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Abstract. Large-scale datasets have made impressive progress in deep learning.
However, storing datasets and training neural network models on large datasets
have become increasingly expensive. In this paper, we present an effective dataset
compression approach based on the matrix product states (short as MPS) and
knowledge distillation. MPS can decompose image samples into a sequential
product of tensors to achieve task-agnostic image compression by preserving
the low-rank information of the images. Based on this property, we use multi-
ple MPS to represent the image datasets samples. Meanwhile, we also designed
a task-related component based on knowledge distillation to enhance the gen-
erality of the compressed dataset. Extensive experiments have demonstrated the
effectiveness of the proposed approach in image datasets compression, especially
obtaining better model performance (2.26% on average) than the best baseline
method on the same compression ratio.
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1 Introduction

Large-scale datasets consisting of millions of samples are becoming the norm to obtain
state-of-the-art machine learning models in several fields including speech enhance-
ment and recognition [33,37], computer vision [32] and natural language processing [7].
At such a scale, the resources needed to store datasets and train neural networks grow
extremely large, and training machine learning models on it requires the specialized
equipment and infrastructure. Therefore, it is the critical problem in machine learning
that effectively reduces the size of the datasets as well as maintains the model perfor-
mance.

An intuitive way is to compress the samples one by one through low-rank approx-
imation [4, 22], in order to keep the maximum possible information in each sample.

⋆ Authors contributed equally.
⋆⋆ Corresponding author.
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However, the compressed sample may consist of noise that is irrelevant to the down-
stream task. Motivated by this shortcoming, there comes another research line that fo-
cuses on compressing datasets for both high compression ratio and comparable per-
formance with a full set of downstream tasks. There are two widely used methods,i.e.,
data selection and dataset distillation. They compress the dataset by identifying the
most representative training samples in the dataset and generating a small training set,
respectively. Nevertheless, the selection and generation of small sets are task-specific
and require additional computational costs when retraining for different tasks. It is a
crucial problem that implements an effective image dataset compression method that
has a high compression ratio while reducing the computational cost required for task
migration.

In this paper, we introduce a novel matrix product states (MPS) [8] based technique
for compressing image datasets. MPS is a low-rank decomposition method that was
originally used to describe “short-range correlation” information - similar to the "local-
ity of pixel dependencies" in an image - in the study of quantum many-body physics
problems. Technically, the MPS can factorize a matrix into a sequential product of local
tensors (i.e., a multi-way array). An important merit of MPS decomposition is that it
can effectively represent the low-rank information of the matrix [4]. Furthermore, it is
more efficient to use multiple MPS to represent the same matrix than a single MPS. This
is because the ability to represent low-rank information using multiple MPS tensors is
superior to that of a single MPS [43]. Moreover, dataset distillation can synthesize a
small dataset to represent task-relevant features, which leads to a compressed dataset.
Such properties motivate us to propose a better dataset compression approach, which
bases on multiple MPS representations and knowledge distillation. We can compress
the dataset by multiple MPS to represent low-rank information in task-agnostic dataset
compression, while use the knowledge distillation to supplement the information in
task-specific training.

To this end, we propose a Multiple MPS-based dataset compression approach, called
MMPS, to compress the image dataset. The MMPS approach not only enables deep
neural networks to obtain similar performance as on the original dataset but also can
be used for different models as well as different types of tasks. We have made two im-
port technical contributions for image dataset compression based on MPS and knowl-
edge distillation. First, we introduce a new task-agnostic dataset compression approach
that efficiently represents low-rank information among pixels. We formulate this goal
as the problem of minimizing the difference between multiple low-rank tensors with
constraints and the original image samples. We present both theoretical discussion and
experimental verification for the effectiveness of this dataset compression approach.
Second, we propose a new task-specific component for information supplementation,
tailored for the machine learning model. In general, different downstream tasks have
different information for image datasets, the offline dataset compression does not con-
tain task-specific information. Thus, we propose a module based on knowledge distil-
lation to make the compressed datasets adaptable to different tasks.

To the best of our knowledge, it is the first time that multiple MPS is applied to the
dataset compression, which is well suited for model training and image dataset storage.
We construct experiments to evaluate the effectiveness of the proposed compression ap-
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proach for CIFAR, FashinMNSIT, and ImageNet, respectively. Extensive experiments
have demonstrated the effectiveness of the proposed approach in dataset compression,
especially obtaining better model performance (2.26% on average) than similar meth-
ods for the same compression ratio.

