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ABSTRACT
Pre-trained large language models based on Transformers have

demonstrated amazing in-context learning (ICL) abilities. Given

several demonstration examples, the models can implement new

tasks without any parameter updates. However, it is still an open

question to understand the mechanism of ICL. In this paper, we

interpret the inference process of ICL as a gradient descent process

in a contrastive learning pattern. Firstly, leveraging kernel meth-

ods, we establish the relationship between gradient descent and

self-attention mechanism under generally used softmax attention

setting instead of linear attention setting. Then, we analyze the cor-

responding gradient descent process of ICL from the perspective of

contrastive learning without negative samples and discuss possible

improvements of this contrastive learning pattern, based on which

the self-attention layer can be further modified. Finally, we design

experiments to support our opinions. To the best of our knowledge,

our work is the first to provide the understanding of ICL from the

perspective of contrastive learning and has the potential to facilitate

future model design by referring to related works on contrastive

learning.
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1 INTRODUCTION
Recently, large language models (LLMs) based on the Transformer

architectures [33] has shown surprising in-context learning (ICL)

capabilities [5, 13, 23, 35]. By prepending several training examples

before query inputs without labels, themodels canmake predictions

for the queries and achieve excellent performance without any

parameter updates. This excellent capability enables pre-trained

LLMs such as GPT models to be used in general downstream tasks

conveniently. Despite the good performance of the ICL capabilities,

the mechanism of ICL still remains an open question.

In order to better understand the ICL capabilities, many works

began to give explanations from different aspects. Xie et al. [37]

propose a Bayesian inference framework to explain how ICL oc-

curs between pretraining and test time, where the LLMs infers a

shared latent concept among the demonstration examples. Zhang

et al. [40] adopt a Bayesian perspective and show that ICL implic-

itly performs the Bayesian model averaging algorithm, which is

approximated by the attention mechanism. Garg et al. [14] demon-

strate through experiments that pre-trained Transformer-based
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models can learn new functions from in-context examples, includ-

ing (sparse) linear functions, two-layer neural networks, and deci-

sion trees. Li et al. [22] define ICL as an algorithm learning problem

where a transformer model implicitly builds a hypothesis func-

tion at inference-time and derive generalization bounds for ICL.

Han et al. [17] suggest that LLMs can emulate kernel regression

algorithms and exhibit similar behaviors during ICL. These works

have provided significant insights into the interpretation of ICL

capabilities from various perspectives.

In addition, there are some works trying to better understand ICL

capabilities from the perspective of gradient descent. Inspired by

Aiserman et al. [1], Irie et al. [20] and Dai et al. [12] figure out a dual

form of gradient descent for linear Transformer attention and then

explain ICL as implicit fine-tuning. However, there is a certain gap

between the linear attention and the softmax attention, which is

more commonly used in the LLMs. In addition, the analogy between

ICL and gradient descent is only limited to the formal resemblance

where the specific details of gradient descent, including the choice

of loss function and training data, have not been clearly defined or

provided. Von Oswald et al. [34] show the equivalence of linear self-

attention mechanism and gradient descent on a linear regression

task by giving weight constructions. Similarly, Akyürek et al. [2]

also prove by construction that transformers can learn linearmodels

as learning algorithms based on gradient descent and closed-form

ridge regression. However, the method of linking ICL with gradient

descent using weight construction does not necessarily align with

real-world scenarios. In practice, pre-trained model weights may

not always meet the requirements of such construction. Thus, the

question arise:Without using weight construction and linear attention
setting, can we combine ICL with gradient descent in the setting of
softmax attention?

Following these works linking ICL to gradient descent, we try

to further give a novel interpretation of ICL. Firstly, we give the

gradient descent of the dual form of softmax attention instead of

linear attention, which is more in line with the application scenario

of the actual LLMs. We then try to find the loss function that this

gradient descent procedure aims to optimize, which does not require

the weighting constructions as previous works. Finally, the results

show that the loss function and the process of gradient descent

have a structure similar to that of contrastive learning, especially

without negative samples. Since there are lots of mature works

in the field of contrastive learning, this can inspire us to improve

the model structure in the future to make LLMs achieve better ICL

capabilities. In this paper, we attempt to modify the structure of the

self-attention layer from the perspective of applying regularization

to the loss function, enhancing data augmentation, and introducing
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negative samples. And we also design experiments to validate the

effects of these modifications.

The rest of the paper is organized as follows. In Section 2, we

describe the necessary notations and basic preliminaries. In Section

3, with the help of kernel methods, we establish the relationship

between gradient descent and self-attention mechanism under gen-

erally used softmax attention setting instead of linear setting, and

further we analyze the corresponding gradient descent process from

the perspective of contrastive learning without negative samples.

In Section 4, we discuss possible improvements of this contrastive

learning pattern, based on which self-attention layer can be modi-

fied. In Section 5, we design experiments to support our opinions.

Finally, we conclude this paper in Section 6.

2 PRELIMINARIES
2.1 In-context Learning with Transformers
We consider a model consisting of Transformer layers, each of

which is represented by a self-attention sublayer and a feed-forward

network sublayer. During ICL, the model accepts a sequence of

input vectors𝑯 = [𝑯𝐷 ,𝒉𝑁+1] ∈ R𝑑𝑖𝑛×(𝑁+1)
which is composed of

𝑁 demonstration example tokens 𝑯𝐷 = [𝒉1,𝒉2, ...,𝒉𝑁 ] ∈ R𝑑𝑖𝑛×𝑁
and one query token 𝒉𝑁+1 ∈ R𝑑𝑖𝑛 . For classification tasks, each of

token in 𝑯𝐷 has the form 𝒉𝑖 = [𝒙𝑖 ,𝒚𝑖 ] where 𝒙𝑖 and𝒚𝑖 are encoded
input text and corresponding labels respectively. And the query

token has the form 𝒉𝑁+1 = [𝒙𝑁+1,𝒚𝑁+1] where 𝒚𝑁+1 is its label
we need to predict and we can set 𝒚𝑁+1 = 0 as initialization.

The self-attention output can be formulated as

𝑯 = 𝐴𝑡𝑡𝑒𝑛(𝑯 ) =𝑾𝑉𝑯𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
(𝑾𝐾𝑯 )𝑇𝑾𝑄𝑯√

𝑑𝑜𝑢𝑡

)
, (1)

where𝑾𝐾 ,𝑾𝑄 ,𝑾𝑉 ∈ R𝑑𝑜𝑢𝑡×𝑑𝑖𝑛 are projection matrix. We obtain

the final vector
ˆ𝒉𝑁+1 in 𝑯 to read out the prediction label for the

query input. Specifically,
ˆ𝒉𝑁+1 can be formulated as

ˆ𝒉𝑁+1 =𝑾𝑉𝑯𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
(𝑾𝐾𝑯 )𝑇𝑾𝑄𝒉𝑁+1√

𝑑𝑜𝑢𝑡

)
. (2)

2.2 Contrastive Learning without Negative
Samples

Contrastive learning is a significant approach to self-supervised

learning (SSL) which aims at learning representations by mini-

mizing the distance between the augmentations of the same data

point (positive samples) while maximizing the distance from dif-

ferent data points (negative samples) [7, 18, 27, 28, 31]. However,

traditional contrastive learning methods need a certain sufficient

number of negative pairs to avoid representational collapse and

ensure the quality of the representation, which brings great bur-

den to the calculation [4, 8, 9, 36, 38]. Thus, to avoid this, some

works propose architectures for contrastive learning without neg-

ative samples, which mainly use weight-sharing network known

as Siamese networks [6, 10, 15, 26, 32]. The architecture takes two

augmentations 𝒙1, 𝒙2 from the same data 𝒙 as inputs. Then, 𝒙1, 𝒙2
will be processed by online network and target network as encoders

respectively to obtain the corresponding representations, that is,

�̂�1 = 𝑓𝑜𝑛𝑙𝑖𝑛𝑒 (𝒙1), �̂�2 = 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 (𝒙2). The two encoder networks share

weights directly or using Exponential Moving Average (EMA). Then,

a prediction head will take the online representation �̂�1 as input
to obtain the prediction representation, that is, 𝒛1 = 𝑔(�̂�1). Finally,
we minimize the distance between the prediction representation

and target representation,

L (𝒛1, 𝑆𝑡𝑜𝑝𝐺𝑟𝑎𝑑 (�̂�2)) ,
where 𝑆𝑡𝑜𝑝𝐺𝑟𝑎𝑑 (·) means �̂�2 is treated as a constant during back-

propagation. For L(·), we often choose the cosine similarity or

the 𝑙2-norm as a measure of distance, although they are equivalent

when the vector is normalized. We will show that the gradient

descent process induced by ICL using attention mechanism can be

seen as a simplified form of this architecture.

