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ABSTRACT
In online industrial advertising systems, conversion actions (e.g.,

purchases or downloads) often occur significantly delayed, even

up to several days or weeks after the user clicks. This phenomenon

leads to the crucial challenge called delayed feedback problem in

streaming CVR prediction, that is, the online systems cannot receive

the true label of conversions immediately for continuous training.

To mitigate the delayed feedback problem, recent state-of-the-art

methods often apply sample duplicate mechanisms to introduce

early certain conversion information. Nevertheless, these works

have overlooked a crucial issue of rapid shifts in data distribution

and considered both the newly observed data and duplicated early

data together, resulting in biases in both distributions. In this work,

we propose a Dually enhanced Delayed Feedback Model (DDFM),

which tackles the above issues by treating the newly observed data

and duplicated early data separately. DDFM consists of dual unbi-

ased CVR estimators that share the same form but utilize different

latent variables as weights: one for the newly observed data and

the other for the duplicated early data. To avoid high variance, we

adopt an addition-only formula for these latent variables, elimi-

nating multiplication or division operations. Furthermore, we de-

sign a shared-bottom network that efficiently and jointly estimates

the latent variables in DDFM. Theoretical analysis demonstrates

the unbiasedness and convergence properties of DDFM. Extensive

experiments on both public and industrial large-scale real-world

datasets exhibit that our proposed DDFM consistently outperforms

existing state-of-the-art methods.
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1 INTRODUCTION
In online industrial advertising and recommender systems, con-

version rate (CVR) prediction has become a core task as it directly

relates to the profit of the platform in the widely-used cost-per-

conversion (CPA) advertising payment mechanism [14–16, 41]. To

capture the distribution shifts and maintain the model freshness,

continuous training is commonly employed in practice for stream-

ing CVR prediction task [5, 10, 12].

However, conversion actions (e.g., purchases and downloads)

often occur up to even several days or weeks after the user clicks

on real-world scenarios. Conversions that occur delayed are im-

mediately falsely treated as negatives (i.e., fake negatives) in the

current training pipeline, posing a significant challenge known as

the delayed feedback problem in streaming CVR prediction. Delayed

feedback leads to a dilemma for continuous training: a longer time

window retains more certain label information but sacrifices model

freshness, while a shorter window results in more fake negatives

due to more delayed conversions.

To mitigate the delayed feedback problem, recent state-of-the-

art methods have explored various sample duplicate mechanisms

to leverage early available certain conversion information. For in-

stance, FNW and FNC [12] immediately ingest all samples with neg-

ative labels into the training pipeline and re-ingest the duplicated

delayed positives when conversions occur. ES-DFM [34] introduces

a short waiting window to balance label correctness and model

freshness. Conversions that do not happen within the window are
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Figure 1: An illustration of delayed feedback problem in
streaming conversion rate prediction. The attribution win-
dow𝑤𝑎 indicates a conversion is attributed to a click only if
it occurred within this time window [4, 27], thereby a real
negative is a sample that conversion does not occur before
the attribution window. The waiting window𝑤𝑜 represents
the time interval between the click time and the model up-
dating time. An immediate positive is a sample that converts
immediately within the waiting window. A fake negative is
a sample whose conversion doesn’t occur within the waiting
window but will finally convert before the attribution win-
dow, i.e., a delayed positive.

first labeled as negatives andwill be duplicated and ingested into the

training pipeline with positive labels upon conversion. DEFER [4]

further duplicates both delayed positives and real negatives to in-

troduce more certain label information. Moreover, these methods

adopt importance weighting methods [23] to re-weight the loss for

unbiased delayed feedback modeling with fake negative samples.

Although existing methods have shown effectiveness to some

extent, we argue that there are still some limitations. One significant

limitation is that these methods assume the observed and duplicated

feature distributions are identical, aiming to achieve an overall

unbiased estimation for both types of data. However, in online

systems, the data distribution rapidly shifts over time, such as

the introduction of new campaigns to the system [2, 36]. As a

result, the observed streaming samples collected from the latest

short waiting window and the duplicated samples corresponding

to clicks that occurred a considerable time ago inherently differ

in their distributions. Treating these two types of data equally

can introduce biases in both distributions and lead to sub-optimal

performance. Moreover, most existing methods assign the same

importance weight to the loss of both the newly observed and

the duplicated early samples. This lack of differentiation makes it

challenging for the CVR model to balance label correctness (i.e.,

correcting delayed conversions) and model freshness (i.e., adapting

to recent streaming data).

In this work, we propose a novel Dually enhanced Delayed
Feedback Model (DDFM) for streaming CVR prediction. DDFM ad-

dresses the above issues of existing methods by treating the newly

observed streaming data and the duplicated early data separately,

enabling a more accurate and fine-grained delayed feedback mod-

eling. Specifically, DDFM introduces dual unbiased CVR estimators

through re-weighting, one for the observed data and the other for

the duplicated data. These estimators follow the same form but uti-

lize different latent variables as weight. Furthermore, we analyze the

convergence properties of these unbiased estimators, demonstrat-

ing their ability to optimize in the correct gradient directions. To

overcome the high variance issue that previous importance weight-

ing methods suffer from, we only employ addition operations in the

formula instead of multiplication or division operations. We then

propose a shared-bottom network for efficiently and jointly esti-

mating the latent variables. To evaluate the effectiveness of DDFM,

we conduct extensive experiments on two large-scale datasets from

real-world online advertising systems.

The major contributions of this paper are summarized as follows:

(1)We propose a novel dually enhancedmodel DDFM for delayed

feedback modeling that incorporates two unbiased estimators with

the same form, one for the newly observed streaming data and the

other for the duplicated early data.

(2) We adopt an addition-only way for estimating weights in

DDFM, which can avoid high variance issues. Moreover, we utilize

a shared-bottom network to efficiently and jointly learn the latent

variables in DDFM.

(3) We theoretically analyze the learning objectives of DDFM

from both unbiasedness and convergence perspectives.

(4) We conduct extensive experiments on both large-scale public

and industrial datasets, and the results show the superior perfor-

mance of our proposed DDFM against state-of-the-art methods.

2 RELATEDWORK
Deleayed FeedbackModeling is a crucial challenge in online con-

version rate (CVR) prediction [6, 15, 22, 33, 35]. Chapelle [2] was the

first study to emphasize the delayed feedback problem and assumed

an exponential distribution for the delay time. Yoshikawa and Imai

[37] relaxed this assumption and proposed a non-parametric de-

layed feedback model with kernel density estimation. Saito et al.

[21] addressed both the positive-unlabeled and missing-not-at-

randomproblems of delayed conversions by applying inverse propen-

sity weighting [8]. Moreover, several studies have explored the use

of importance weighting method [23] to correct the observed bi-

ased data distribution [7, 12, 36]. Following this series of works,

recent state-of-the-art methods have designed various sample du-

plicate mechanisms to further introduce early certain conversion

information due to the sparsity and rarity of conversions [3, 4, 34].