In the rest of the paper, we first briefly describe the MPS decomposition and the
process of knowledge distillation in Section 3. Then we introduce our proposed MMPS
approach for image dataset compression in Section 4. We report experimental results in
Section 5, review the related work in in Section 2 and conclude the paper in Section 6.

2 Related Work

We review the related works in three aspects.

Data selection. The data selection technique of selecting the valid knowledge through
an illuminating or a priori approach [2, 6, 35, 39], either by giving illuminating knowl-
edge about the task or by finding representative samples. The data selection define
representative criterion in the first (e.g., compactness [6, 29], forgetfulness [39], di-
versity [2, 35]), then select representative samples from original dataset based on the
criterion, finally use the selected small dataset to train the machine learning model for
a downstream task. In contrast, our approach does not require the presence of a repre-
sentative sample and is a more general approach.

Knowledge distillation. Knowledge distillation is a technique of transferring knowl-
edge from a collection of models into a single model [3, 5, 17, 30]. While network dis-
tillation aims to distill the knowledge of multiple networks into a single model, dataset
distillation models network parameters as a function of synthetic training data and learn
their synthetic data by minimizing the training loss on the original training data and the
synthetic training data [41]. We use the idea of knowledge distillation to complement
the learning of task-relevant information under different tasks. In other words, our goal
is to capture the portion of information in the dataset sample that is valid for training
deep neural networks and to perform a "selection" of information in the dataset sample.

Tensor-based matrix representation. Tensor-based method of matrices is a technique
that allows representing dataset samples in the tensor form such that quantum en-
tanglement corresponds to classical correlations between different coarse-grained tex-
tures [22]. Another application is the compression of neural networks. Matrix product
operators have been used to compress linear layers of deep neural networks [9, 11, 25,
38]. Then, MPOP was proposed to fine-tune the pre-trained language model (PLM) ef-
fecitively [24], and OPF proposed to narrow the performance gap between small and
large PLM [12]. Moreover, MPOE combined the tensor-based matrix representation and
Mixture-of-Experts (MoE) effectively enlarge the PLM scalability [10]. In contrast, we
represent a dataset sample jointly with multiple low-rank tensors, each low-rank ten-
sor describing the difference in information between the previous other tensors and the
original graph (i.e., residual information).
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Our work is highly built on these studies, while we have a new perspective by de-
signing the dataset compression algorithm which enables extracted low-rank informa-
tion in the image. It is the first time that multiple MPS is applied to image dataset
compression, and we make contributions for a novel approach to dataset compression.

3 Preliminary

In this paper, scalars are denoted by lowercase letters (e.g., a), matrices are denoted
by boldface capital letters (e.g., M), and high-order (order three or higher) tensors are
denoted by boldface Euler script letters (e.g., T ). A 3-order tensor Ti1,i2,i3 can be con-
sidered as a (potentially multi-dimensional) array with 3 indices {i1, i2, i3}.

3.1 Matrix Product State

Originating from quantum many-body physics, matrix product states (MPS) is a stan-
dard algorithm to factorize a matrix into a sequential product of multiple local ten-
sors (i.e., a multi-way array) [4, 22, 28]. MPS decomposition is generally divided into
two parts: coarse-grained process and low-rank truncation approximation.

𝒅𝟏
𝒅𝟐 𝒅𝟑 𝒅𝟒

𝜞𝟏 𝜞𝟐 𝜞𝟒 𝜞𝟓
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Fig. 1: MPS decomposition with five tensors. Dash line denotes bond of MPS tensors.

Coarse-grained process. Formally, given a matrix S ∈ RI×J , its MPS decomposition
into a product of n local tensors can be represented as:

MPS (S) =

n∏
k=1

T(k)[dk−1, jk, dk], dk = min

( k∏
m=1

jm,

n∏
m=k+1

jm

)
, (1)
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where the T(k)[dk−1, jk, dk] is a 3-order tensor with size dk−1 × jk × dk in which∏n
k=1 jk = I × J and d0 = dn = 1. We use the concept of bond to connect two

adjacent tensors [8]. The bond dimension dk is defined by:

dk = min

( k∏
m=1

im,

n∏
m=k+1

im

)
, (2)

we can see from Equation (2) that the dk is large in the middle and small on both
sides. We present a detailed algorithm for MPS decomposition in Algorithm 1. Figure 2
presents the illustration of MPS decomposition, and we use n = 5 in this paper.