2.3 Gradient Descent on Linear Layer is the
Dual Form of Linear Attention

It has been found that the linear attention can be connected to the

linear layer optimized by gradient descent [1, 20, 34]. According to

Aiserman et al. [1] and Irie et al. [20], during test time, a linear layer

produces outputs using dot attention over all training datasets. A

simple linear layer can be defined as

𝑓 (𝒙) =𝑾𝒙, (3)

where𝑾 ∈ R𝑑𝑜𝑢𝑡×𝑑𝑖𝑛 is the projection matrix. Given training in-

puts [𝒙𝑖 ]𝑁𝑖=1 ∈ R𝑑𝑖𝑛 with their labels [𝒚𝑖 ]𝑁𝑖=1 ∈ R𝑑𝑜𝑢𝑡 and some

loss function L with learning rate 𝜂, gradient descent process pro-

duces the corresponding backpropagation signals [𝒆𝑖 ]𝑁𝑖=1 ∈ R𝑑𝑜𝑢𝑡

where 𝒆𝑖 = −𝜂
(
∇�̂�𝑖L

)
and �̂�𝑖 =𝑾𝒙𝑖 . During test time, the trained

weight matrix �̂� can be represented by its initialization𝑾0 and the

updated part Δ𝑾 , that is,

�̂� =𝑾0 + Δ𝑾 =𝑾0 +
𝑁∑︁
𝑖=1

𝒆𝑖 ⊗ 𝒙𝑖 , (4)

where ⊗ denotes the outer product according to the chain rule of

differentiation.

On the other hand, this process can be associated with linear

attention. Let [𝒌𝑖 ]𝑁𝑖=1, [𝒗𝑖 ]
𝑁
𝑖=1
, ∈ R𝑑𝑖𝑛 denote the 𝑁 key and value

vectors which form the key and value matrix 𝑲 , 𝑽 ∈ R𝑑𝑖𝑛×𝑁 re-

spectively. For a given query input 𝒒 ∈ R𝑑𝑖𝑛 , linear attention is

typically defined as the weighted sum of these value vectors

𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑡𝑡𝑒𝑛(𝑽 ,𝑲 , 𝒒) = 𝑽𝑲𝑇 𝒒 =

𝑁∑︁
𝑖=1

𝒗𝑖
(
𝒌𝑇𝑖 𝒒

)
=

(
𝑁∑︁
𝑖=1

𝒗𝑖 ⊗ 𝒌𝑖

)
𝒒.

Then, we can rewrite the output of a linear layer during test time

as

𝑓 (𝒙𝑡𝑒𝑠𝑡 ) = �̂�𝒙𝑡𝑒𝑠𝑡 =𝑾0𝒙𝑡𝑒𝑠𝑡 +
(
𝑁∑︁
𝑖=1

𝒆𝑖 ⊗ 𝒙𝑖

)
𝒙𝑡𝑒𝑠𝑡

=𝑾0𝒙𝑡𝑒𝑠𝑡 + 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑡𝑡𝑒𝑛(𝑬 ,𝑿 , 𝒙𝑡𝑒𝑠𝑡 ),
(5)

where 𝑬 ∈ R𝑑𝑜𝑢𝑡×𝑁 and 𝑿 ∈ R𝑑𝑖𝑛×𝑁 are stacked by backpropa-

gation signals [𝒆𝑖 ]𝑁𝑖=1 and training inputs [𝒙𝑖 ]𝑁𝑖=1 respectively. We

can find from Eq (5) that the weight matrix records all training dat-

apoints and the output of a linear layer during test time indicates

which training datapoints are chosen to activate using linear at-

tention, where backpropagation signals can be considered as value
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Figure 1: The inference process of ICL is equivalent to performing gradient descent on a reference model. Left part: One
self-attention layer take 𝑁 demonstration tokens and one query token as input. The final prediction ˆ𝒉𝑁+1 will be read out;
Right part: The reference model 𝑓 (𝒙) = 𝑾𝜙 (𝒙) will be trained given the contrastive loss L and training datas {𝒙 (𝑖 )

𝑠𝑡𝑑
,𝒚 (𝑖 )
𝑠𝑡𝑑

}𝑁
𝑖=1

transformed by the demonstration tokens. Then, the prediction �̂�𝑡𝑒𝑠𝑡 for test input 𝒙𝑡𝑒𝑠𝑡 will be exactly equivalent to ˆ𝒉𝑁+1.

vectors while training inputs as keys. This interpretation uses gra-

dient descent as a bridge to connect predictions of linear layers

with linear attention, which can be seen as a simplified softmax

attention used in Transformers, based on which Dai et al. [12] un-

derstand ICL as implicit fine-tuning. However, this interpretation

based on linear attention deviates from the softmax attention used

in practical Transformers. Furthermore, this alignment is "formly

looks like" as the specific details of the gradient descent process,

including the form of loss function and dataset, have not been

explicitly addressed. In addition, Von Oswald et al. [34] also use

weight construction methods to link the ICL ability of Transformers

with gradient descent under linear regression tasks, in which case

the weights 𝑾𝐾 , 𝑾𝑄 and 𝑾𝑉 of the self-attention layer need to

roughly adhere to a specific constructed form. While in practice,

these weights in pre-trained Transformers are fixed and may not

conform to the intended construction, rendering this explanation

ineffective. Thus, we will address these issues in Section 3.

3 ICL IN A CONTRASTIVE LEARNING
PATTERN

In this section, we will address two questions discussed above: (i)

Without using weight construction methods, how to relate ICL to
gradient descent in the setting of softmax attention instead of linear
attention? (2)What specific datas and loss function should be used
for the gradient descent process corresponding to ICL? In addressing

these two questions, we will discover that the gradient descent

process corresponding to ICL has a form that is very similar to

contrastive learning without negative samples.

3.1 Connecting Softmax Attention with Kernels
Before we begin establishing the connection between the ICL rea-

soning process and contrastive learning, we need to firstly rethink-

ing softmax attention with kernel methods. Dai et al. [12] connect

ICL with gradient descent under the linear attention setting. In

fact, it is completely feasible to interpret ICL under more general

softmax attention with the help of kernel methods. We define

𝑨 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
(𝑾𝐾𝑯 )𝑇𝑾𝑄𝑯√

𝑑𝑜𝑢𝑡

)
,

as the attention block in Eq (1), which can be viewed as the product

of the unnormalized part and normalizing multiplier, that is,

𝑨 = 𝑫−1𝑨𝑢 , 𝑫 = 𝑑𝑖𝑎𝑔(𝑨𝑢1𝑁 ),

𝑨𝑢 = 𝑒𝑥𝑝

(
(𝑾𝐾𝑯 )𝑇𝑾𝑄𝑯/

√︁
𝑑𝑜𝑢𝑡

)
,

(6)

where 𝑒𝑥𝑝 (·) is element-wise. Similar in [11], we define softmax

kernel 𝐾𝑠𝑚 : R𝑑𝑜𝑢𝑡 × R𝑑𝑜𝑢𝑡 → R+ as:

𝐾𝑠𝑚 (𝒙,𝒚) = 𝑒𝑥𝑝 (𝒙𝑇𝒚) = 𝑒𝑥𝑝 ( ∥𝒙 ∥
2

2

)𝐾𝑔𝑢𝑎𝑠𝑠 (𝒙,𝒚)𝑒𝑥𝑝 (
∥𝒚∥2
2

),

where 𝐾𝑔𝑢𝑎𝑠𝑠 = 𝑒𝑥𝑝 (−∥𝒙 −𝒚∥2/2) is the guassian kernel when the

variance 𝜎2 = 1. According to Mercer’s theorem [25], there exists

some mapping function 𝜙 : R𝑑𝑜𝑢𝑡 → R𝑑𝑟 satisfying that,

𝐾𝑠𝑚 (𝒙,𝒚) = 𝜙 (𝒙)𝑇𝜙 (𝒚) .

