. Illustration of MaM. MaM directly mixes the data from the current
task and the data from the memory buffer together (without any modification),
and then implements mixup between the mixed data.

interpolated data of the current task (see Fig. 2). The loss
function for the interpolated data can be defined as:

Lmixup =
∑
i,j

λCE(gΦ(fΘ(x̃i,D)), yi,D)

+ (1− λ)CE(gΦ(fΘ(x̃i,D)), yj,M) (7)

B. Mixup on Data and Memory

The second strategy also distinguishes between the data
in Dτ and Mτ , but implements Mixup on the Data of the
current task and the data in Memory buffer (MoDaM), which
is different from the first strategy.

For each example (xi,M, yi,M) ∈ Mτ , we select an ex-
ample (xj,D, yj,D) ∈ Dτ from the data of the current task
to implement mixup on them. Simultaneously, we make the
same modification to the data of the current task just as MoD.
MoDaM (see Fig. 3) can be defined as:

x̃i,M = λ1xi,M + (1− λ1)xj,D (8)
x̃i,D = λ2xi,D + (1− λ2)xj,M (9)



Fig. 5. Illustration of mixup between two videos. In practice, each video will be represented by the same number of frames (we show 4 frames per video
here as an example). We interpolate the corresponding frames of the two videos with the scale coefficient λ.

The loss function for the interpolated data is defined as:

Lmixup,M =
∑
i,j

λ1CE(gΦ(fΘ(x̃i,M)), yi,M)

+ (1− λ1)CE(gΦ(fΘ(x̃i,M)), yj,D) (10)

Lmixup,D =
∑
i,j

λ2CE(gΦ(fΘ(x̃i,D)), yi,D)

+ (1− λ2)CE(gΦ(fΘ(x̃i,D)), yj,M) (11)

C. Mix and Mixup

Different from the above two mixup strategies, the third
strategy does not distinguish between the data in Dτ

and Mτ , which chooses to Mix them and implement
Mixup (MaM). Specifically, we simply mix the two parts
of data just the same as the traditional memory-based meth-
ods, where the Dunion,τ = Dτ ∪ Mτ . For each exam-
ple (xi,Du

, yi,Du
) ∈ Dunion,τ , MaM randomly selects another

example (xj,Du
, yj,Du

) ∈ Dunion,τ from the mixed data and
interpolate between them as follows:

x̃i,Du = λxi,Du + (1− λ)xj,Du (12)

The model is trained on the mixed and interpolated data (see
Fig. 4). The loss function for the interpolated data is:

Lmixup =
∑
i,j

λCE(gΦ(fΘ(x̃i,Du
)), yi,Du

)

+ (1− λ)CE(gΦ(fΘ(x̃i,Du)), yj,Du) (13)

For easy understanding, the details of the mixup operation
over two videos in Equation (12) are given as follows. For
videoi = {F1, F2, ..., Fni} and videoj = {F1, F2, ..., Fnj}, we
select the same number of frames to form the representation
of the videos, i.e., we have videoi = {F1,i, F2,i, ..., Fm,i} and
videoj = {F1,j , F2,j , ..., Fm,j}. The mixup operation over two
videos is then defined as:

Fk = λFk,i + (1− λ)Fk,j , k ∈ {1, 2, ...,m} (14)

which is also illustrated in Fig. 5.
Overall, the aforementioned three strategies utilize mixup on

the video data in the memory and the video data of the current
task, which can mitigate catastrophic forgetting and increase
the robustness of the model. With these mixup strategies,
we can obtain three instantiations of our MIVCIL. Since
our MIVCIL is model-independent, it can be applied to any
memory-based models for video CIL. In addition, our MIVCIL
does not require the tuning of additional hyper-parameter so
that it is very easy to implement.

V. EXPERIMENTS

A. Experimental Setup

Baselines. In this work, we evaluate our MIVCIL on the
new video CIL benchmark vCLIMB [11]. We apply our
MIVCIL to a stronger baseline proposed in vCLIMB, which
adds the temporal consistency loss to that of iCaRL [5]
(iCaRL+TC [11]). We make comparison to two regularization-
based methods [3], [4] and two memory-based methods [5],
[6], as in vCLIMB. Additionally, we also provide a detailed
analysis of the performance and computation overhead of the
three instantiations of our MIVCIL.