However, these methods overlook the inherent differences between

the newly observed data distribution and the duplicated early data

distribution, and conflate them up when modeling, which results

in biases in both data distributions.

Bandits with Delayed Feedback has also garnered much re-

search attention in recent years [18, 20, 25, 29]. The goal of bandit

algorithms is to maximize the cumulative reward over a period of

time [13, 24, 38]. Joulani et al. [9] analyzed the impact of delayed

feedback in online learning and proposed to transform non-delayed

bandit algorithms for delayed settings. Pike-Burke et al. [20] stud-

ied bandit algorithms with delayed, aggregated, and anonymous

feedback, while Vernade et al. [25] explored the stochastic delayed

bandit algorithms and provided a comprehensive analysis assuming

known delay distributions. Mertikopoulos et al. [19] proposed a

gradient-free learning policy for bandit streaming learning in games

with continuous action spaces, which integrates delayed rewards

and bandit feedback. Zhang et al. [39] proposed a counterfactual
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Table 1: The data types in delayed feedback modeling.

Data source Data type Training label True label

Newly observed data

IP 1 1

FN 0 1
RN 0 0

Duplicated early data

DP 1 1

DN 0 0

bandit algorithm with reward modification under the delayed ban-

dit feedback. Different from the above studies, our work focuses on

the real-world online streaming CVR prediction task with delayed

feedback and aims to achieve an unbiased CVR estimation.

3 PRELIMINARY
3.1 Problem Formulation
In this work, we focus on the streaming CVR prediction task, where

the CVR model is continuously updated with newly arrived data to

keep themodel fresh. Formally, the CVRmodel is trained on samples

(x, 𝑦) ∼ 𝑝 (x, 𝑦) drawn from the ground-truth data distribution

𝑝 (x, 𝑦), where x ∈ X ⊂ R𝑑 denotes the features. The conversion

label 𝑦 ∈ Y = {0, 1}, where 𝑦 = 1 means the conversion, otherwise

𝑦 = 0. Usually, the goal of CVR prediction is to learn a binary

classifier 𝑓𝜃 : X → [0, 1] parameterized with 𝜃 by optimizing the

following ideal learning objective [14, 15, 34]:

L𝑖𝑑𝑒𝑎𝑙 = −E(x,𝑦)∼𝑝 (x,𝑦)
[
𝑦 log(𝑓𝜃 (x) + (1−𝑦) log(1− 𝑓𝜃 (x))

]
, (1)

where the widely-used binary cross-entropy loss is adopted.

However, as CVR models are updated immediately after the wait-

ing window in continuous training, samples where clicks occurred

within the waiting window but conversions occurred outside the

window are first ingested into the training pipeline as fake nega-

tives. As a result, the observed data distribution 𝑞𝑜𝑏𝑠 (x, 𝑦) is often
biased from the ground-truth data distribution 𝑝 (x, 𝑦) and it is

infeasible to directly optimize the ideal learning objective in Eq. (1).

To illustrate the delayed feedback problem in streaming CVR

prediction more clearly, let 𝑤𝑜 and 𝑤𝑎 be the length of waiting
window and attribution window (𝑤𝑎 > 𝑤𝑜 ), respectively. The time

interval between click and conversion is denoted as delayed time 𝑑 .
As shown in Figure 1, there are three types of newly observed

training samples in the delayed feedback modeling:

• Immediate Positives (IP, 𝑑 < 𝑤𝑜 ): Immediate positives denote

samples that convert within the waiting window and are labeled

as positive.

• Fake Negatives (FN, 𝑤𝑜 < 𝑑 < 𝑤𝑎): Fake negatives denote

samples that the conversion does not occur before the wait-

ing window and are falsely labeled as negatives, which is also

referred to as delayed positives.

• Real Negatives (RN, 𝑑 > 𝑤𝑎): Real negatives (RN) denote

samples that the conversion does not occur or convert after the

attribution window and are labeled as negative.

To mitigate the delayed feedback problem, recent state-of-the-

art methods such as ES-DFM [34] and DEFER [4] have proposed

sample replay mechanisms to introduce early certain conversion

information into the training pipeline. The difference between ES-

DFM and DEFER is that ES-DFM only duplicates fake negatives
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Figure 2: Percentages of new campaigns in the following
week after a reference day on Criteo and Industrial datasets.

with the true labels when conversions occur, while DEFER also

duplicates the real negatives to bring more certain label informa-

tion. Consequently, two additional types of training samples are

introduced following the duplication mechanisms:

• Duplicated Positive (DP,𝑤𝑜 < 𝑑 < 𝑤𝑎): Duplicated positive

samples are the duplication of fake negatives but with true labels
and will be ingested into the training pipeline with positive

labels upon conversion.

• Duplicated Negative (DN, 𝑑 > 𝑤𝑎): Duplicated negative sam-

ples are the duplication of real negatives and will be ingested

into the training pipelinewith negative labels when conversions

do not occur finally.

Overall, as summarized in Table 1, there are five kinds of data

samples in the whole training pipeline: the newly observed samples

(x, 𝑦) ∼ 𝑞𝑜𝑏𝑠 (x, 𝑦) with partially true labels (i.e., IP, FN, and RN),

and the duplicated samples (x, 𝑦) ∼ 𝑞𝑑𝑢𝑝 (x, 𝑦) with true labels (i.e.,

DP and DN). Note that the newly observed data is fresh but may

contain fake negatives, whereas the labels of the duplicated early

data are all true but stale.

3.2 Distribution Shift in Streaming Data
In this subsection, we conduct further empirical analysis of the

data stream to shed light on the limitations of existing methods

and outline our motivation. In real-world online display advertising

scenarios, the data distribution undergoes constant shifts due to

various factors, including introducing new campaigns, advertisers,

and users [2, 4, 36]. To illustrate this point, we select a reference

day and examine the statistics of new campaigns in the following

week using two real-world datasets. Figure 2 clearly demonstrates

a significant percentage of new campaigns per day. Typically, the

percentage reaches as high as 23% in the Industrial dataset. These

findings confirm that the data distribution rapidly evolves over

time, necessitating continuous training to adapt to these shifts and

maintain model freshness. Furthermore, our analysis reveals that

the distributions of newly observed and duplicate data naturally

differ. It is important to note that duplicate samples consist of clicks

that occurred in the early period, potentially ranging up to 30

days ago in the case of the Criteo dataset [2]. On the other hand,

newly observed samples are collected from the most recent short

waiting window. This distinction further emphasizes the inherent

dissimilarity between these two types of data.
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4 OUR APPROACH: DDFM
In this section, we propose a Dually enhanced Delayed Feedback

Model (DDFM) to overcome the limitations described in the previ-

ous sections. Our motivation is to model the newly observed and

duplicated data from a dual perspective, recognizing their inherent

differences rather than treating them as a single entity. To achieve

this, we introduce two unbiased estimators in DDFM that account

for the unique characteristics of both the newly observed data and

the duplicated data separately. In this way, we aim to obtain a more

comprehensive and accurate delayed feedback modeling.