Thus, noting that when omitting the

√
𝑑𝑜𝑢𝑡 -renormalization and

equivalently normalize key and value vectors in Eq (6), every entry

in the unnormalized part 𝑨𝑢 can be seen as the output of softmax

kernel 𝐾𝑠𝑚 defined for the mapping 𝜙 , which can be formulated as:

𝑨𝑢 (𝑖, 𝑗) = 𝑒𝑥𝑝
(
(𝑾𝐾𝒉𝑖 )𝑇𝑾𝑄𝒉 𝑗

)
= 𝐾𝑠𝑚 (𝑾𝐾𝒉𝑖 ,𝑾𝑄𝒉 𝑗 )

= 𝜙 (𝑾𝐾𝒉𝑖 )𝑇𝜙 (𝑾𝑄𝒉 𝑗 ) .

(7)

There have been many forms of mapping function 𝜙 (·) used in

efficient Transformers research to approximate this non-negative

kernel [11, 21, 24, 29]. For example, we can choose 𝜙 (·) as positive
random features which has the form 𝜙 (𝒙) = 𝑒𝑥𝑝 (𝒘𝑇 𝒙 − ∥𝒙 ∥2/2)
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Figure 2: Illustration of the gradient descent process of ICL in a contrastive learning pattern. Left part: We can interpret
the corresponding gradient descent process of ICL from the perspective of contrastive learning. Right part: For a encoded
demonstration representation 𝒉𝑖 , the key and value projections act as two data augmentations𝑾𝐾𝒉𝑖 and𝑾𝑉 𝒉𝑖 . These two types
of augmentation aim to create a certain distance between data representations in space. Then, the function 𝜙 (𝒙) projects𝑾𝐾𝒉𝑖
into a higher-dimensional space to capture deeper-level features. Finally, the weight matrix𝑾 , which maps 𝜙 (𝑾𝐾𝒉𝑖 ) back to
the original space, will be trained to make the mapped vector as close as possible to𝑾𝑉 𝒉𝑖 .

to achieve unbiased approximation for attention matrix [11]. Alter-

natively, 𝜙 (𝒙) = 𝑒𝑙𝑢 (𝒙) + 1 can also be used to approximate one

order Taylor expansion of the exponential function [21].

3.2 The Gradient Descent Process of ICL
Now, given a specific softmax kernel mapping function 𝜙 (𝒙) that
satisfies Eq (7), we can define a reference model

𝑓 (𝒙) =𝑾𝜙 (𝒙), (8)

where𝑾 ∈ R𝑑𝑜𝑢𝑡×𝑑𝑟 is the parameters to learn.We assume that this

reference model obtain its updated weights �̂� after undergoing

one step of gradient descent with some loss function L. Subse-

quently, when we use𝑾𝑄𝒉𝑁+1 as the test input, we can obtain its

corresponding test prediction as

�̂�𝑡𝑒𝑠𝑡 = 𝑓
(
𝑾𝑄𝒉𝑁+1

)
= �̂�𝜙

(
𝑾𝑄𝒉𝑁+1

)
.

We will show that the
ˆ𝒉𝑁+1 in Eq (2), is strictly equivalent to the

above test prediction �̂�𝑡𝑒𝑠𝑡 , which implies that the inference process

of ICL involves a gradient descent step on the reference model. This

can be illustrated by the following theorem:

Theorem 1. The last token ˆ𝒉𝑁+1 obtained through ICL inference
process is strictly equivalent to the test prediction �̂�𝑡𝑒𝑠𝑡 obtained
by performing one step of gradient descent on the weight𝑾 in the
reference model 𝑓 (𝒙) =𝑾𝜙 (𝒙). The form of the loss function L is:

L = − 1

𝜂𝐷

𝑁∑︁
𝑖=1

(𝑾𝑉 𝒉𝑖 )𝑇 𝑾𝜙 (𝑾𝐾𝒉𝑖 ), (9)

where 𝜂 is the learning rate and 𝐷 is a constant.

Proof. The derivative of L with respect to𝑾 should be:

𝜕L
𝜕𝑾

= −
[
𝑁∑︁
𝑖=1

1

𝜂𝐷
𝑾𝑉 𝒉𝑖 ⊗ 𝜙 (𝑾𝐾𝒉𝑖 )

]
.

Thus, after one step of gradient descent , the learned �̂� will be

�̂� =𝑾0 − 𝜂
𝜕L
𝜕𝑾

=𝑾0 +
[
𝑁∑︁
𝑖=1

1

𝐷
𝑾𝑉 𝒉𝑖 ⊗ 𝜙 (𝑾𝐾𝒉𝑖 )

]
, (10)

where𝑾0 is its initialization and 𝜂 is the learning rate. So the test

prediction will be

�̂�𝑡𝑒𝑠𝑡 =𝑾0𝜙
(
𝑾𝑄𝒉𝑁+1

)
+
[
𝑁∑︁
𝑖=1

1

𝐷
𝑾𝑉 𝒉𝑖 ⊗ 𝜙 (𝑾𝐾𝒉𝑖 )

]
𝜙

(
𝑾𝑄𝒉𝑁+1

)
.

(11)

On the other hand, from the perspective of ICL process with one

self-attention layer, with Eq (7) in our mind, we can rewrite Eq (2)

as

ˆ𝒉𝑁+1 =
1

𝐷′ [𝑽𝐷 , 𝒗] [𝜙 (𝑲𝐷 ), 𝜙 (𝒌)]
𝑇 𝜙 (𝒒),

where [𝑽𝐷 , 𝒗] = 𝑾𝑉 [𝑯𝐷 ,𝒉𝑁+1], [𝑲𝐷 , 𝒌] = 𝑾𝐾 [𝑯𝐷 ,𝒉𝑁+1], 𝒒 =

𝑾𝑄𝒉𝑁+1 for simplify and 𝐷′ = 1𝑁𝜙 (𝑲𝐷 )𝑇𝜙 (𝒒) + 𝜙 (𝒌)𝑇𝜙 (𝒒) is a
constant to normalize the equivalent attention block. Further, we

expand the above equation to connect the inference process of ICL

using softmax attention with the gradient descent as follows

ˆ𝒉𝑁+1 =
1

𝐷′ 𝒗𝜙 (𝒌)
𝑇𝜙 (𝒒) + 1

𝐷′ 𝑽𝐷𝜙 (𝑲𝐷 )
𝑇𝜙 (𝒒)

=𝑾 ′
0
𝜙 (𝒒) + 1

𝐷′

[
𝑁∑︁
𝑖=1

𝑽 (𝑖 )
𝐷

⊗ 𝜙 (𝑲 (𝑖 )
𝐷

)
]
𝜙 (𝒒)

where𝑾 ′
0
= 𝐷′−1𝒗𝜙 (𝒌)𝑇 and 𝑽 (𝑖 )

𝐷
,𝑲 (𝑖 )
𝐷

are the 𝑖-th column vetors

respectively. Then, in Eq (11), when setting the initialization𝑾0 =

𝑾 ′
0
and the constant 𝐷 = 𝐷′

, we will find that

�̂�𝑡𝑒𝑠𝑡 =𝑾0𝜙 (𝒒) +
1

𝐷

[
𝑁∑︁
𝑖=1

𝑽 (𝑖 )
𝐷

⊗ 𝜙 (𝑲 (𝑖 )
𝐷

)
]
𝜙 (𝒒) = ˆ𝒉𝑁+1, (12)

which means �̂�𝑡𝑒𝑠𝑡 is strictly equivalent to
ˆ𝒉𝑁+1. Thus, we have

completed our proof. □
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More discussion about Theorem 1 can be seen in the Appen-

dix A.1. Theorem 1 demonstrates the equivalence between the ICL

inference process and gradient descent. However, in terms of this

gradient descent process, what is the form of the training set? In

fact, once a self-attention layer has already been pre-trained, that

is, 𝑾𝐾 ,𝑾𝑄 ,𝑾𝑉 has been determined, it seems that Transformer

is using the demonstration tokens [𝒉𝑖 ]𝑁𝑖=1 to construct a training
dataset for the reference model. Specifically, the training data points

have the form {𝒙 (𝑖 )
𝑠𝑡𝑑
,𝒚 (𝑖 )
𝑠𝑡𝑑

}𝑁
𝑖=1

where 𝒙 (𝑖 )
𝑠𝑡𝑑

= 𝑾𝐾𝒉𝑖 as inputs and

𝒚 (𝑖 )
𝑠𝑡𝑑

= 𝑾𝑉 𝒉𝑖 as their labels. Then, for each data points 𝒙 (𝑖 )
𝑠𝑡𝑑

, the

model will output its corresponding prediction,

�̂� (𝑖 ) = 𝑓
(
𝒙 (𝑖 )
𝑠𝑡𝑑

)
=𝑾𝜙

(
𝒙 (𝑖 )
𝑠𝑡𝑑

)
=𝑾𝜙 (𝑾𝐾𝒉𝑖 ) .