Algorithm 1 MPS decomposition for a matrix.
Require: matrix S, the number of local tensors n
Ensure: : MPS tensor list {T(k)}nk=1

1: for k = 1 → n− 1 do
2: Perform coarse-grained process: S[I, J ] −→ S[dk−1 × ik,−1]
3: Perform SVD: UλV⊤ = SVD (S)
4: Reshape matrix to 3-order tensor: U[dk−1 × ik, dk] −→ U [dk−1, ik, dk]
5: Save the decomposed tensor: T (k) := U
6: Merge λ and V⊤: S := λV⊤

7: end for
8: Save the decomposed tensor: T (n) := S
9: Perform the normalization procedure.

10: return MPS tensor list {T(k)}nk=1

Low-rank truncation approximation. With the MPS decomposition describe in Equa-
tion (1), we can exactly decompose a matrix by MPS into the form of a series of prod-
ucts of local tensors and multiply these tensors together to completely reconstruct the
original matrix M. We can truncate the k-th bond dimension dk (see Equation (1))
of local tensors to d

′

k for low-rank approximation (dk > d
′

k). Different values for
{dk}nk=1 can be set to control the low-rank information. Let {λj}dk

j=1 are the singu-
lar values of M [j1, . . . , jk, jk+1, . . . , jn]. We define the truncation error induced by the
k-th bond dimension dk local truncation error ϵk, which can be efficiently computed
as ϵk =

∑dk

j=dk−d
′
k

λj . After defining the local truncation error in Definition, we can
derive the upper exact bound of the truncation error of the MPS decomposition by iter-
ation. Let ϵk denoted the local truncation error of k-th bond dimension. The upper exact
bound of the truncation error with MPS decomposition can be caclulated by:

||M−MPS(M)||F ≤

√√√√n−1∑
k=1

ϵ2k. (3)
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Suppose that we have truncated the dimensions of local tensors from {dk}nk=1 to {d′

k}nk=1,
the compression ratio can be computed by :

ρ =

∑n
k=1 d

′

k−1jkd
′

k∏n
k=1 jk

. (4)

The smaller the compression ratio, the fewer parameters are kept in MPS representation.

3.2 Knowledge Distillation

Knowledge distillation is a method of transferring knowledge from a collection of many
individually trained networks into a single, typically compact network, performing a
kind of model compression [16]. Specifically, dataset distillation is where we keep the
model fixed, but encapsulate the knowledge of the entire training dataset (which typi-
cally contains thousands to millions of images) in a small number of synthetic training
images [41].

Suppose we are given a large dataset consisting of |S| training images and its
category label S = {(xi, yi)}|S|

i=1, where x ∈ X ⊂ {0, . . . , C − 1}, X is a d-
dimensional input space and C is the number of class. We want to learn a deep neu-
ral network ϕ with parameter θ that correctly predicts the labels of previously un-
seen images, i.e., y = ϕθ(x). We can learn the parameters of this function by min-
imizing an empirical loss term on the training set, i.e., θS = argminθLS(θ), where
LS(θ) = 1

∥S∥
∑

(x,y)∈S l(ϕθ(x, y)), l(·, ·) is a task-specific loss and θS is minimizer
of LS . The goal of dataset distillation is to generate a small set of condensed synthetic
samples with their labels, B = (bi, yi)

B
i=1 where b ∈ Rd and y ∈ Y . And this moti-

vates us to distill task-specific knowledge from real datasets to supplement compressed
datasets based on task-agnostic compression methods.

4 Approach

MPS decomposition, a tensor representation commonly used in quantum many-body
physics, has been indicated for compression of image datasets [4]. However, this direct
truncation of tensor for compression results in significant information loss. Inspired by
the fact that a set of tensors orthogonal to each other in tensor decomposition is more
expressive than a single tensor [43], we propose a method to approximate a picture using
multiple MPS tensors, called MMPS. In particular, we propose two main improvements
for MPS-based dataset compression, which can efficiently compress the image dataset
and effectively complementary task-specific information.