4.1 Dually Enhanced Delayed Feedback Model
4.1.1 Unbiased Learning Objective Under Observed Data. For ob-
served data distribution 𝑞𝑜𝑏𝑠 (x, 𝑦), they have the following obvious
relations with true data distribution 𝑝 (x, 𝑦):

𝑞𝑜𝑏𝑠 (𝑦 = 1|x) = 𝑝 (𝑦 = 1, 𝑑 ≤ 𝑤𝑜 |x), (2)

𝑞𝑜𝑏𝑠 (𝑦 = 0|x) = 𝑝 (𝑦 = 0|x) + 𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 |x) . (3)

Based on the above two equations, we design the following

objective for learning an unbiased model under the observed data:

L𝑜𝑏𝑠
𝐷𝐷𝐹𝑀 = −E𝑞𝑜𝑏𝑠 (x,𝑦)

[
𝑦 log(𝑓𝜃 (x))

+ (1 − 𝑦)
(
(1 − 𝑧1) log(𝑓𝜃 (x)) + 𝑧1 log(1 − 𝑓𝜃 (x))

) ]
,

(4)

where latent variable 𝑧1 is the real negative probability, denotes the

probability that an observed negative is a real negative:

𝑧1 =
𝑝 (𝑦 = 0|x))

𝑞𝑜𝑏𝑠 (𝑦 = 0|x))
=

𝑝 (𝑦 = 0|x))
𝑝 (𝑦 = 0|x)) + 𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 |x))

. (5)

Intuitively, since the observed negatives can be real negatives

and fake negatives (i.e., delayed positives), 𝑧1 is a soft label that can

indicate whether an observed negative sample is a real negative or

a fake negative. Moreover, this learning objective in Eq. (4) is fully

based on the observed data distribution and thus can be directly

optimized in practice. The unbiasedness of this loss is shown in the

following theorem and the proof can be found in Appendix A.1.

Theorem 4.1 (Unbiased Estimator Under Observed Data).

The learning objective defined in Eq. (4) is unbiased in terms of the

ideal learning objective in Eq. (1): E𝑞𝑜𝑏𝑠 (x,𝑦)
[
L𝑜𝑏𝑠
𝐷𝐷𝐹𝑀

]
= L𝑖𝑑𝑒𝑎𝑙 .

We further analyze the convergence of this unbiased estimator

by calculating the gradient of L𝑜𝑏𝑠
𝐷𝐷𝐹𝑀

with respect to 𝑓𝜃 as:

𝜕L𝑜𝑏𝑠
𝐷𝐷𝐹𝑀

𝜕𝑓𝜃
=
𝑞𝑜𝑏𝑠 (𝑦 = 0 |x)𝑧1

1 − 𝑓𝜃 (x)
− 𝑞𝑜𝑏𝑠 (𝑦 = 1 |x) + 𝑞𝑜𝑏𝑠 (𝑦 = 0 |x) (1 − 𝑧1 )

𝑓𝜃 (x)

=
𝑓𝜃 (x) − 𝑝 (𝑦 = 1 |x)
𝑓𝜃 (x) (1 − 𝑓𝜃 (x) )

.

We can see that 𝜕L𝑜𝑏𝑠
𝐷𝐷𝐹𝑀

/𝜕𝑓𝜃 > 0 when 𝑓𝜃 (x) > 𝑝 (𝑦 = 1|x),
and 𝜕L𝑜𝑏𝑠

𝐷𝐷𝐹𝑀
/𝜕𝑓𝜃 < 0 when 𝑓𝜃 (x) < 𝑝 (𝑦 = 1|x). This observation

demonstrates that our proposed unbiased estimator can consis-

tently optimize in the correct gradient directions, resulting in the

convergence of 𝑓𝜃 (x) towards 𝑝 (𝑦 = 1|x) [1, 12].

4.1.2 Unbiased Learning Objective Under Duplicated Data. Sim-

ilarly, we have the following relations between duplicated data

distribution 𝑞𝑑𝑢𝑝 (x, 𝑦) and the true data distribution 𝑝 (x, 𝑦) as:

𝑞𝑑𝑢𝑝 (𝑦 = 1|x) = 𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 |x),

𝑞𝑑𝑢𝑝 (𝑦 = 0|x) = 𝑝 (𝑦 = 0|x) .

Since only fake positives and real negatives will be duplicated,

then 𝑞𝑑𝑢𝑝 (𝑦 |x) should be re-normalized by dividing 𝑝 (𝑦 = 0|x) +
𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 |x) as follows:

𝑞𝑑𝑢𝑝 (𝑦 = 1|x) = 𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 |x)
𝑝 (𝑦 = 0|x) + 𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 |x)

, (6)

𝑞𝑑𝑢𝑝 (𝑦 = 0|x) = 𝑝 (𝑦 = 0|x)
𝑝 (𝑦 = 0|x) + 𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 |x)

. (7)

Again, relying on the above equations, we design the following

objective for learning an unbiased model under the duplicated data:

L𝑑𝑢𝑝

𝐷𝐷𝐹𝑀
= −E𝑞𝑑𝑢𝑝 (x,𝑦)

[
𝑦 log(𝑓𝜃 (x)),

+ (1 − 𝑦)
(
(1 − 𝑧2) log(𝑓𝜃 (x)) + 𝑧2 log(1 − 𝑓𝜃 (x))

) ]
,

(8)

where latent variable 𝑧2 is the observed negative probability:

𝑧2 = 𝑝 (𝑦 = 0|x)) + 𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 |x)) . (9)

Note thatL𝑑𝑢𝑝

𝐷𝐷𝐹𝑀
has the same form asL𝑜𝑏𝑠

𝐷𝐷𝐹𝑀
but with a different

latent variable as they are designed under different types of data. It

can be proved that Eq. (8) is also an unbiased estimator:

Theorem 4.2 (Unbiased Estimator Under Duplicated Data).

The learning objective defined in Eq. (8) is unbiased in terms of the

ideal learning objective in Eq. (1): E𝑞𝑑𝑢𝑝 (x,𝑦)
[
L𝑑𝑢𝑝

𝐷𝐷𝐹𝑀

]
= L𝑑𝑢𝑝

𝑖𝑑𝑒𝑎𝑙
.

The proof of Theorem 4.2 is similar to that of Theorem 4.1 and

can be found in Appendix A.2.