Simultaneously, the loss function can be rewritten as

L = − 1

𝜂𝐷

𝑁∑︁
𝑖=1

(𝑾𝑉 𝒉𝑖 )𝑇 𝑾𝜙 (𝑾𝐾𝒉𝑖 ) = − 1

𝜂𝐷

𝑁∑︁
𝑖=1

(𝒚 (𝑖 )
𝑠𝑡𝑑

)𝑇 �̂� (𝑖 ) ,

which is related to the cosine similarity. Then, Eq (10) can be seen

as one step of Stochastic Gradient Descent (SGD) on this training

set to obtain the updated �̂� . Finally, during the testing time, we

will take 𝒙𝑡𝑒𝑠𝑡 =𝑾𝑄𝒉𝑁+1 as a test input to get the test prediction,

�̂�𝑡𝑒𝑠𝑡 = 𝑓 (𝒙𝑡𝑒𝑠𝑡 ) = �̂�𝜙 (𝒙𝑡𝑒𝑠𝑡 ) = �̂�𝜙
(
𝑾𝑄𝒉𝑁+1

)
= ˆ𝒉𝑁+1 .

This process can be illustrated in Figure 1.

From the perspective of gradient descent, it seems that demon-

stration examples provide information about the training data

points {𝒙 (𝑖 )
𝑠𝑡𝑑
,𝒚 (𝑖 )
𝑠𝑡𝑑

} and after training process, the weight matrix

�̂� is optimized to learn sufficient knowledge about demonstra-

tions. Then, during test time, we take 𝑾𝑄𝒉𝑁+1 as the input of

𝑓 (𝒙) =𝑾𝜙 (𝒙) to produce the final representation
ˆ𝒉𝑁+1, which is

consistent with the result produced by the softmax attention. In

this process, we should notice that𝑾𝑄 ,𝑾𝐾 ,𝑾𝑉 are predetermined

parameters optimized after pre-training, not by construction as in

Von Oswald et al. [34]. Given a reference model 𝑓 (𝒙) = 𝑾𝜙 (𝒙),
by comparing Eq (12) and Eq (5), we can easily observe that the

gradient descent on the loss function L applied to 𝑓 (𝒙) is the dual
form of the inference process of ICL, where 𝑽 (𝑖 )

𝐷
, 𝜙 (𝑲 (𝑖 )

𝐷
) and 𝜙 (𝒒)

play the roles of backpropagation signals, training inputs and test

inputs respectively.

Recalling the form of Eq (5), we can interpret the 𝑾0 as the

initialization of the weight matrix which provide the information

under the zero-shot case while the second part in Eq (12) shows that

the demonstration examples in ICL acts as the training samples in

gradient descent. Theorem 1 also illustrates that more demonstra-

tion examples during ICL is equivalent to have sufficient training

datasets in gradient descent, which contributes to giving better

performance in the inference process of ICL, or equivalently the

test output after training by gradient descent. Compared to Dai et al.

[12] building the connection under the linear attention setting, the

theorem gives more general explanation considering softmax atten-

tion with the help of kernel methods. We also note that Von Oswald

et al. [34] obtain similar results by specific weight construction

on a linear regression task, where 𝜙 (𝒙) is explained as a neural

network to learn the mapping representation. However, we give

the derivation not by construction and our interpretation will still

be applicable regardless of the form that 𝑾𝑄 ,𝑾𝐾 ,𝑾𝑉 take after

pre-training.

3.3 Rethinking ICL with Contrastive Learning
Even though we have now clarified the details of the gradient de-

scent process of ICL, as we can see from the loss function, this

gradient descent process is similar to contrastive learning without

negative samples: The 𝒙 (𝑖 )
𝑠𝑡𝑑

and 𝒚 (𝑖 )
𝑠𝑡𝑑

of training data, are actually

transformed from the same representation 𝒉𝑖 , and moreover, the

loss function L, which has the form of cosine similarity, is often

used to minimize the distance between positive pairs in contrastive

learning. Thus, from the perspective of contrastive learning, we

can interpret the above gradient descent process as follows: For a

encoded demonstration representation 𝒉𝑖 , the key and value pro-

jections act as two data augmentations𝑾𝐾𝒉𝑖 and𝑾𝑉 𝒉𝑖 . These two
types of augmentation aim to create a certain distance between

data representations in space. And then, 𝜙 (𝒙) projects𝑾𝐾𝒉𝑖 into a
higher-dimensional space to capture deeper-level features. Finally,

we need to train the weight matrix𝑾 , which maps 𝜙 (𝑾𝐾𝒉𝑖 ) back
to the original space, aiming to make the mapped vector as close as

possible to𝑾𝑉 𝒉𝑖 . This process is illustrated in Figure 2. Thus, we

give our theorem to connect ICL with contrastive learning:

Theorem 2. The inference process of ICL can be seen as perform-
ing gradient descent on a reference model 𝑓 (𝒙) = 𝑾𝜙 (𝒙) using a
contrastive learning pattern: Given [𝒉𝑖 ]𝑁𝑖=1 as encoded demonstra-
tion examples representations, we can obtain two augmentations
𝑾𝐾𝒉𝑖 ,𝑾𝑉 𝒉𝑖 by applying linear projections. One of the augmentations
𝒚 (𝑖 )
𝑠𝑡𝑑

= 𝑾𝑉 𝒉𝑖 is directly treated as one of the positive sample while
the other augmentation𝑾𝐾𝒉𝑖 will be taken into the reference model
to learn the other positive sample’s representation �̂� (𝑖 ) = 𝑓 (𝑾𝐾𝒉𝑖 ).
The gradient descent of ICL aims at optimizing the weight matrix𝑾
to narrow the cosine similarity of �̂� (𝑖 ) and 𝒚 (𝑖 )

𝑠𝑡𝑑
, which can be seen as

positive pairs in contrastive learning without negative samples.

Since there are lots of mature works in contrastive learning, it

is possible for us to draw on these works to improve the model

design [8–10, 18, 36]. We will provide some simple perspectives

from the loss function, data augmentations and negative samples

to try to adjust the self-attention mechanism.

4 IMPROVING THE TRANSFORMER
STRUCTURE FROM CONTRASTIVE
LEARNING

4.1 Discussion on the Contrastive Loss
Although we have figured out the contrastive learning loss of the

implicit gradient updates, it can be observed that this loss function

is not "perfect", where the calculation of cosine similarity does not

normalize 𝒚 (𝑖 )
𝑠𝑡𝑑

and �̂� (𝑖 )
, allowing ∥𝑾 ∥𝐹 to be optimized to infinity

and preventing the loss from having a lower bound. To address this

issue, we can introduce regularization to constrain the norm of𝑾 ,

specifically by

L = − 1

𝜂𝐷

𝑁∑︁
𝑖=1

(𝑾𝑉 𝒉𝑖 )𝑇 𝑾𝜙 (𝑾𝐾𝒉𝑖 ) +
𝛼

2𝜂
∥𝑾 ∥2𝐹 , (13)
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where 𝛼 is a hyperparameter to balance the two parts. As a result,

we can see that the gradient update for𝑾 will be in an exponentially

smoothed manner meaning that a portion of the initial part will be

discarded at every step, that is,

𝑾 (𝑡 ) =𝑾 (𝑡−1)−𝜂 𝜕L
𝜕𝑾

= (1−𝛼)𝑾 (𝑡−1)+
𝑁∑︁
𝑖=1

𝐷−1𝑾𝑉 𝒉𝑖⊗𝜙 (𝑾𝐾𝒉𝑖 ) .