Datasets and Tasks. To explore the effectiveness and scal-
ability of our MIVCIL, we make evaluation on UCF101 [15]
and HMDB51 [16], which are two widely-used benchmark
datasets for video classification. (1) UCF101 is an action
video dataset for action recognition, which contains 13.3K
videos from 101 action classes. Each video in UCF101 has
an average of 182 frames. (2) HMDB51 is a video dataset for
action recognition as well, which contains 6.7K videos from
51 action classes. Each video has an average of 95 frames.
We split the two datasets into 10 tasks, where each task has
10 classes for UCF101 and 5 classes for HMDB51 (but the
first task has one more class).

Implement Details. (1) Model Details. We adopt Temporal
Segment Networks (TSN) [17] with ResNet-34 pretrained on
ImageNet as the backbone, as in vCLIMB [11]. We follow the
same temporal data augmentation proposed in TSN [17], using
8 segments per video and 1 frame per segment. The factor λ of
mixup [12] obeys beta distribution (λ ∼ Beta (α, α)), where
we set α = 0.2 in this paper. For the factor of the temporal
consistency loss, we use λtc = 0.5, following VCILMB [11].
For the size of memory buffer, we use the same number of
example per class as vCLIMB [11], which is set to 20 when the
model has learned all the tasks. Therefore, the maximum size
of memory buffer should be 2,020 and 1,020 for UCF101 [15]
and HMDB51 [16], respectively. (2) Training Details. We
train the model in a supervised fashion for 50 epochs per task.
We make use of the optimizer Adam with the initial learning
rate of 1× 10−3 and the learning schedule with milestone =
[10, 20] to optimize the model.

B. Main Results

The comparative results of video CIL on UCF101 [15] and
HMDB51 [16] are shown in Table I. It can be clearly seen
that the performance of regularization-based methods [3], [4]



TABLE I
COMPARATIVE RESULTS OF VIDEO CIL ON UCF101 AND HMDB51. MOD, MODAM, AND MAM ARE THE THREE INSTANTIATIONS OF OUR

MIVCIL. Frames per Video DENOTES THE NUMBER OF FRAMES STORED IN THE MEMORY BUFFER FOR EACH VIDEO, AND THE SIZE OF Memory Buffer IS
MEASURED BY THE NUMBER OF STORED FRAMES. WE REPORT THE FINAL AVERAGE ACCURACY (ACC) AND BACKWARD FORGETTING (BWF) FOR

PERFORMANCE EVALUATION. THE BEST SCORES ARE HIGHLIGHTED IN BOLD, AND THE SECOND BEST SCORES ARE UNDERLINED.

Model Frames per UCF101 HMDB51
Video Memory Buffer Acc ↑ BWF ↓ Memory Buffer Acc ↑ BWF ↓

EWC [4] none none 9.51% 98.95% None 2.31% 74.74%
MAS [3] none none 10.89% 11.11% None 9.12% 29.20%
Bic [6] all 3.69× 105 78.16% 18.49% 9.67× 104 35.71% 16.66%

iCaRL [5]
4 8.08× 103 59.98% 34.17% 4.08× 103 21.99% 29.41%
8 16.16× 103 60.03% 32.24% 8.16× 103 21.05% 29.19%

16 32.32× 103 62.26% 31.91% 16.32× 103 20.60% 31.53%

iCaRL+TC [11]
4 8.08× 103 72.19% 25.37% 4.08× 103 26.11% 32.84%
8 16.16× 103 74.70% 22.31% 8.16× 103 25.65% 28.62%

16 32.32× 103 76.10% 19.78% 16.32× 103 26.70% 28.99%

MoD (ours)
4 8.08× 103 79.68% 16.93% 4.08× 103 34.84% 20.18%
8 16.16× 103 80.21% 16.64% 8.16× 103 34.83% 19.90%

16 32.32× 103 80.81% 14.87% 16.32× 103 36.27% 17.20%

MoDaM (ours)
4 8.08× 103 72.56% 14.73% 4.08× 103 36.28% 18.36%
8 16.16× 103 73.76% 13.82% 8.16× 103 36.49% 17.05%

16 32.32× 103 74.66% 13.18% 16.32× 103 37.07% 17.27%

MaM (ours)
4 8.08× 103 77.27% 17.50% 4.08× 103 28.66% 29.35%
8 16.16× 103 76.27% 17.89% 8.16× 103 35.62% 23.53%

16 32.32× 103 77.59% 16.80% 16.32× 103 34.51% 25.72%

is extremely poor on either datasets, although they can lead to
very low backward forgetting (BWF) sometimes. Therefore,
we pay more attention to comparing our MIVCIL with the
memory-based methods [5], [6], [11].