We also analyze the convergence of L𝑑𝑢𝑝

𝐷𝐷𝐹𝑀
in the same way as

for L𝑜𝑏𝑠
𝐷𝐷𝐹𝑀

:

𝜕L𝑑𝑢𝑝

𝐷𝐷𝐹𝑀

𝜕𝑓𝜃
=
𝑞𝑑𝑢𝑝 (𝑦 = 0 |x)𝑧2

1 − 𝑓𝜃 (x)
− 𝑞𝑑𝑢𝑝 (𝑦 = 1 |x) + 𝑞𝑑𝑢𝑝 (𝑦 = 0 |x) (1 − 𝑧2 )

𝑓𝜃 (x)

=
𝑓𝜃 (x) − 𝑝 (𝑦 = 1 |x)
𝑓𝜃 (x) (1 − 𝑓𝜃 (x) )

.

The conclusion is the same as above, that is, our proposed esti-

mator L𝑑𝑢𝑝

𝐷𝐷𝐹𝑀
can consistently optimize in the correct gradient di-

rections, resulting in the convergence of 𝑓𝜃 (x) towards 𝑝 (𝑦 = 1|x).

4.1.3 Final Unbiased Learning Objective. Finally, we give the final
unbiased learning objective of DDFM as follows:

L𝐷𝐷𝐹𝑀 = 𝛼L𝑜𝑏𝑠
𝐷𝐷𝐹𝑀 + (1 − 𝛼)L𝑑𝑢𝑝

𝐷𝐷𝐹𝑀
, (10)

where 𝛼 ∈ [0, 1] is the co-efficient that can balance the two un-

biased estimators (trade-off between model freshness and label

correctness). Given the L𝑜𝑏𝑠
𝐷𝐷𝐹𝑀

and L𝑑𝑢𝑝

𝐷𝐷𝐹𝑀
are two unbiased

losses against the ideal loss, it is obvious that the averaged loss

L𝐷𝐷𝐹𝑀 is also an unbiased loss, i.e., E [L𝐷𝐷𝐹𝑀 ] = L𝑖𝑑𝑒𝑎𝑙 .
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Figure 3: Overview of our shared-bottom architecture for
estimating latent variables in DDFM.

4.2 Estimating Latent Variables and Learning
4.2.1 Estimating Latent Variables in DDFM. Given the two unbi-

ased estimators, the remaining challenge is how to estimate the

latent variables 𝑧1 and 𝑧2 in Eq. (4) and Eq. (8). We first denote

𝑝𝑟𝑛 (x) :=
𝑝 (𝑦=0 |x)

𝑝 (𝑦=0 |x)+𝑝 (𝑦=1,𝑑>𝑤𝑜 |x) and 𝑝 𝑓 𝑛 (x) := 𝑝 (𝑦 = 1, 𝑑 >

𝑤𝑜 |x), where 𝑝𝑟𝑛 (x) is the probability of an observed negative is

a real negative and 𝑝 𝑓 𝑛 (x) is the probability of a sample is a fake

negative (i.e., delayed positive). Then we can rewrite the 𝑧1 and 𝑧2
according to Eq. (5) and Eq. (9) as:

𝑧1 = 𝑝𝑟𝑛 (x), (11)

𝑧2 = 𝑝 (𝑦 = 0|x) + 𝑝 𝑓 𝑛 (x) . (12)

Thus, based on the above two equations, we can get the estima-

tion of 𝑧1 and 𝑧2 as:

𝑧1 =𝑝𝑟𝑛 (x), (13)

𝑧2 =[1 − 𝑓𝜃 (x)] + 𝑝 𝑓 𝑛 (x), (14)

where [·] means the stop gradient calculation and the estimation

𝑝𝑟𝑛 (x) and 𝑝 𝑓 𝑛 (x) can be directly obtained from two classifiers,

respectively. In Eq. (13) and Eq. (14), we only use addition operations

for estimating the weights. By avoiding multiplication or division

operations, we effectively mitigate the issue of high variance. We

will further show the advantages of our estimation method by

comparing it with existing approaches in Section 4.3.2.

Subsequently, we adopt an Embedding&MLP network architec-

ture for modeling these two classifiers. As shown in Figure 3, these

two classifiers employ a shared embedding module to better rep-

resent all input features [16, 30]. For training these two classifiers,

we can construct two corresponding training datasets by adopting

a mask mechanism as follows:

• D𝑟𝑛
: The observed immediate positives are excluded, then the

real negatives are labeled as 1 and the fake negatives (i.e., de-

layed positives) are labeled as 0.

• D 𝑓 𝑛
: The fake negatives (i.e., delayed positives) are labeled as

1 and the other samples are labeled as 0.

4.2.2 Model Learning. Based on the final unbiased objective de-

fined in Eq. (10) and the estimated latent variables 𝑧1 and 𝑧2, the

final loss for deriving the model parameters 𝜃 in our proposed

DDFM is formally defined as:

L̂𝐷𝐷𝐹𝑀 = −
∑︁
D

{
𝛼𝑜

[
𝑦ℓ+ + (1 − 𝑦)

(
(1 − 𝑧1)ℓ+ + 𝑧1ℓ

− ) ]
+(1 − 𝛼) (1 − 𝑜)

[
𝑦ℓ+ + (1 − 𝑦)

(
(1 − 𝑧2)ℓ+ + 𝑧2ℓ

− ) ] }, (15)

where 𝑜 ∈ {0, 1} is a binary indicator, 𝑜 = 1 indicates a training

sample is from newly observed data, and 𝑜 = 0 signifies that the

training sample is from duplicated data. And for simplicity, we

denote ℓ+ := log(𝑓𝜃 (x)) and ℓ− := log(1 − 𝑓𝜃 (x)).

4.3 Discussion
4.3.1 Bias Analysis Under the Estimated Latent Variables. Though
Theorem 4.1 and Theorem 4.2 demonstrate the unbiasedness of our

proposed two unbiased estimators, the estimated latent variables

can still be inaccurate due to the optimization process and poten-

tially introduce bias to the final CVR prediction. The following

theorem analyzes the biases of two estimators in DDFM with the

estimated latent variables 𝑧1 and 𝑧2 (see Appendix A.3 for proofs).

Theorem 4.3 (Bias of DDFM with Estimated Latent Vari-

ables). Given the estimated latent variables 𝑧1 and 𝑧2, the bias of
two estimators in DDFM are:

Bias

[
L𝑜𝑏𝑠
𝐷𝐷𝐹𝑀 | 𝑧1

]
=

����(𝑧1𝑧1 − 1

)
𝑝 (𝑦 = 0|x) (ℓ+ − ℓ−)

���� ,
Bias

[
L𝑑𝑢𝑝

𝐷𝐷𝐹𝑀
| 𝑧2

]
=

����(𝑧2𝑧2 − 1

)
𝑝 (𝑦 = 0|x) (ℓ+ − ℓ−)

���� ,
where ℓ+ := log(𝑓𝜃 (x) and ℓ− := log(1 − 𝑓𝜃 (x)).