Equivalently, the inference process of ICL can be seen as the first

step of the aforementioned update, and the self-attention mecha-

nism will be correspondingly adjusted as,

ˆ𝒉𝑁+1 = (1 − 𝛼)𝑾0𝜙 (𝒒) + 𝐷−1
[
𝑁∑︁
𝑖=1

𝑽 (𝑖 )
𝐷

⊗ 𝜙 (𝑲 (𝑖 )
𝐷

)
]
𝜙 (𝒒), (14)

which means more demonstration information will be attended to.

And for a self-attention layer, if all other tokens adopt the same

modification, the self-attention layer will become

𝑯 = 𝐴𝑡𝑡𝑒𝑛(𝑯 ) =𝑾𝑉𝑯𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
(𝑾𝐾𝑯 )𝑇𝑾𝑄𝑯√

𝑑𝑜𝑢𝑡

)
−𝛼𝑾𝑉𝑯 . (15)

4.2 Discussion on the Data Augmentation
In addition to discussing the loss function, the contrastive learn-

ing paradigm also offers our some insights. In the corresponding

contrastive learning of ICL, we can easily notice that data augmen-

tation is performed using a simple linear mapping, which may be

not sufficient for learning deeper-level features. To address this,

we can employ more complicated nonlinear functions for more

complex augmentations. Denoting these two augmentations as 𝑔1
and 𝑔2, consequently, the process of contrastive learning will be

modified as follows

L = − 1

𝜂𝐷

𝑁∑︁
𝑖=1

[𝑔1 (𝑾𝑉 𝒉𝑖 )]𝑇 𝑾𝜙 (𝑔2 [𝑾𝐾𝒉𝑖 ]),

And from the perspective of ICL, correspondingly, the last token

will be updated as

ˆ𝒉𝑁+1 =𝑾0𝜙 (𝒒) + 𝐷−1
[
𝑁∑︁
𝑖=1

𝑔1 (𝑽 (𝑖 )
𝐷

) ⊗ 𝜙 (𝑔2 (𝑲 (𝑖 )
𝐷

))
]
𝜙 (𝒒) .

Equivalently, the self-attention layer will be adjusted as,

𝑯 = 𝐴𝑡𝑡𝑒𝑛(𝑯 ) = 𝑔1 (𝑾𝑉𝑯 )𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(
𝑔2 (𝑾𝐾𝑯 )𝑇𝑾𝑄𝑯√

𝑑𝑜𝑢𝑡

)
, (16)

where 𝑔1 (·) and 𝑔2 (·) will be column-wise here. It is worth noting

that here we have only presented the framework of using nonlin-

ear functions as data augmentations to modify the self-attention

layer and in the simplest case, we can set 𝑔1 (𝑥) and 𝑔2 (𝑥) as MLPs

(Multi-Layer Perceptrons). However, in practice, it is encouraged to

use data augmentation functions that are tailored to specific data

structures. For example, in the case of CMT [16], the used Convo-

lutional Neural Networks (CNNs) can be considered as a form of

"strong data augmentations" suitable for image datas within our

framework. We consider the exploration of various augmentation

methods tailored to different types of data as an open question for

future research.

4.3 Discussion on the Negative Samples
Although the gradient descent process corresponding to ICL ex-

hibits some similarities with traditional contrastive learning ap-

proaches without negative samples, there are also significant differ-

ences: In traditional Siamese networks, the augmented representa-

tions as positive pairs are further learned through target and online

network that share weights (or at least influence each other). The

output of the target network is then passed through a predictor

to compute the contrastive loss. In contrast, the contrastive learn-

ing pattern corresponding to ICL indeed performs more simply,

which may potentially limit the ability of the reference model to

learn representations fully without negative samples. To address

this, similar to most contrastive learning approaches, we can intro-

duce negative samples forcing the model to separate the distances

between positive and negative samples at the same time, that is,

L = − 1

𝜂𝐷

𝑁∑︁
𝑖=1

(𝑾𝑉 𝒉𝑖 )𝑇 𝑾𝜙 (𝑾𝐾𝒉𝑖 )

+ 𝛽

𝜂𝐷

𝑁∑︁
𝑖=1

1

|N (𝑖) |
∑︁

𝑗∈N(i)

(
𝑾𝑉 𝒉 𝑗

)𝑇 𝑾𝜙 (𝑾𝐾𝒉𝑖 ),

where N(𝑖) is the set of the negative samples for ℎ𝑖 and 𝛽 is a

hyperparameter. Similarly, the self-attention layer is modified as

𝑯 = 𝐴𝑡𝑡𝑒𝑛(𝑯 ) = �̃�𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
(𝑾𝐾𝑯 )𝑇𝑾𝑄𝑯√

𝑑𝑜𝑢𝑡

)
,

�̃� (𝑖 ) =𝑾𝑉 𝒉𝑖 −
𝛽

|N (𝑖) |
∑︁

𝑗∈N(i)
𝑾𝑉 𝒉 𝑗 .

(17)

More details can be seen in Appendix A.2. Noting that here we

simply use other token representations as negative samples for ℎ𝑖 .

However, there are more ways to construct negative samples that

are worth exploring (for instance, using noise vectors or tokens

with low semantic similarity as negative samples). For specific data

structures and application scenarios, customizing the selection or

construction of negative samples may be more effective.

5 EXPERIMENTS
5.1 Experiment Setting
In this part, we design numerical experiments to validate the equiv-

alence between the ICL inference process and gradient descent

process with the contrastive loss.

Firstly, similar to Von Oswald et al. [34] and Garg et al. [14], we

pre-train single self-attention layer using linear regression tasks.We

generate the task by 𝒚 =𝑾𝒙 where every element of𝑾 ∈ R𝑑𝑦×𝑑𝑥
is sampled from a normal distribution𝑾𝑖 𝑗 ∼ N(0, 1) and 𝒙 from

uniform distribution 𝒙 ∼ 𝑈 (−1, 1)𝑑𝑥 . We set 𝑑𝑥 = 11 and 𝑑𝑦 = 1.

Then, at each step, we use 𝑁 + 1 tokens {𝒉𝑖 = [𝒙𝑖 ;𝑦𝑖 ]}𝑁+1
𝑖=1

as the

input while the 𝑦 part of the last token is masked to be zero, that is,

𝒉𝑁+1 = [𝒙𝑖 , 0]. The self-attention layer is expected to predict 𝑦𝑁+1
to approximate the ground truth value 𝑦𝑁+1. We use mean square

error (MSE) as the loss function and stochastic gradient descent

(SGD) [3] as the optimizer.

It is worth noting that, to align with the reference model using

gradient descent, we do not use the traditional softmax function for
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Figure 3: Analysis on the equivalence between inference process of Transformer and gradient descent under contrastive
loss: Left: the changes of the prediction of the reference model as the gradient descent proceeds under setting 𝑁 = 15 and
𝑁𝐶𝐿 = 10; Center: estimation error of attention matrix as 𝑑𝑟 increases; Right: estimation error of output matrix as 𝑑𝑟 increases.

(a) the exact attention matrix and its approximation (b) the exact output and its approximation

Figure 4: The comparison between the exact attention matrix, output and their estimated approximations using random
features under setting 𝑁 = 16.

computing the attention matrix in the self-attention layer. Instead,

we approximate the attention matrix calculation using positive ran-

dom features as kernel mapping functions (Performer architecture

[11]), that is 𝜙 (𝒙) = 𝑒𝑥𝑝 (𝒘𝑇 𝒙 − ∥𝒙 ∥2/2) where 𝒘 ∼ N(0, 𝐼 ). And
orthogonal random features [11, 39] or simplex random features

[30] can be chosen to achieve better performance theoretically. To

obtain more accurate estimation of the attention matrix, we set the

output dimension of the mapping function to be 100 times the token

dimension, that is, 𝑑𝑟 = 100(𝑑𝑥 + 𝑑𝑦) = 1200. After pre-training,

the weights of the single self-attention layer have been determined.