Results on UCF101. Table I (columns3-5) shows the
comparative results of different methods on UCF101 [15].
We can observe that: (1) Our MoD and MaM achieve much
better results than other methods on the final average accuracy
(Acc) with the same memory buffer size. Concretely, our MoD
outperforms recent methods by large margins on all settings
(7.49% on 4 frames, 5.51% on 8 frames, and 4.71% on 16
frames). It has an average increase of 5.90% in accuracy
compared to iCaRL+TC [11] and an average increase of
19.47% compared to iCaRL [5]. (2) With only 4 frames
for each video in memory buffer, our MoD achieves higher
accuracy than BiC [6], which stores all frames per video
and requires about 45 times of memory space capacity. (3)
Although MAS [3] achieves the lowest BWF, it almost fails
in terms of Acc. This means that BWF should be only used
as an auxiliary metric in addition to Acc.

Results on HMDB51. Table I (columns 6-8) shows the
comparative results on HMDB51 [16]. It can be seen that: (1)
All of our three methods outperform the other methods (except
BiC [6]), where Acc has been improved and BWF has declined
to a large extent. (2) Among our three methods, MoDaM
performs the best on HMDB51, which leads to an average
increase of 10.46% in Acc and an average decrease of 12.59%
in BWF compared with iCaRL+TC [11]. (3) Although the
MoD shows slightly weaker performance among our proposed
strategies, it still outperforms the baselines with a distinct
margin. Concretely, it has an average increase of 6.78% in
accuracy compared to iCaRL+TC [11] and and 11.72% in
accuracy compared to iCaRL [5]. (4) Compared to BiC [6]

(a)

(b)
Fig. 6. Illustration of the average accuracy (Acc) on learned tasks
after learning task sequences of different length on HMDB51 (a) and
UCF101 (b). We set the number of frames per video stored in the memory
buffer to 4.

with a much larger memory buffer (using all frames per video),
our MoDaM achieves higher Acc scores with similar BWF
scores (using 4 frames per video), which only requires 1/23
of Bic’s memory buffer.

C. Further Evaluation

To further demonstrate the superiority of our methods, we
show the average accuracy of the model on all learned tasks
after it is trained sequentially on each task of HMDB51 (a)
and UCF101 (b) in Fig. 6 . Since the average accuracy results
acquired after the first two tasks are of minor difference across



TABLE II
RESULTS OF COMPUTATION OVERHEAD ANALYSIS. WE REPORT THE
TRAINING TIME AND THE MAXIMUM GPU OCCUPATION DURING THE

TRAINING PROCESS FOR EACH METHOD. WE SET THE NUMBER OF
FRAMES PER VIDEO STORED IN THE MEMORY BUFFER TO 4.

Model UCF101 HMDB51
Time GPU Acc Time GPU Acc

iCaRL+TC [11] 10h 18G 72.19% 4h 18G 26.11%
MoD (ours) 24h 20G 79.68% 7h 20G 34.84%
MoDaM (ours) 40h 24G 75.51% 14h 24G 36.28%
MaM (ours) 11h 20G 77.27% 5h 20G 28.66%

different approaches, we show the results from the end of
the third task for clear comparison. It can be observed that:
(1) On HMDB51, all of our three methods keep reaching
higher average accuracy on all learned tasks than the other
competitors after each task (i.e. with different task sequence
lengths). (2) On UCF101, although our proposed MoD and
MaM shows less superiority over the baselines when the
number of learned tasks is small, they outperform the baselines
with distinct larger margins when the number of learned tasks
grows larger. The above two observations prove the good
generalization ability of our method on different length of task
sequence and the superiority in learning on challenging long
task sequence. Overall, these two advantages provide further
evidence that our MIVCIL indeed achieves great success in
mitigating the catastrophic forgetting in video CIL scenario.