Theorem 4.3 indicates that better estimation of 𝑧1 and 𝑧2 (more

closely align with 𝑧1 and 𝑧2) can effectively reduce bias. Thus, we

will further analyze different ways of estimating 𝑧1 and 𝑧2 in the

next section. Additionally, it is observed that DDFM demonstrates

a reduced bias as the true conditional CVR (i.e., 1 − 𝑝 (𝑦 = 0|x))
increases. This implies that a higher true CVR leads to the incor-

poration of more certain positive samples, thereby alleviating the

challenges posed by delayed feedback.

4.3.2 Different Estimating Ways of Latent Variables. Indeed, we
have observed a relationship between the latent variables 𝑧1 and 𝑧2:

𝑧1𝑧2 = 𝑝 (𝑦 = 0|x). As a result, there are two alternative approaches
for estimating the latent variables using only one classifier. The

first approach involves solely estimating 𝑝𝑟𝑛 as:

𝑧1 = 𝑝𝑟𝑛 (x), (16)

𝑧2 =
[1 − 𝑓𝜃 (x)]
𝑝𝑟𝑛 (x)

. (17)

The second approach only depends on the estimation of 𝑝 𝑓 𝑛 , which

is also employed in a similar manner in previous works [3, 4]:

𝑧1 =
[1 − 𝑓𝜃 (x)]

[1 − 𝑓𝜃 (x)] + 𝑝 𝑓 𝑛 (x)
, (18)

𝑧2 = [1 − 𝑓𝜃 (x)] + 𝑝 𝑓 𝑛 (x) . (19)

However, both of thesemethods have complex fractions such that

a small deviation will result in serious bias. Thus, as we mentioned

in Section 4.2.1, we adopt Eq. (16) and Eq. (19) to directly estimate

the latent variables with two classifiers, which can reduce the error

accumulation and high variance (see comparisons in Section 5.3.2).
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Table 2: Statistics of Criteo and Industrial datasets. “M” means million and “K” means thousand.

Datasets # Users # Items # Categorical features # Continuous features # Conversions # Samples # Average CVR Duration

Criteo - 5443 9 8 3619801 15898883 0.2269 60 days

Industrial 20M 52K 4 21 769K 29M 0.0265 11 days

4.3.3 Advantages Compared to Importance Weighting Methods. Im-

portance weighting [1] methods are widely employed in previous

delayed feedback studies to weigh the loss [3, 4, 12, 34, 36]. However,

most of these methods typically assume that 𝑝 (x) = 𝑞(x), which
is always not satisfied in prior works when conflating both the

newly observed data and duplicated data together. In contrast, our

approach does not make this assumption and treats newly observed

streaming data and duplicated early data separately.

Furthermore, importance weighting methods often suffer from

high variance because the importance weight
𝑝 (𝑦 |x)
𝑞 (𝑦 |x) is the division

of two probabilities. On the contrary, we directly predict 𝑝𝑟𝑛 (x) and
𝑝 𝑓 𝑛 (x) for the estimation of 𝑧1 and 𝑧2 with only addition, rather

than multiplication or division, in which way the error will not be

amplified. Additionally, 𝑝𝑟𝑛 (x) and 𝑝 𝑓 𝑛 (x) are bounded within the

range of [0, 1], which further control the error deviation.

5 EXPERIMENTS
In this section, we conduct extensive experiments on two large-

scale real-world datasets to verify the effectiveness of DDFM. The

source codes are shared at https://github.com/KID-22/DDFM.

5.1 Experimental Settings
5.1.1 Datasets. We evaluate the effectiveness of our proposed

DDFM on both large-scale public and industrial datasets. The sta-

tistics of the two datasets are shown in Table 2.

Criteo1: Criteo dataset consists of 16 million Criteo live traf-

fic data over a period of 60 days. Each sample records click and

conversion (if occurs) timestamps, hashed categorical features, and

continuous features. For the attribution window𝑤𝑎 , we follow the

common practice in previous works and set 𝑤𝑎 = 30 days to get

the true conversion label [2–4, 34].

Industrial: Industrial dataset contains about 29 million inter-

actions in 11 days from a real advertising system. The attribution

window𝑤𝑎 was set as 3 days to set the true label for each sample.

5.1.2 Streaming Evaluation Protocols. To better verify the perfor-

mance of different methods for the streaming CVR prediction task,

we adopt the streaming evaluation protocols commonly employed

in prior studies [3, 4, 34]. Specifically, we first divide all the datasets

into two parts based on the click timestamp. The first part of the

data is utilized for pre-training a well-initialized model for the fol-

lowing streaming training and evaluation. To prevent label leakage,

we assign labels as 0 to instances where the conversion occurs in

the second part of the data. The second part is further divided into

multiple subsets by hour according to the click timestamp. Follow-

ing the online streaming manner of industrial systems, the models

are trained on the 𝑡-th hour data and then tested on the subsequent

1
https://labs.criteo.com/2013/12/conversion-logs-dataset/

𝑡 +1-th hour. Consequently, we report the weighted average metrics

across different hours on streaming data.

5.1.3 Baselines. We compare our proposed DDFM with the follow-

ing state-of-the-art (SOTA) baseline methods:

Vanilla is trained on the streaming data without duplicated

samples. The samples converted in the waiting window are labeled

as positives; otherwise negatives.

FSIW [36] is trained on the steaming data without duplicated

samples and using the FSIW loss.

Vanilla-DP is trained on the streaming data but with duplicated

delayed positive samples. The delayed positives are duplicated and

ingested into the training pipeline upon conversion.

FNW [12] is trained on the streaming data without a waiting

window and using the fake negative weighted loss. Samples are

immediately trained with negative labels and then duplicated with

positives upon conversion.

FNC [12] is trained on the same steaming data as FNW but

using the fake negative calibration loss.

ES-DFM [34] is trained on the steaming data with the same

duplicated mechanism as Vanilla-DP but using the ES-DFM loss.

DEFER [4] is trained on the streaming data but with duplicated

both delayed positive and real negative samples and using the

DEFER loss.

DEFUSE [3] is trained on the streaming data with the same

duplicated mechanism as Vanilla-DP but using the DEFUSE loss.

We also report the performance of Oracle as the upper bound
for delayed feedback modeling. The Oracle is trained using the

true label instead of the observed label, i.e., it knows whether the

conversion will occur in the future at the click timestamp, which

is infeasible in real-world industrial systems. All the methods are

continuously fine-tuned on top of the pre-trained model that is

trained on the first part of the data for the streaming evaluation.