4.1 Task-agnostic Dataset Compression

In this subsection, we aim to introduce our proposed MMPS approach. Suppose we
are given a large dataset consisting of |S| training samples S = {(Si)}|S|

i=1 where
Si ∈ S ⊂ Rd, S is a d-dimensional input space. The Si ∈ S as the original image



Image Dataset Compression Based on Multiple Matrix Product States 7

Fig. 2: Illustration of the proposed MMPS strategy. Si denotes the original image
dataset sample. MPS(Si) denotes the MPS decomposed tensor set. g(Si) denotes the
difference between Si and MPS(Si). S̃i denotes the trainable matrix for distillation. CE
loss and KD loss denote the cross-entropy loss function and the knowledge distillation
loss function, respectively.

dataset sample. We denote the MPS(Si) as the truncated tensor set with MPS decom-
position on Si, which was proposed to use MPS for image datasets compression [4].
Compressing image datasets directly using MPS decomposition is effective on some
simpler datasets (e.g. MNIST [23], COIL [27]). However, this approach brings a sig-
nificant degradation of model performance when dealing with some complex datasets
(e.g. CIFAR [21], ImageNet [31]). To address this problem, inspired by [43], we intend
to introduce multiple MPS tensors to represent an image.

Here we discuss arbitrary image Si with m-dimensional in the image dataset, and
this can be eminently extended to the entire image dataset as well. First, we can use
MPS decomposition to represent Si as a series of products of local tensors of the
form {T1, T2, T3, T4, T5}(Si), where {Ti}5i=1 are third-order tensors. After obtaining
this tensor group {Ti}5i=1, we can truncate the k-th bond dimension between the ten-
sors from {dk}5k=1 to {d′k}5k=1. Then we can use tensordot to reconstruct these ten-
sors into a vector S′

i with the m-dimensions, which denote as MPS(Si). We denote
g(Si) = Si − MPS(Si) as the vector of the difference between the original image
Si and the reconstructed image S′

i, which contains the information that is lost due to
truncation approximation. Subsequently, we decompose g(Si) by MPS and perform the
same truncation operation as the previous. Finally, we will get two sets of tensors (i.e.,
MPS(g(Si)) and MPS(Si)) for the image Si ∈ Rm. The image obtained by MMPS
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representation is as follows:

MMPS(Si) = MPS(Si) +MPS(g(Si)). (5)

Since the number of parameters contained in these tensor is smaller than the number
of original image pixels, we can obtain the compressed image dataset. The compression
ratio η of the obtained image dataset can be calculated as following:

η =
2
∑5

k=1 d
′
k−1jkd

′
k∏5

k=1 jk
, (6)

From Equation (6) we can see that if d′k is larger, then more parameters of ResMPS will
be used and the compression rate ρ will become larger. Conversely, the smaller dk is,
the smaller the compression rate will be. We will store the parameters of these tensors
in hardware instead of the pixels of the original image. Note that when training the
neural network using the MPS dataset, we need to reconstruct the two MPS tensor sets
as vectors separately. Then we do an element-wise add for these two vectors, which is
the image sample used to train the network. Algorithm 2 presents a complete procedure
for our approach.

Algorithm 2 Task-agnostic Dataset Compression Procedure.
Require: Image training dataset with N samples (S).
Ensure: : Compressed training dataset.
1: for i = 1 → N do
2: Perform MPS decomposition: MPS(Si) =

∏5
k=1 T(k)[dk−1, jk, dk]

3: Compress MPS tensors by trucating {dk}5k=1 −→ {d
′
k}5k=1

4: Computing residual information: Res(Si) = Si −MPS(Si)

5: Perform MPS decomposition: MPS(Res(Si)) =
∏5

k=1 R(k)[d
(r)
k−1, jk,d

(r)
k ]

6: Compress MPS tensors by trucating {d(r)k }5k=1 −→ {d
′(r)
k }5k=1

7: end for
8: return Compressed dataset{MPS(Si);MPS(Res(Si)}Ni=1

We show the empirically results (Table 1) that our proposed approach can improve
the model performance significantly than MPS [4, 22] on the same compression rate.