D. Computation Overhead Analysis

Table II provides the comparison on the computation
overhead of our three methods and iCaRL+TC [11]. Consistent
to the no-free-lunch theorem, the performance improvement
of our methods comes from the better utilization of the
information/knowledge of memory data, which leads to more
training time and GPU occupation on both UCF101 and
HMDB51. Concretely, our MoD needs more GPU space (2G)
than iCaRL+TC but outperforms it by large margins (7.49% on
UCF101 and 8.73% on HMDB51). In addition, our MoDaM
requires 6G more GPU space with much higher Acc scores
(especially 36.28% vs. 26.11% on HMDB51).

Note that the increase of computation overhead is not
surprising, since our MIVCIL imposes mixup [12] on almost
every example in the dataset. More specifically, MoDaM needs
to: (1) sample examples from memory buffer Mτ for each
data batch from the current task Dτ ; (2) sample examples
from Dτ for each data batch from Mτ to implement mixup
twice, which leads to the most computation overhead. MoD
requires less overhead than MoDaM due to the lack of the
second part, while the cost of MaM is the least because the
process of sampling for each batch is not required. In practice,
we have to balance performance improvement and computing
overhead to choose the best instantiation of our MIVCIL.

VI. CONCLUSION

In this paper, we propose a simple yet effective framework
called MIVCIL, which has three instantiations to deploy
mixup [12] for video CIL based on memory buffer. We eval-
uate our MIVCIL on a novel benchmark vCLIMB, and show

that our MIVCIL can significantly mitigate the catastrophic
forgetting in video CIL. Additionally, we provide a detailed
analysis of the performance and computation overhead of the
three instantiations of our MIVCIL. Although our MIVCIL
only utilizes mixup at the raw video level, we believe that the
use of mixup at the feature level also has great potential. In
our ongoing work, we will explore more approaches.

ACKNOWLEDGMENT

This work was supported in part by National Natural Sci-
ence Foundation of China (61976220 and 62376274). Zhiwu
Lu is the corresponding author.

REFERENCES

[1] M. Bain, A. Nagrani, G. Varol, and A. Zisserman, “Frozen in time:
A joint video and image encoder for end-to-end retrieval,” in IEEE
International Conference on Computer Vision, 2021, pp. 1728–1738.

[2] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2022, pp.
10 684–10 695.

[3] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars,
“Memory aware synapses: Learning what (not) to forget,” in European
Conference on Computer Vision, 2018, pp. 139–154.

[4] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the National Academy of Sciences, vol. 114, no. 13, pp.
3521–3526, 2017.

[5] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl:
Incremental classifier and representation learning,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 2001–2010.

[6] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu, “Large
scale incremental learning,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 374–382.

[7] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep
generative replay,” Advances in Neural Information Processing Systems,
vol. 30, 2017.

[8] Y. Xiang, Y. Fu, P. Ji, and H. Huang, “Incremental learning using
conditional adversarial networks,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 6619–6628.

[9] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural
networks,” arXiv preprint arXiv:1606.04671, 2016.

[10] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single
network by iterative pruning,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 7765–7773.

[11] A. Villa, K. Alhamoud, V. Escorcia, F. Caba, J. L. Alcázar, and
B. Ghanem, “vclimb: A novel video class incremental learning bench-
mark,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2022, pp. 19 035–19 044.

[12] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017.

[13] J. Park, M. Kang, and B. Han, “Class-incremental learning for action
recognition in videos,” in IEEE International Conference on Computer
Vision, 2021, pp. 13 698–13 707.

[14] H. Zhao, X. Qin, S. Su, Y. Fu, Z. Lin, and X. Li, “When video
classification meets incremental classes,” in ACM Multimedia, 2021, pp.
880–889.

[15] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human
actions classes from videos in the wild,” arXiv preprint arXiv:1212.0402,
2012.

[16] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “Hmdb: a
large video database for human motion recognition,” in IEEE Interna-
tional Conference on Computer Vision, 2011, pp. 2556–2563.

[17] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks for action recognition in videos,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 41,
no. 11, pp. 2740–2755, 2018.


	Introduction
	Related work
	Preliminaries
	Problem Definition
	Evaluation Metrics

	Methodology
	Mixup on Data
	Mixup on Data and Memory
	Mix and Mixup

	Experiments
	Experimental Setup
	Main Results
	Further Evaluation
	Computation Overhead Analysis

	Conclusion
	References