5.1.4 Metrics. We adopt AUC, PRAUC and NLL to evaluate the

performance, which are widely-used evaluation metrics for CVR

estimation in previous studies [2–5, 31, 34]. Following [26], we also

report Kolmogorov-Smirnov (KS) score at the best threshold on the

ROC curve for comprehensive evaluation.

To further clearly demonstrate the relative improvement of each

model over the Vanilla, following previous works [3, 4, 32, 34, 40],

we also report the RIAUC, RIKS, RIPRAUC, and RINLL as:

RIMetric =
𝑀𝑒𝑡𝑟𝑖𝑐 (evaluated model) −𝑀𝑒𝑡𝑟𝑖𝑐 (Vanilla)

𝑀𝑒𝑡𝑟𝑖𝑐 (Oracle) −𝑀𝑒𝑡𝑟𝑖𝑐 (Vanilla) × 100%,

where 𝑀𝑒𝑡𝑟𝑖𝑐 could be AUC, KS, PRAUC, and NLL. Obviously,

a higher relative improvement (closer to 100% ) indicates better

performance of the evaluated model.

5.1.5 Implementation Details. The period of the first part of data for
pre-training is set as 30 days and 5 days for the Criteo and Industrial

datasets, respectively. To ensure a fair comparison, we carefully
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Table 3: The overall performance of DDFM and the baselines on Criteo and Industrial datasets. Note that Oracle is infeasible in
practice and only serves as an upper bound. The best performance and the second best performance methods are denoted in
bold and underlined fonts, respectively. ‘∗’ indicates statistical significance with 𝑝-value< 0.05 compared to the best baseline
under the two-sided 𝑡-test. ‘↓’ denotes that lower is better for the metric NLL, while higher is better for the remaining metrics.

Dataset Metric

Methods without duplicating Methods with duplicating

Oracle Vanilla FSIW Vanilla-DP FNW FNC ES-DFM DEFER DEFUSE DDFM (Ours)

Criteo

AUC 84.24% 81.09% 81.52% 83.02% 83.55% 83.51% 83.77% 83.74% 83.78% 84.13%∗

RIAUC 100.00% 0.00% 13.65% 61.27% 78.10% 76.83% 85.08% 84.13% 85.40% 96.51%∗

KS 53.13% 47.76% 48.55% 51.31% 52.10% 52.04% 52.44% 52.37% 52.47% 52.92%∗

RIKS 100.00% 0.00% 14.71% 66.11% 80.82% 79.70% 87.15% 85.85% 87.71% 96.09%∗

PRAUC 64.31% 59.59% 60.22% 62.13% 63.03% 62.63% 63.51% 63.24% 63.49% 64.14%∗

RIPRAUC 100.00% 0.00% 13.35% 53.81% 72.88% 64.41% 83.05% 77.33% 82.63% 96.40%∗

NLL ↓ 38.93% 54.99% 52.49% 41.26% 40.48% 41.78% 39.63% 41.49% 39.67% 39.46%∗

RINLL 100.00% 0.00% 15.57% 85.49% 90.35% 82.25% 95.64% 84.06% 95.39% 96.70%∗

Industrial

AUC 81.29% 76.64% 79.56% 77.42% 79.79% 79.77% 79.82% 79.73% 79.87% 80.50%∗

RIAUC 100.00% 0.00% 62.80% 16.77% 67.74% 67.31% 68.39% 66.45% 69.46% 83.01%∗

KS 47.25% 41.83% 44.72% 43.22% 44.96% 44.91% 44.99% 44.95% 45.08% 45.91%∗

RIKS 100.00% 0.00% 53.32% 25.65% 57.75% 56.83% 58.30% 57.56% 59.96% 75.28%∗

PRAUC 10.90% 9.84% 10.05% 10.12% 10.13% 10.12% 10.14% 10.10% 10.16% 10.36%∗

RIPRAUC 100.00% 0.00% 19.81% 26.42% 27.36% 26.42% 28.30% 24.53% 30.19% 49.06%∗

NLL ↓ 10.25% 12.50% 10.77% 11.52% 10.47% 10.48% 10.46% 10.55% 10.45% 10.35%∗

RINLL 100.00% 0.00% 76.89% 43.56% 90.22% 89.78% 90.67% 86.67% 91.11% 95.56%∗

tune the hyper-parameters for all compared models. Following

the previous studies [3, 4, 33, 34], all the model architecture is a

simple MLP with fixed hidden units of [256, 256, 128], and Leaky

ReLU [17] activation functions are applied. We use the Adam [11]

optimizer for optimizing all methods. The learning rate is tuned

among {1𝑒–3, 5𝑒–4, 1𝑒–4, 5𝑒–5, 1𝑒–5, 5𝑒–6, 1𝑒–6}, and the weight

decay is searched from {1𝑒–5, 1𝑒–6, 1𝑒–7}. We set waiting window

𝑤𝑜 as 0.25 hour as suggested in previous methods [3, 4, 34].

5.2 Experimental Results
We conduct all experiments five times with different random seeds

and report the averaged results of DDFM and all compared methods

on Criteo and Industrial datasets in Table 3. Based on the results,

we have the following observations and conclusions:

All the methods show significant improvements over Vanilla on

both the Criteo and Industrial datasets, demonstrating their effec-

tiveness in mitigating fake negatives caused by delayed feedback.

Among these methods, our proposed DDFM consistently outper-

forms all the baselines across all evaluation metrics on both datasets.

Particularly, compared to the best baseline, DDFM achieves aver-

age gains of 0.45% in AUC and 11.11% in RIAUC on the Industrial

dataset. Similarly, on the Industrial dataset, DDFM achieves aver-

age gains of 0.63% in AUC and 13.55% in RIAUC. It is worth noting

that even a 0.1% offline AUC gain is considered remarkable and

can lead to a significant online promotion for the industrial sce-

narios [3, 16, 28]. Therefore, these results highlight the superior

performance of DDFM compared to the other baselines.

Compared to methods without duplicate mechanisms (Vanilla

and FSIW), almost all the methods that utilize duplicating sample

mechanisms (Vanilla-DP, FNW, FNC, ES-DFM, DEFER, DEFUSE,

and DDFM) demonstrate significantly improved performance on

both datasets. This finding confirms the effectiveness of incorporat-

ing early samples, which provide more reliable certain information.

In particular, ES-DFM, DEFER, and DEFUSE consistently outper-

form other baselines. Their better performance can be attributed

to the inclusion of various techniques that mitigate the deviation

between the observed data distribution and the ground-truth data

distribution. Our proposed DDFM takes it a step further by treating

newly observed data and duplicated data separately, resulting in

dual unbiased CVR estimators. Additionally, DDFM assigns differ-

ent weights to the two data sources, achieving a better trade-off

between label correctness and model freshness. As a result, our

proposed DDFM approaches the performance upper bound (i.e.,

Oracle) more closely, with RI metrics reaching closer to 100%.