Then, we generate test 𝑁 + 1 tokens in the same way and 𝑦 part

of the 𝑁 + 1 token is also set to be zero. We then input the test

tokens into the self-attention layer to obtain the final corresponding

prediction 𝑦𝑇𝐹 = 𝑦𝑁+1.
On the other hand, we construct a reference model 𝑓 (𝒙) =

𝑾𝜙 (𝒙) where 𝜙 (·) strictly matches the kernel mapping function

used in the self-attention layer. We transform the first 𝑁 tokens

as the training set according to Theorem 1 and train the reference

model using contrastive loss formed by Eq (9). We denote the learn-

ing rate 𝜂 in the loss function Eq (9) as 𝜂𝑙𝑜𝑠𝑠 and in the gradient

descent process Eq (10) as 𝜂𝑔𝑑 . We set 𝜂𝑔𝑑 = 𝜂𝑙𝑜𝑠𝑠/𝑁𝐶𝐿 allowing

the transformed 𝑁 demonstration tokens to undergo 𝑁𝐶𝐿 epochs

training. The transformed last token is used as the test input to

obtain the test prediction 𝑦𝐶𝐿 of the reference model. We are in-

terested in whether 𝑦𝑇𝐹 and 𝑦𝐶𝐿 are strictly equivalent after 𝑁𝐶𝐿
epochs training. More details of experiment setting can be found

in the Appendix A.3.

5.2 Equivalence Between Inference Process of
Transformer and Gradient Descent under
Contrastive Loss

The results under setting 𝑁 = 15 are shown in the left part of

Figure 3. At each step, we choose one demonstration token as

training input to update the weight 𝑾 in 𝒚 = 𝑾𝜙 (𝒙). After pre-
training, the predictions of the single self-attention layer are very

close to the ground truth values (marked as Transformer and True

in the figure). Under setting 𝑁 = 15, the label part of the last test

token is 𝑦𝑁+1 = −0.5927 and the prediction of the self-attention

layer is 𝑦𝑇𝐹 = −0.6490. In addition, after 𝑁𝐶𝐿 epochs of training

with the contrastive loss, the output of the reference model (marked

as GD-CL) matches exactly with the output of the self-attention

layer, which aligns with our theoretical analysis. More results can

be seen in the Appendix A.4.

We investigate the impact of changing the dimension of random

features 𝑑𝑟 on the approximation of attention matrices and output,

using Mean Squared Error (MSE) and Mean Absolute Error (MAE)

as evaluation metrics, where we conduct 50 repeated experiments

and calculated the average values for each value of 𝑑𝑟 , as shown

in the center and right part of Figure 3. It can be observed that

as the dimension of random features increases, the approximation

performance gradually improves, with both errors reaching a low

level in the end. Furthermore, we visualize the exact attention

matrix and the output with the approximation results, which are

shown in the Figure 4. As we can see, although some larger values

are not estimated accurately due to the limited dimension of the

random features we select, the majority of the information is still



Ren, et al.

Figure 5: Analysis on different model modifications. Left: the performance for regularized-model when varying different values
of 𝛼 ; Center: the performance for augmented-model when choosing different data augmentations; Right: the performance for
negative–model when varying the number of negative samples and 𝛽 .

estimated comprehensively well, which illustrates the validity of

the selected kernel mapping function.

5.3 Analysis on the Regularized Contrastive
Loss

In Section 4.1, we discussed the impact of applying regularization to

the contrastive loss and the changes it brings to the structure of the

self-attention layer (we call it regularized-model). We vary different

values of 𝛼 to investigate the impact on pre-training performance

for the same setting, as shown in the left part of Figure 5. It can

be observed that when 𝛼 > 0, under the pre-training setting, the

regularized-model converges to a poorer result while when 𝛼 < 0,

the model converges faster and achieves results comparable to the

model without regularization (𝛼 = 0). At least for this setting, this

is contrary to our initial intention of applying regularization to the

contrastive loss. This may be due to the fact that when 𝛼 < 0, some

information is enhanced by the corresponding reference model

which implicitly performs gradient descent. In fact, we can find

from Eq (15) that when 𝛼 < 0, a residual connection multiplied by a

coefficient 𝛼 with respect to𝑾𝑉𝑯 is introduced to the normal self-

attention layer, which may contribute to accelerating convergence.

5.4 Analysis on the Data Augmentation
Here, we further analyze the expressive ability of this modified

self-attention layer inspired by using data augmentation (we called

augmented-model) through experiments. During the pre-training

process, we simply use 𝑔1 (𝒙) = 𝑔2 (𝒙) = 𝜎 (𝑾𝒙) as data augmen-

tations to enhance the value and key embeddings respectively in

Eq (16) and we choose GELU [19] as the activation function 𝜎 (·).
We consider simultaneous and separate use of 𝑔1 and 𝑔2 and the

experiment results are shown in the center part of Figure 5. It can

be observed that when 𝑔1 and 𝑔2 are used simultaneously, as well

as when only using 𝑔1, the model converges to a poorer solution.

However, when we only use 𝑔2, that is, only provide data aug-

mentation for the key vectors, the model actually shows slightly

faster convergence. Furthermore, we use 𝑔+
2
(𝒙) = 𝜎 (𝑾2𝜎 (𝑾1𝒙))

as a more complicated augmentation function, the result indicates

that although the model initially converges slightly slower due

to the increased number of parameters, it eventually accelerates

convergence and achieves a better solution. This indicates that ap-

propriate data augmentation indeed have the potential to enhance

the capabilities of the self-attention layer. However, as we discussed

in Section 4.2, data augmentations specifically designed for the spe-

cific data may be more beneficial in improving model performance.

We leave the exploration of more specific augmentation techniques

for future research.

5.5 Analysis on the Negative Samples
We also discuss the potential modifications that could arise from

introducing negative samples in Section 4.3 (we call negative-model

here). Similarly, we conduct experiments to explore the effects on

the model performance by selecting the 𝑘 tokens with the lowest at-

tention scores as negative samples for each token. From Eq (18), we

can see that when we select the other tokens as negative samples, it

is equivalent to subtracting a certain value from the attention scores

corresponding to those tokens and the sum of these subtracted at-

tention scores is 𝛽 . To ensure numerical stability, we appropriately

increase the attention scores of tokens that are not treated as nega-

tive samples so that the sum of attention scores still remains 1. We

vary the number of negative samples 𝑘 and the 𝛽 in the Eq (18) to

investigate the impact on the model’s performance, as shown in

the right part of Figure 5. It can be found that, with appropriate

settings of 𝑘 and 𝛽 (for example, 𝑘 = 3 and 𝛽 = 0.1), the model

has the potential to achieve faster convergence. In fact, we can

note that in the original attention mechanism, attention scores are

non-negative, which means that the information from tokens with

lower similarity can still retain some level of information and the

harmful information that has already been retained cannot be re-

moved. However, in the improved structure, attention scores can

potentially become negative, which implies that after learning, the

updated tokens can remove some harmful information. Certainly,

as we discussed in Section 4.3, for different data structures, more re-

fined methods of selecting and constructing negative samples may

be more effective and we leave these aspects for future exploration.

6 CONCLUSION
In this paper, we present an interpretation of the inference process

of ICL as a gradient descent process within a contrastive learning

pattern. Firstly, we establish the relationship between gradient de-

scent and the self-attention mechanism by leveraging kernel meth-

ods under the commonly used softmax attention setting, rather than

the linear attention setting. Then, we analyze the corresponding

gradient descent process of ICL from the perspective of contrastive
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learning without negative samples and discuss potential enhance-

ments to this contrastive learning pattern, which can lead to further

modifications of the self-attention layer. Furthermore, we conduct

experiments to validate and support our findings. To the best of our

knowledge, our work is the first to provide an understanding of ICL

from the viewpoint of contrastive learning and has the potential

to inspire future model design by drawing insights from related

works on contrastive learning.
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A APPENDIX
A.1 More Discussion on Theorem 1
In this part, we would like to explain how the form of the loss

function is derived. In fact, we can obtain the form of the loss

function illustrated in the theorem 1 through a simple backward

derivation. Given a reference nonlinear model

𝑦 = 𝑓 (𝒙) =𝑾𝜙 (𝒙)

where𝜙 (𝒙) is a kernel mapping function for softmax attention, satis-

fying unbiased approximation for softmax kernel, that is, 𝑒𝑥𝑝 (𝒒𝑇 𝒌) =

http://www.jstor.org/stable/91043
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Figure 6: The changes of the prediction of the reference model as the gradient descent proceeds with the contrastive loss.