4.2 Task-specific Knowledge Distillation

Image datasets are often used to accomplish different computational tasks. In such
cases, task-specific knowledge [26] is the aspects of the images that are relevant to
the specific task. Therefore, we adopt knowledge distillation to complement ResMPS
with task-specific information according to different task types. Specifically, we initial-
ize trainable matrix S̃i as implicit bias between ResMPS(Si) and real dataset sample
Si. Then we introduce the knowledge distillation loss function to learn S̃i.
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Knowledge distillation is used to distill the knowledge from a large training dataset
into a small one [41]. They synthesize data matrix as training data to approximate mod-
els trained on the original data. Inspired by data distillation, we initialize trainable ma-
trix S̃i with zeros as implicit bias so that adding S̃i would not hurt the model perfor-
mance at the first step of training. Similarly, in the context of information supplementa-
tion, the synthetic dataset is calculated by Si

∗ = ResMPS(Si)+ S̃i. Then the synthetic
dataset Si

∗ is trained to mimic the behaviors of the real dataset Si with the model fixed.
Formally, This training process can be modeled as minimizing the following objective
function:

LKD =
∑
Si∈S

L(f(Si
∗), f(Si)), (7)

where L(·) is a loss function that evaluates the difference between outputs of real and
synthetic datasets. Without loss of generality, we use the Mean Squared Error (MSE)
between the logit vectors as the L(·) inspired by the existing experience [19]. Finally,
our approach provides a more principle way of information supplementation. By updat-
ing implicit bias S̃i, the synthetic dataset sample Si

∗ can better adapt to a specific task
or network architecture and thus achieve better performance.

To this end, we use S̃i to represent task-specific knowledge to supplement the task-
agnostic compression method and boost the downstream performance. And the number
of parameters in S̃i can be further reduced by low-rank approximation to alleviate huge
computation costs when transferring to other downstream tasks.

4.3 The Overall Procedure

In general, our approach can compress any given image dataset and make the model
trained on the compressed dataset match the test accuracy of the model trained on the
original dataset. Here, we choose CIFAR 4 and FashionMNIST 5 as representative im-
age datasets and use our algorithm for these datasets.

The procedure can be simply summarized as follows. First, we perform the task-
independent dataset compression process, which can get multiple MPS local tensors,
and reconstruct each of the tensor sets as a vector with the same dimensionality as
the original image sample. Then, we add the two vectors to obtain the image samples
based on the ResMPS approximation. Next, we perform the task-specific knowledge
distillation process. The distillation information matrix S̃i specific to different tasks
can be obtained. Finally, the matrix S̃i obtained by distillation is summed with the
image samples of ResMPS as the sample input to the model. Furthermore, we demon-
strate in Section 5.1 through sufficient experiments that our proposed ResMPS approach
outperforms existing tensor decomposition-based compression methods [4] for image
datasets.

4.4 Discussion

The existing image dataset compression is divided into three approaches, i.e., low-rank
approximation of images [4], data selection [13], and dataset distillation [41] (also

4 Available at https://www.cs.toronto.edu/~kriz/cifar.html
5 Available at https://www.worldlink.com.cn/en/osdir/fashion-mnist.html
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know as dataset condensation [44]). In particular, the low-rank approximation of im-
ages is task-agnostic compression, while core-set selection, as well as dataset distilla-
tion, are task-specific dataset compressions. However, the data selection typically relies
on heuristics (e.g. picking cluster centers) that does not guarantee any optimal solution
for the downstream task. The low-rank approximation based method performs well on
small datasets but causes the model to perform much worse on large datasets. Our pro-
posed MMPS can provide a more efficient representation of the low-rank information of
the data under the same compression rate condition by introducing a set of low-rank ap-
proximation tensors. We also introduce a task-specific knowledge distillation procedure
to complement the application weakness of compressed datasets under different tasks,
using the idea of knowledge distillation to introduce task-specific information into the
dataset compression. Conclusively, our proposed MMPS approach achieves a more effi-
cient representation based on a low-rank approximation, while introducing task-specific
information to improve the adaptability of the compressed dataset to different tasks.

In practice, we do not need to strictly follow the original image size. Instead, it is
easy to pad additional zero entries to enlarge matrix rows or columns, so that we can
obtain different MPS decomposition results. Another note is that the MPS-based ap-
proach can work with other compression methods: it can compress datasets condensed
by previous methods even more.

5 Experiments

In this section, we first evaluate data selection [1], SVD-based method, MPS-based
method [4] and our MMPS approach on CIFAR10, CIFAR100 and FashionMNIST
datasets. Next, we investigate the proposed approach by performing ablation analy-
sis and controlled experiments. Finally, we validated the effectiveness of our MMPS
approach over the MPS approach on ResNet18, VGG, and MobileNETV2.