5.3 Further Analysis
5.3.1 Performance w.r.t. the Streaming Evaluation Process. To evalu-
ate the stability of our proposed DDFM, we analyze the cumulative

averaged results of all metrics for DDFM and other SOTA baselines

(ES-DFM, DEFER, and DEFUSE) during the streaming evaluation

process on both Criteo and Industrial datasets. As illustrated in Fig-

ure 4, we can clearly observe that DDFM consistently outperforms

the SOTA baselines in terms of all metrics throughout the entire

streaming process on both datasets. Notably, as the evaluation pe-

riod extends, we observe a widening performance improvement

gap between our proposed DDFM and the other methods, especially

on the Industrial dataset. This indicates that DDFM becomes in-

creasingly more advantageous over time, outperforming the SOTA

baselines by a larger margin.

5.3.2 Performance w.r.t. the Estimation of 𝑧1 and 𝑧2. In our pro-

posed DDFM, there are two latent variables 𝑧1 and 𝑧2 that need to

be estimated. In Section 4.2.1, we derive an addition-only estima-

tion formula in Eq. (13) and Eq. (14) and propose a shared-bottom

network with double classifiers to estimate these two latent vari-

ables. As discussed in Section 4.3.2, there are two other estimation

methods for latent variables that require only a single classifier.

To analyze the performance of different estimation methods, we

compare our method (denoted as “Shared”) with its three variants:

(i) estimating with double classifiers but without the shared-bottom

architecture (denoted as “w/o Shared”), (ii) estimating using Eq. (16)
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Figure 4: Performance comparison of cumulative averaged metrics w.r.t. the streaming process on Criteo and Industrial datasets.
The streaming evaluation period are 30 days and 6 days for the Criteo dataset and Industrial dataset, respectively.

Table 4: Performance comparisons between different esti-
mation methods for latent variables 𝑧1 and 𝑧2 on Criteo and
Industrial datasets. ‘*’ indicates the best performance among
different estimation methods.

Estimation Method Single Classifier Double Classifiers

Dataset Metric 𝑝𝑟𝑛 𝑝 𝑓 𝑛 w/o Shared Shared

Criteo

AUC 84.05% 84.07% 84.08% 84.13%∗

RIAUC 93.97% 94.60% 94.92% 96.51%∗

KS 52.81% 52.86% 52.87% 52.92%∗

RIKS 94.04% 94.97% 95.16% 96.09%∗

PRAUC 63.99% 63.93% 64.08% 64.14%∗

RIPRAUC 93.22% 91.95% 95.13% 96.40%∗

Industrial

AUC 80.17% 80.18% 80.32% 80.50%∗

RIAUC 75.91% 76.13% 79.14% 83.01%∗

KS 45.24% 45.22% 45.77% 45.91%∗

RIKS 62.92% 62.55% 72.69% 75.28%∗

PRAUC 10.26% 10.25% 10.31% 10.36%∗

RIPRAUC 39.62% 38.68% 44.34% 49.06%∗

and Eq. (17) via a single classifier for 𝑝𝑟𝑛 (denoted as “𝑝𝑟𝑛”), (iii) es-

timating using Eq. (18) and Eq. (19) via a single classifier for 𝑝 𝑓 𝑛
(denoted as “𝑝 𝑓 𝑛”). This set of experiments can also be regarded as

ablation studies for our latent variable estimation method.

Table 4 shows the evaluation results on the Criteo and Industrial

datasets. As we can see, the double classifiers with shared-bottom

architecture achieve the best performance in all cases, particu-

larly on the Industrial dataset. Additionally, the double classifiers

methods outperform the single classifier methods. These obser-

vations further verify our discussions in Section 4.3.2 , where we

emphasized that our derived double classifiers estimation formula

utilizes addition operations instead of multiplication or division,

thereby avoiding high variance issues. Moreover, the shared-bottom

network architecture helps improve the estimation, as the shared

embedding can mitigate data sparsity.

Table 5: Performance comparisons of different methods en-
hanced by applying our unbiased learning objective for ob-
served data on Criteo dataset.

Method AUC RIAUC KS RIKS PRAUC RIPRAUC

Vanilla 81.09% 0.00% 47.76% 0.00% 59.59% 0.00%

+ DDFM 82.90% 57.46% 51.16% 63.31% 62.20% 55.30%
Vanilla-DP 83.02% 61.27% 51.31% 66.11% 62.13% 53.81%

+ DDFM 83.06% 62.54% 51.38% 67.41% 62.52% 62.08%

5.3.3 Applying Unbiased Loss of DDFM to Other Methods. In this

section, we investigate whether our unbiased learning objective

L𝑜𝑏𝑠
𝐷𝐷𝐹𝑀

can enhance existing methods with different sampling

duplicated mechanisms. We conduct experiments to evaluate the

performance improvement of Vanilla and Vanilla-DP when their

losses are replaced with our unbiased learning objective L𝑜𝑏𝑠
𝐷𝐷𝐹𝑀

for the observed data. For Vanilla, which is trained on streaming

data without duplicated samples, we directly replace its loss with

L𝑜𝑏𝑠
𝐷𝐷𝐹𝑀

. For Vanilla-DP, which has duplicated delayed positives,

we apply L𝑜𝑏𝑠
𝐷𝐷𝐹𝑀

for the observed data, while keeping the weight

of the loss for duplicated data unchanged. These enhanced meth-

ods are denoted as "+DDFM". The results on the Criteo dataset are

presented in Table 5. We observe that both Vanilla and Vanilla-DP

achieve improved performance across all metrics after applying

our unbiased learning objective for the observed data. This demon-

strates the effectiveness of our unbiased loss, which utilizes a soft

label 𝑧1 to assign weights to observed negatives, thereby mitigating

the impact of fake negatives caused by delayed feedback.

5.3.4 Performance w.r.t. the Co-efficient 𝛼 . As described in Sec-

tion 4.1.3, DDFM incorporates a co-efficient 𝛼 ∈ [0, 1] in Eq. (10) to

balance the loss between newly observed data and duplicated early

data, thereby achieving a trade-off between model freshness and

label correctness. Specifically, a larger value of 𝛼 (i.e., > 0.5) assigns
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Figure 5: The impact of co-efficient 𝛼 on Criteo dataset.

more weight to newly observed data, improving model freshness.

However, as the coefficient 𝛼 increases, delayed positives introduce

more false information, leading to a loss in label correctness. To

validate this analysis, we conduct experiments by varying 𝛼 in the

range of {0.4, 0.5, 0.6, 0.7} on the Criteo dataset. Figure 5 presents

the AUC, PRAUC, and KS scores in terms of different 𝛼 . As ex-

pected, we observe that both larger and smaller values of 𝛼 resulted

in reduced performance, particularly when 𝛼 was less than 0.5. This

observation confirms the importance of model freshness in stream-

ing CVR prediction, given the dynamic shifts in data distribution.