(a) 𝑑𝑟 = 3 (b) 𝑑𝑟 = 12 (c) 𝑑𝑟 = 120 (d) 𝑑𝑟 = 12000 (e) exact output

Figure 7: The changes of the prediction of the reference model as the gradient descent proceeds with the contrastive loss.

𝜙 (𝒒)𝑇𝜙 (𝒌). Then, after one step of gradient descent,𝑾 will be up-

dated as:

𝑾 =𝑾0 + Δ𝑾 =𝑾0 +
𝑁∑︁
𝑖=1

𝒆𝑖 ⊗ 𝜙 (𝒙𝑖 ),

where ⊗ denotes the outer product and 𝒆𝑖 = −𝜂∇𝜙 (𝒙 )L is the

backpropagation signal. The prediction for a test input 𝒙𝑡𝑒𝑠𝑡 will be

�̂�𝑡𝑒𝑠𝑡 = 𝑓 (𝒙𝑡𝑒𝑠𝑡 ) =𝑾0𝒙𝑡𝑒𝑠𝑡 +
𝑁∑︁
𝑖=1

𝒆𝑖 ⊗ 𝜙 (𝒙𝑖 )𝒙𝑡𝑒𝑠𝑡

On the other hand, the forward process of ICL can be expressed

as

ˆ𝒉𝑁+1 =𝑾𝑉𝑯𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
(𝑾𝐾𝑯 )𝑇𝑾𝑄𝒉𝑁+1√

𝑑𝑜𝑢𝑡

)
= 𝐷−1𝑾𝑉 [𝑯𝐷 ,𝒉𝑁+1]𝜙 ((𝑾𝐾 [𝑯𝐷 ,𝒉𝑁+1])𝑇 𝜙 (𝑾𝑄𝒉𝑁+1)

= 𝐷−1 [𝑽𝐷 , 𝒗] [𝜙 (𝑲𝐷 ), 𝜙 (𝒌)]𝑇 𝜙 (𝒒)

=𝑾0𝜙 (𝒒) +
[
𝑁∑︁
𝑖=1

𝐷−1𝑽 (𝑖 )
𝐷

⊗ 𝜙 (𝑲 (𝑖 )
𝐷

)
]
𝜙 (𝒒)

where 𝑾0 = 𝐷−1𝒗𝜙 (𝒌)𝑇 and 𝑽 (𝑖 )
𝐷
,𝑲 (𝑖 )
𝐷

are the 𝑖-th column

vetors respectively. Comparing the form of 𝑦𝑡𝑒𝑠𝑡 and ˆℎ𝑁+1, we can
interpret the𝑾0 as the initialization of the weight matrix which

provide the information under the zero-shot case while the second

part in Eq (12) shows that the demonstration examples in ICL acts

as the training samples in gradient descent.

Noting that L is a scalar function, the differential for L should

be

𝑑𝐿 = 𝑡𝑟

(
− 1

𝜂𝐷

𝑁∑︁
𝑖=1

𝜙 (𝑾𝐾𝒉𝑖 )𝒉𝑇𝑖𝑊
𝑇
𝑉 𝑑𝑊

)
= 𝑡𝑟

(
− 1

𝜂𝐷

𝑁∑︁
𝑖=1

𝒉𝑇𝑖𝑊
𝑇
𝑉 𝑑𝑊𝜙 (𝑾𝐾𝒉𝑖 )

)
= 𝑑

(
𝑡𝑟

(
− 1

𝜂𝐷

𝑁∑︁
𝑖=1

𝒉𝑇𝑖𝑊
𝑇
𝑉𝑊𝜙 (𝑾𝐾𝒉𝑖 )

))
Remove the differential sign, we get

L = 𝑡𝑟

(
− 1

𝜂𝐷

𝑁∑︁
𝑖=1

𝒉𝑇𝑖𝑊
𝑇
𝑉𝑊𝜙 (𝑾𝐾𝒉𝑖 )

)
= − 1

𝜂𝐷

𝑁∑︁
𝑖=1

(𝑾𝑉 𝒉𝑖 )𝑇 𝑾𝜙 (𝑾𝐾𝒉𝑖 )

= − 1

𝜂𝐷

𝑁∑︁
𝑖=1

(𝑾𝑉 𝒉𝑖 )𝑇 𝑓 (𝑾𝐾𝒉𝑖 )

= − 1

𝜂𝐷

𝑁∑︁
𝑖=1

(𝒚 (𝑖 )
𝑠𝑡𝑑

)𝑇 �̂� (𝑖 ) ,

After calculation and simplification, we get the final loss function

as

L = − 1

𝜂𝐷

𝑁∑︁
𝑖=1

(𝑾𝑉 𝒉𝑖 )𝑇 𝑓 (𝑾𝐾𝒉𝑖 ) = − 1

𝜂𝐷

𝑁∑︁
𝑖=1

(𝒚 (𝑖 )
𝑠𝑡𝑑

)𝑇 �̂� (𝑖 ) ,

where 𝒚 (𝑖 )
𝑠𝑡𝑑

= 𝑾𝑉 𝒉𝑖 can be defined as the standard labels for the

corresponding training inputs𝑾𝐾𝒉𝑖 . This way, we obtain the loss

function mentioned in Theorem 1.
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Figure 8: The changes of the prediction of the reference
model as the gradient descent proceeds with the contrastive
loss under setting 𝑁 = 31 and 𝑁𝐶𝐿 = 10.

A.2 More Details of the Model Modification
Based on Negative Samples

We can introduce negative samples forcing the model to separate

the distances between positive and negative samples at the same

time, that is,

L = − 1

𝜂𝐷

𝑁∑︁
𝑖=1

(𝑾𝑉 𝒉𝑖 )𝑇 𝑾𝜙 (𝑾𝐾𝒉𝑖 )

+ 𝛽

𝜂𝐷

𝑁∑︁
𝑖=1

1

|N (𝑖) |
∑︁

𝑗∈N(i)

(
𝑾𝑉 𝒉 𝑗

)𝑇 𝑾𝜙 (𝑾𝐾𝒉𝑖 ),

where N(𝑖) is the set of the negative samples for ℎ𝑖 and 𝛽 is a

hyperparameter. Similarly, the self-attention layer is modified as

𝑯 = 𝐴𝑡𝑡𝑒𝑛(𝑯 ) = �̃�𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
(𝑾𝐾𝑯 )𝑇𝑾𝑄𝑯√

𝑑𝑜𝑢𝑡

)
,

�̃� (𝑖 ) =𝑾𝑉 𝒉𝑖 −
𝛽

|N (𝑖) |
∑︁

𝑗∈N(i)
𝑾𝑉 𝒉 𝑗 .

(18)

As a result, the gradient descent and inference process of ICL will

be modified as

𝑾 =𝑾0 +
𝑁∑︁
𝑖=1

𝐷−1 ©«𝑾𝑉 𝒉𝑖 − 𝛽

|N (𝑖) |
∑︁

𝑗∈N(i)
𝑾𝑉 𝒉 𝑗

ª®¬ ⊗ 𝜙 (𝑾𝐾𝒉𝑖 ),

ˆ𝒉𝑁+1 =𝑾0𝜙 (𝒒) + 𝐷−1
[
𝑁∑︁
𝑖=1

�̃� (𝑖 )
𝐷

⊗ 𝜙 (𝑲 (𝑖 )
𝐷

)
]
𝜙 (𝒒),

�̃� (𝑖 )
𝐷

= 𝑽 (𝑖 )
𝐷

− 𝛽

|N (𝑖) |
∑︁

𝑗∈N(i)
𝑽 ( 𝑗 )
𝐷

,

respectively. And finally, we can get modified self-attention layer

as Eq (18). In corresponding experiments, for each token, we simply

choose other the 𝑘 least relevant tokens as its negative samples, i.e.,

the 𝑘 tokens with the lowest attention scores.