Datasets. We first evaluate classification performance with compressed images on three
standard benchmark datasets: CIFAR10, CIFAR100 and FashionMNIST. In particular,
the FashionMNIST dataset has 60,000 training and 10,000 testing images of 10 classes,
while CIFAR10 and CIFAR100 both have 50,000 training and 10,000 testing images
from 10 and 100 object categories, respectively. Then we use AutoMobile for ablation
experiments since it consists of images from 1985 ward’s automotive yearbook with
two kinds of labels w.r.t. two multi-label classification tasks (i.e., categories and colors
classification). In all experiments, we use the standard train/test splits of the datasets
and finally report the accuracy of the testing dataset.

Baselines. Our baseline methods include:
• MPS [4]: It first transforms images into MPS representation and truncates the

dimensions only once for compression.
• Data Selection: It reduces the large dataset into a small equally informative portion

of data, including Random and K-Center [42]. In Random, the training samples are
randomly selected as the core set. K-Center picks multiple center points such that the
largest distance between a data point and its nearest center is minimized.
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Table 1: The performance comparison to data selection method and tensor-based meth-
ods. This table shows the testing accuracies (%) of different methods on three compres-
sion ratios,i.e. 30%, 50% and 70%. “↑” indicates average improvement for the dataset
comparing MMPS with the best baseline method. ResNet18 is used for training and
testing. Bold fonts indicate the best results in each block.

Dataset
CIFAR10 (↑ 0.91) CIFAR100 (↑ 2.26) FashionMNIST (↑ 0.45)

30% 50% 70% 30% 50% 70% 30% 50% 70%
Random 91.67 91.19 92.27 60.15 65.31 68.76 91.42 91.83 92.55
K-Center 77.42 78.56 79.93 47.63 52.31 54.27 83.36 85.85 86.02
SVD 87.92 89.88 90.47 57.30 59.65 62.14 91.26 91.75 91.98
CP 83.94 86.65 87.21 51.77 53.54 54.24 89.01 89.93 90.11
MPS 91.49 91.27 92.67 60.89 66.46 68.96 91.45 92.12 92.78
MMPS 92.16 92.67 93.32 64.03 68.77 70.29 91.46 92.89 93.35

• Tensor Based Methods: It compresses the dataset by applying low-rank approxi-
mation to each image, including SVD and CP decomposition.

Implementations. For main results in Table 1, we reproduce baseline methods on the
datasets. As for the implementation of the compression rate, the core-set construction-
based methods (i.e., Random and K-Center) use a portion of the images, and the matrix
decomposition-based methods (i.e., SVD, CP, and MPS) achieve by a low-rank approx-
imation. To ensure fairness of the comparison, we specify three levels of compression
ratio, i.e., 30%, 50%, and 70%. We conducted experiments on A100 with 40G memory.
For all models, we chose the most appropriate learning rate among {0.1, 0.01, 0.001}
and selected the most appropriate checkpoint for testing based on the accuracy of the
validation set.

Note that the task-specific knowledge distillation module is represented as a linear
layer closest to the data so that it can be easily removed without affecting other com-
ponents in the network architecture. Thus, we may directly integrate the task-specific
knowledge into the MMPS as a whole for storage and migration. In other words, the fi-
nal network architecture is unaffected, and we only get a compressed dataset. Compared
with other methods, our approach significantly improves the accuracy of downstream
tasks due to the task-specific information.

5.1 Experimental Results

Comparison to image compression. We first compare MMPS with the closest base-
line, i.e., MPS, in the three image classification benchmarks. As shown in Table 1, our
approach outperforms MPS in all tasks. We note that MPS, benefiting from its effective
retention of important information in images, achieves the best performance among all
the baseline methods. Then MMPS can further boost the performance of MPS on down-
stream tasks, which verifies the superiority of our proposal. By zooming in on a specific
dataset, the performance of all methods on CIFAR100 is relatively lower than that on
other datasets. This can be attributed to the fact that CIFAR100 is more challenging, as
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recognizing 10 times more categories with 1
10 fewer images per class. But MMPS, on

the contrary, obtains the most obvious improvement, especially with the lowest com-
pression ratio (i.e., 64.03% vs. 60.89% for MMPS and MPS under a compression ratio
of 30%). The MMPS dataset seems to work better with few shot tasks, which enhances
the data efficiency of the training dataset.