It further validates the necessity of continuous training to ensure

model freshness, which is a common practice in industrial systems.

6 CONCLUSION
In this paper, we study the delayed feedback problem in streaming

conversion rate prediction. Compared with previous works, our

proposed DDFM distinguishes between newly observed stream-

ing data and duplicated early data, enabling a more accurate and

fine-grained delayed feedback modeling. DDFM introduces dual

unbiased CVR estimators in the same form via re-weighting with

latent variables. To efficiently estimate these latent variables, we

employ a shared-bottom network architecture. Moreover, we pro-

vide theoretical analysis for the unbiasedness and convergence

of our proposed DDFM and discuss the advantages compared to

existing methods. Extensive experiments conducted on two large-

scale datasets from real-world advertising systems demonstrate the

superior performance of our approach.
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A APPENDIX: PROOFS
For brevity, the conditions on x are all omitted in the following

proofs, e.g., 𝑝 (𝑦 = 1|x) is substituted as 𝑝 (𝑦 = 1).

A.1 Proof of Theorem 4.1
Proof. Taking into account the definition of 𝑧1 in Eq. (5) and the

relationship equations given by Eq. (2) and Eq. (3), the expectation

of L𝑜𝑏𝑠
𝐷𝐷𝐹𝑀

under the observed data distribution 𝑞𝑜𝑏𝑠 (x, 𝑦) is

E
𝑞𝑜𝑏𝑠

[
L𝑜𝑏𝑠
𝐷𝐷𝐹𝑀

]
= −

[
E
𝑞𝑜𝑏𝑠

[𝑦 ] log(𝑓𝜃 (x) )

+ E
𝑞𝑜𝑏𝑠

[1 − 𝑦 ]
(
(1 − 𝑧1 ) log(𝑓𝜃 (x) ) + 𝑧1 log(1 − 𝑓𝜃 (x) )

)]
= −

[
𝑞𝑜𝑏𝑠 (𝑦 = 1) log(𝑓𝜃 (x) )

+ 𝑞𝑜𝑏𝑠 (𝑦 = 0)
(
(1 − 𝑧1 ) log(𝑓𝜃 (x) + 𝑧1 log(1 − 𝑓𝜃 (x) )

)]
= −

(
𝑝 (𝑦 = 1, 𝑑 ≤ 𝑤𝑜 ) log(𝑓𝜃 (x) ) + 𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 ) log(𝑓𝜃 (x) )

+ 𝑝 (𝑦 = 0) log(1 − 𝑓𝜃 (x) )
)

= −
(
𝑝 (𝑦 = 1) log(𝑓𝜃 (x) ) + 𝑝 (𝑦 = 0) log(1 − 𝑓𝜃 (x) )

)
= L𝑖𝑑𝑒𝑎𝑙 .

□

A.2 Proof of Theorem 4.2
Proof. The proof is similar to the proof of Theorem 4.1 in Appen-

dix A.1. Based on the definition of 𝑧2 in Eq. (9) and the relationship

equations given by Eq. (6) and Eq. (7), we have

E
𝑞𝑑𝑢𝑝

[
L𝑑𝑢𝑝

𝐷𝐷𝐹𝑀

]
= −

[
E
𝑞𝑑𝑢𝑝

[𝑦 ] log(𝑓𝜃 (x) )

+ E
𝑞𝑑𝑢𝑝

[1 − 𝑦 ]
(
(1 − 𝑧2 ) log(𝑓𝜃 (x) ) + 𝑧2 log(1 − 𝑓𝜃 (x) )

)]
= −

( 𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 )
𝑝 (𝑦 = 0) + 𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 )

log(𝑓𝜃 (x) )

+ 𝑝 (𝑦 = 0) (𝑝 (𝑦 = 1) − 𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 ) )
𝑝 (𝑦 = 0) + 𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 )

log(𝑓𝜃 (x) )

+ 𝑝 (𝑦 = 0) log(1 − 𝑓𝜃 (x) )
)

= −
(𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 ) (1 − 𝑝 (𝑦 = 0) ) + 𝑝 (𝑦 = 0)𝑝 (𝑦 = 1)

𝑝 (𝑦 = 0) + 𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 )
log(𝑓𝜃 (x) )

+ 𝑝 (𝑦 = 0) log(1 − 𝑓𝜃 (x) )
)

= −
(
𝑝 (𝑦 = 1) log(𝑓𝜃 (x) ) + 𝑝 (𝑦 = 0) log(1 − 𝑓𝜃 (x) )

)
= L𝑖𝑑𝑒𝑎𝑙 .

□

A.3 Proof of Theorem 4.3
Proof. Let ℓ+ := log(𝑓𝜃 (x) and ℓ− := log(1− 𝑓𝜃 (x)), the bias of

L𝑜𝑏𝑠
𝐷𝐷𝐹𝑀

under the estimated latent variable 𝑧1 can be calculated as:

Bias

[
L𝑜𝑏𝑠
𝐷𝐷𝐹𝑀 | 𝑧1

]
:=

���E [L̂𝑜𝑏𝑠
𝐷𝐷𝐹𝑀 | 𝑧1

]
− L𝑖𝑑𝑒𝑎𝑙

��� = ��� − (
𝑝 (𝑦 = 1, 𝑑 ≤ 𝑤𝑜 )ℓ+

+
(
𝑝 (𝑦 = 0) + 𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 )

) (
(1 − 𝑧1 )ℓ+ + 𝑧1ℓ

− ) )
+
(
𝑝 (𝑦 = 1)ℓ+ + 𝑝 (𝑦 = 0)ℓ−

)��� = ���(𝑧1
𝑧1

− 1

)
𝑝 (𝑦 = 0) (ℓ+ − ℓ− )

���.
Similar to the above, we have

Bias

[
L𝑑𝑢𝑝

𝐷𝐷𝐹𝑀
| 𝑧2

]
:=

���E [L̂𝑑𝑢𝑝

𝐷𝐷𝐹𝑀
| 𝑧2

]
− L𝑖𝑑𝑒𝑎𝑙

��� = ��� − ( 𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 )
𝑝 (𝑦 = 0) + 𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 )

ℓ+

+ 𝑝 (𝑦 = 0)
𝑝 (𝑦 = 0) + 𝑝 (𝑦 = 1, 𝑑 > 𝑤𝑜 )

(
(1 − 𝑧2 )ℓ+ + 𝑧2ℓ

− ) )
+
(
𝑝 (𝑦 = 1)ℓ+ + 𝑝 (𝑦 = 0)ℓ−

)��� = ���(𝑧2
𝑧2

− 1

)
𝑝 (𝑦 = 0) (ℓ+ − ℓ− )

���.
□
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