A.3 More Details of Experiment Setting
In this part, we will discuss our experimental setup in more details.

Although we can explore the equivalence between the infer-

ence process of a single-layer self-attention with any given specific

weights and gradient descent under contrastive loss as the pro-

posed equivalence does not depend on the specific construction of

the weights, in order to align with real-world scenarios and facili-

tate the investigation of the effects of subsequent model structure

modifications, we still choose to train the model to incorporate

task-specific knowledge before inference. Specifically, we generate

the task by 𝒚 = 𝑾𝒙 where every element of𝑾 ∈ R𝑑𝑦×𝑑𝑥 is sam-

pled from a normal distribution 𝑾𝑖 𝑗 ∼ N(0, 1) and 𝒙 is sampled

from a Gaussian distribution 𝒙 ∼ 𝑈 (−1, 1)𝑑𝑥 . To facilitate more

accurate estimation of attention matrices using random features,

we only set a small value for 𝑑𝑥 = 11 and 𝑑𝑦 = 1. Then, at each

step, we use 𝑁 + 1 tokens {𝒉𝑖 = [𝒙𝑖 ;𝒚𝑖 ]}𝑁+1
𝑖=1

as the input while the

𝒚 part of the last token is masked to be zero, that is, 𝒉𝑁+1 = [𝒙𝑖 , 0].
The single-layer self-attention layer is expected to predict �̂�𝑁+1
to approximate the ground truth value 𝒚𝑁+1. We use mean square

error (MSE) as the loss function, that is, for each epoch,

L =
1

𝑁𝑠𝑡𝑒𝑝

𝑁𝑠𝑡𝑒𝑝∑︁
𝑗=1

∥�̂� ( 𝑗 )
𝑁+1 −𝒚 ( 𝑗 )

𝑁+1∥
2,

where �̂� ( 𝑗 )
𝑁+1 and 𝒚

( 𝑗 )
𝑁+1 are the prediction and ground truth value

at 𝑗-th step and 𝑁𝑠𝑡𝑒𝑝 is the number of steps. We set 𝑁𝑠𝑡𝑒𝑝 = 1024

for 𝑁 + 1 = 16 while 𝑁𝑠𝑡𝑒𝑝 = 512 for 𝑁 + 1 = 32, which means the

total number of tokens remains unchanged at 16, 384. We choose

stochastic gradient descent (SGD) [3] as the optimizer and we set

the learning rate to 0.003 for experiments in Section 5.2 and 5.3,

while the remaining experiments to 0.005. We also attempt the

multi-task scenario, where the input token at each step is generated

from a different task. However, we find it challenging for a single-

layer self-attention to effectively learn in this setting, resulting in

disordered predictions. Therefore, our experiments are currently

limited to single-task settings, and the multi-task scenario is worth

further investigation in the future.

It is worth noting that we approximate the attention matrix

calculation using random features as kernel mapping function in-

stead of using the traditional softmax function in the self-attention

layer[11]. The mapping function 𝜙 : R𝑑𝑜𝑢𝑡 → R𝑑𝑟 has the form of

𝜙 (𝒙) = 𝑒𝑥𝑝 (𝒘𝑇 𝒙 − ∥𝒙 ∥2/2) where 𝒘 ∼ N(0, 𝐼 ). We visualize the

exact attention matrix and compare it with the estimated attention

matrices obtained using different values of 𝑑𝑟 , as shown in Figure 6.

Again, it can be seen that as 𝑑𝑟 increases, the approximation of

the true attention matrix improves gradually and similar results

can be observed for the analysis of output matrices in Figure 7.

These findings indicate that our choice of using random features

as mapping functions to estimate the true softmax attention and

conduct experiments is entirely appropriate.

To obtain a more accurate estimation of the attention matrix, we

set the output dimension of the mapping function to be 100 times

the input dimension, that is, 𝑑𝑟 = 100(𝑑𝑥 + 𝑑𝑦) = 1200. After the

weights𝑾𝑄 ,𝑾𝐾 ,𝑾𝑉 of the single-layer self-attention layer have

been determined, we generate test 𝑁 + 1 tokens in the same way

where the 𝑦 part of the 𝑁 + 1 token is also set to be zero and finally

input the test tokens into the single-layer attention layer to obtain

the corresponding predicted �̂�𝑁+1.
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(a) the exact attention matrix and its approximation (b) the exact output and its approximation

Figure 9: The comparison between the exact attention matrix, output and their estimated approximations using random
features under setting 𝑁 = 32.

On the other hand, we choose a reference model 𝑓 (𝒙) =𝑾𝜙 (𝒙)
where 𝜙 (·) is strictly equivalent to the kernel mapping function

used in the above self-attention layer. We transform the first 𝑁

tokens as the training set according to Theorem 1 and train the

reference model using the contrastive loss formed by Eq (9). In fact,

according to Theorem 1, when we perform one step of gradient

descent on this training set, the output results for the test inputs

will strictly equal �̂�𝑁+1. We can set different values for 𝜂 in the

Eq (9) and Eq (10), named as 𝜂𝑙𝑜𝑠𝑠 and 𝜂𝑔𝑑 respectively. If we want

to align more closely with the actual scenario, that is, to perform

multiple descent steps, we set 𝜂𝑔𝑑 = 𝜂𝑙𝑜𝑠𝑠/𝑁𝐶𝐿 allowing the trans-

formed 𝑁 demonstration tokens to undergo 𝑁𝐶𝐿 epochs of training

and we choose to use only one training data per gradient descent

step (batchsize = 1), resulting in 𝑁 steps for each epoch. Thus, the

update process for𝑾 will be,

�̂� =𝑾0 − 𝜂𝑔𝑑
𝜕L
𝜕𝑾

=𝑾0 +
𝜂𝑔𝑑

𝜂𝑙𝑜𝑠𝑠

[
𝑁∑︁
𝑖=1

1

𝐷
𝑾𝑉 𝒉𝑖 ⊗ 𝜙 (𝑾𝐾𝒉𝑖 )

]
=𝑾0 + 𝑁𝐶𝐿

[
𝑁∑︁
𝑖=1

1

𝐷
𝑾𝑉 𝒉𝑖 ⊗ 𝜙 (𝑾𝐾 )

]
.

It can be observed that due to the unchanged update signal obtained

from each epoch of𝑾 , after 𝑁𝐶𝐿 training epochs, our results will

strictly equal the result of one update step when 𝜂𝑔𝑑 = 𝜂𝑙𝑜𝑠𝑠 and

using full training datas as one batch. It should be noted that this

result is based on the fact that the gradient signal remains constant

during each update step. Conversely, if the gradient signal varies

during the updates, there will be some deviation in the final re-

sult. For example, in the regularized-model, each gradient update

undergoes exponential decay and the gradient signal is no longer

constant, leading to a slight deviation between
ˆ𝒉𝑁+1 and �̂�𝑡𝑒𝑠𝑡 ,

which will also be illustrated in Figure 10.

A.4 More Experiment Results
The results under setting 𝑁 = 31 are shown in Figure 8. Under

setting 𝑁 = 31, the label part of the last test token is 𝑦𝑁+1 =

0.2767 and the prediction of the self-attention layer is 𝑦𝑇𝐹 = 0.2915.

Furthermore, to demonstrate the effectiveness of using random

features as kernel mapping functions to approximate the softmax

attention mechanism, we compare the exact attention matrix and

Figure 10: The changes of the prediction of the reference
model as the gradient descent proceeds with the regularized
contrastive loss under setting 𝑁𝐶𝐿 = 10 and 𝛼 = 0.01.

the output with the approximation results, which are shown in the

Figure 9.

Furthermore, for regularized model, we explore the equivalence

between the model’s inference process and gradient descent with

the regularized contrastive loss, as shown in Figure 10. We find that

under setting 𝑁𝐶𝐿 = 10 and 𝑎𝑙𝑝ℎ𝑎 = 0.01, as the reference model

discards a portion of the original weight matrix information at each

step, there is a slight deviation between the final output and the

model’s inference result. In fact, under the setting of 𝑁𝐶𝐿 = 1 and

we take all demonstration tokens as one batch, the two outputs will

be strictly equivalent.
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