Comparison to data selection methods. To demonstrate the strength of image compres-
sion with MMPS over the data selection, we perform experiments on CIFAR10 and use
Random and K-Center for comparison. Table 1 summarizes the results. Overall, our
MMPS approach achieves competitive results over data selection methods, especially
for the K-Center method. This is due to the fact that MMPS can effectively repre-
sent low-rank information in image datasets. To compare the quality of truncated MPS
representation for CIFAR10, we visualize images from five categories with different
dimensions d

′

k in Figure 3. We observe that it is impossible to see the difference before
and after compression if ρ is larger than 36%. Compared to losing some images by the
data selection, reserving low-rank information by our MMPS approach can minimize
the damage to the dataset.

Comparison to tensor based methods. As discussed in Section 4.4, we use other tensor-
based methods (i.e., SVD [15], CP [18]) for comparison to demonstrate the effective-
ness of dataset compression. From the Tabel 1, we can observe that SVD and CP decom-
position failed to preserve useful information for model performance especially when
the compression ratio is less than 30% (at a maximum of 8.22 compared with MMPS
and CP on CIFAR10). In particular, we note that MPS has a significant advantage over
other low-rank approximation methods, and this verifies that MPS works better than
others for the problem of reserving important information of images. And the result
that MMPS reaches higher scores than MPS is a further indication of the superiority of
our method.

Comparison to different models. In general, our approach can be applied to any kind
of network architecture. We have evaluated its performance with ResNet18. In this sec-
tion, we continue to test our approach using another two standard deep network ar-
chitectures: VGG-16 [36] and MobileNetV2 [34]. These famous pre-trained models
showed state-of-the-art accuracy for several challenging recognition tasks on ImageNet
and competitions. Table 2 presents the comparison of the testing accuracy with three
network architectures. We find that there exists an obvious variance of performance
due to difference of architecture design and number of parameters in these models and
ResNet18 achieves the best in CIFAR10 and FashionMNIST. Despite the differences,
MMPS can cooperate with all kinds of network architectures and outperforms MPS.

Ablation results. Our approach has incorporated two major contributions: task-agnostic
dataset compression and task-specific knowledge distillation. To further demonstrate
the effects, we conduct ablation experiments on a multi-label classification task. Here
we consider two variants for comparison based on a low-rank approximation base-
line [4]: (1) “w/o TS,TA” uses MPS representation . This comparison is to examine
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Table 2: Evaluations on different network architectures. This table shows the testing
accuracy (%) of different methods at a compression ratio of 70%.

Datasets
ResNet18 VGG MobileNetV2

SVD MPS MMPS SVD MPS MMPS SVD MPS MMPS

CIFAR10 86.73 89.49 92.04 85.99 88.07 92.21 85.16 85.91 89.56
CIFAR100 63.39 64.06 70.29 59.67 60.80 67.71 59.14 61.05 66.39
FashionMNIST 91.57 92.55 93.35 91.28 92.37 93.21 91.17 92.73 93.93

Datasets
Automobile

Avg.
Cat. Col.

Origin 82.1 92.6 87.4

w/o TS,TA 80.5 94.0 86.1
w/o TS 83.7 94.2 87.6
w/o TA 83.8 94.6 87.9
MMPS 85.8 95.8 90.8

Table 3: Ablation results of ResMPS and
task-specific knowledge distillation.
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Fig. 3: Illustration of low-rank approx-
imation for MPS to CIFAR10 images.

whether introducing residual information on image representation would lead to a per-
formance improvement. (2) “w/o TA” remove task-specific knowledge distillation com-
ponents. The goal of this variant is to demonstrate the improvements when considering
the difference in task types. Table 3 shows the results when we ablate these. Comparing
with “w/o TS,TA” and “w/o TS” in the table, we find that MMPS plays a key role in
maintaining important information of images (losing too much information at once for
MPS seriously damages the model performance, i.e., 80.5 vs. 82.1 for MPS and Original
images in “Cat.”). Considering the characteristics of task types, we notice a significant
variance in the performance of different tasks due to the different difficulties. We notice
that MMPS can boost the performance in both task types based on MMPS (90.8 vs. 87.6
for average scores), which demonstrates the requirement for task-specific information.

5.2 Evaluation on More Tasks

As introduced in Section 4, our approach contains task-agnostic dataset compression
and task-specific information supplementation. Due to task-agnostic compression, MPS
representation can be applied in other computer vision tasks (i.e., Pedestrian Detection,
Visual Question Answering and Large-scale Image Classification).

Pedestrian detection. First, we apply our approach to a pedestrian detection scenario
where the goal is to accurately locate pedestrians in an image. We build our model
on Mask R-CNN [14] method and fine-tune a pre-trained Mask R-CNN model in the
Penn-Fudan Database [40] for Pedestrian Detection and Segmentation task. The dataset
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contains 170 images with 345 instances of pedestrians and we decompose the original
images with MMPS and use a trainable matrix to supplement information. The desired
outcome is to obtain a high mean of average precision over all the classes. Finally, we
report a COCO-style mAP score after 10 epochs of training, and the result is shown
in Table 4. The result indicates that the MPS dataset can achieve competitive model
performance while reducing 25% parameters of the dataset.

Visual question answering. The visual question answering task typically uses paired
images and text to bridge vision and language respectively. Current approaches to this
heavily rely on image feature extraction processes. Here we explore the use of our ap-
proach on VQAv2. The VQAv2 task asks for answers given pairs of an image and a
question in natural language. Test-dev score is calculated by comparing the inferred an-
swer to the 10 ground-truth answers. Our goal is to verify that short-range correlation in
images can be used to model the cross-modal interaction between image-text pairs effi-
ciently. To this end, we replace the image with an MPS representation in the image-text
pairs. Following [20], we use a pre-trained ViLT model and fine-tune the model on the
MPS dataset. Finally, from Tabel 4 we observe that our approach achieves comparable
testing performance, and meanwhile significantly decreases the size of the dataset.

Large-scale image classification Pre-trained deep learning models (ResNet, VGG)
learned on large-scale datasets have shown their effectiveness over conventional meth-
ods. Instead of training a model from scratch, one can fine-tune a pre-trained model
to solve some specific task. To demonstrate the effectiveness of low-rank information
on transfer learning, we apply our approach to the ImageNet dataset. To this end, we
observe that the total dataset size is significantly reduced due to the compression of
each image in the dataset. Furthermore, we evaluate the performance of the pre-training
ResNet18 model on both the original ImageNet and the MPS compressed dataset. We
observe that the MMPS dataset achieves comparable accuracy to the original ImageNet
dataset. This result shows that the MMPS dataset with low-rank information can support
large-scale pre-training.

Table 4: The performance comparison with the MPS method, both our proposed MMPS
approach and the MPS method have a compression ratio of 75%.

Experiments
Pedestrian Detection VQAv2 ImageNet

(mAP) (test-dev score) (acc)
Origin 79.90 70.33 64.21

SVD 66.59 55.64 46.58
MPS 67.32 57.27 47.13
MMPS 78.45 68.78 63.10
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6 Conclusion

In this paper, we propose a novel dataset compression approach based on multiple MPS
decomposition and knowledge distillation. With MPS decomposition, it is able to effi-
ciently reorganize and decouple low-rank information in local tensors. Since the low-
rank information in images is important for training, we design a novel dataset compres-
sion approach that achieves effective compression of the dataset by performing multiple
MPS decomposition for images in the task-agnostic scenario, while using distillation to
complement task-relevant information. Extensive experiments have demonstrated the
effectiveness of our MMPS approach, especially in that the compressed dataset using
the MMPS can be directly applied to a variety of different neural network tasks. To the
best of our knowledge, this is the first application of multiple MPS for dataset com-
pression. In future work, we will consider exploring more decomposition structures for
MPS.

Acknowledgments

This work was partially supported by National Natural Science Foundation of China
under Grants No. 62206299 and 62222215, Beijing Outstanding Young Scientist Pro-
gram under Grant No. BJJWZYJH012019100020098 and CCF-Zhipu AI Large Model
Fund. Xin Zhao and Zhi-Yuan Xie are the corresponding authors.

References

1. AGARWAL, P. K., HAR-PELED, S., AND VARADARAJAN, K. R. Approximating extent
measures of points. J. ACM 51, 4 (2004), 606–635.

2. ALJUNDI, R., LIN, M., GOUJAUD, B., AND BENGIO, Y. Gradient based sample selection
for online continual learning. In Advances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada (2019), H. M. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., pp. 11816–11825.

3. BA, J., AND CARUANA, R. Do deep nets really need to be deep? In Advances in Neural
Information Processing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec, Canada (2014), Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds., pp. 2654–2662.

4. BENGUA, J. A., PHIEN, H. N., AND TUAN, H. D. Optimal feature extraction and clas-
sification of tensors via matrix product state decomposition. In 2015 IEEE International
Congress on Big Data (2015), IEEE, pp. 669–672.
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