
Nature Machine Intelligence | Volume 5 | July 2023 | 765–779 765

nature machine intelligence

https://doi.org/10.1038/s42256-023-00685-7Article

Encoding physics to learn reaction–diffusion 
processes

Chengping Rao1,2,7, Pu Ren    3,7, Qi Wang    1, Oral Buyukozturk4, Hao Sun    1,5  & 
Yang Liu    6 

Modelling complex spatiotemporal dynamical systems, such as reaction–
diffusion processes, which can be found in many fundamental dynamical 
effects in various disciplines, has largely relied on finding the underlying 
partial differential equations (PDEs). However, predicting the evolution 
of these systems remains a challenging task for many cases owing to 
insufficient prior knowledge and a lack of explicit PDE formulation for 
describing the nonlinear process of the system variables. With recent 
data-driven approaches, it is possible to learn from measurement data 
while adding prior physics knowledge. However, existing physics-informed 
machine learning paradigms impose physics laws through soft penalty 
constraints, and the solution quality largely depends on a trial-and-error 
proper setting of hyperparameters. Here we propose a deep learning 
framework that forcibly encodes a given physics structure in a recurrent 
convolutional neural network to facilitate learning of the spatiotemporal 
dynamics in sparse data regimes. We show with extensive numerical 
experiments how the proposed approach can be applied to a variety of 
problems regarding reaction–diffusion processes and other PDE systems, 
including forward and inverse analysis, data-driven modelling and discovery 
of PDEs. We find that our physics-encoding machine learning approach 
shows high accuracy, robustness, interpretability and generalizability.

Spatiotemporal dynamics is ubiquitous in nature. For example, reac-
tion–diffusion processes exhibit interesting phenomena and are com-
monly seen in many disciplines such as chemistry, biology, geology, 
physics and ecology. The autonomous formation mechanism of stripe 
(Turing) patterns in the skin of tropical fishes can be revealed by dif-
fusion and reaction. Like many other systems, understanding their 
complex spatiotemporal dynamics, governed by the inherent partial 
differential equations (PDEs), is a central task. Nevertheless, the princi-
pled laws in the context of closed-form governing equations for many 
underexplored systems remain uncertain or partially unknown (for 
example, the reaction mechanism is typically nonlinear and intractable 

to model). Even for some dynamical systems, for example, other than 
reaction–diffusion processes, whose PDEs are already known (such as 
Naiver–Stokes equations), the computational cost of accurate numeri-
cal simulation is also prohibitive for scientific applications involving 
large-scale spatiotemporal domains. Yet, machine learning has opened 
up new avenues for scientific modelling or discovery of the aforemen-
tioned systems in a data-driven manner.

In fact, the history of knowledge discovery from data (or obser-
vation) can be dated back to the time of Kepler, who discovered the 
well-known law of planetary motion from massive documented data. 
Recently, the revived machine learning methods have pushed the 

Received: 6 September 2022

Accepted: 5 June 2023

Published online: 17 July 2023

 Check for updates

1Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China. 2Department of Mechanical and Industrial Engineering, Northeastern 
University, Boston, MA, USA. 3Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA. 4Department of Civil and 
Environmental Engineering, MIT, Cambridge, MA, USA. 5Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China. 6School of 
Engineering Science, University of Chinese Academy of Sciences, Beijing, China. 7These authors contributed equally: Chengping Rao, Pu Ren.  

 e-mail: haosun@ruc.edu.cn; liuyang22@ucas.ac.cn

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-023-00685-7
http://orcid.org/0000-0002-6354-385X
http://orcid.org/0009-0009-4712-3474
http://orcid.org/0000-0002-5145-3259
http://orcid.org/0000-0003-0127-4030
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-023-00685-7&domain=pdf
mailto:haosun@ruc.edu.cn
mailto:liuyang22@ucas.ac.cn


Nature Machine Intelligence | Volume 5 | July 2023 | 765–779 766

Article https://doi.org/10.1038/s42256-023-00685-7

unique network has been demonstrated (with mathematical proof and 
numerical experiments) to promote the expressiveness of our model 
on nonlinear spatiotemporal dynamics. (3) Owing to the discretization 
with time, our network is able to incorporate well-known numeri-
cal time integration methods (for example, forward Euler scheme, 
Runge–Kutta scheme) for encoding incomplete PDEs into the network 
architecture. Throughout this article, we demonstrate the capabilities 
of the proposed network architecture by applying it to various tasks 
in scientific modelling of spatiotemporal dynamics such as reaction– 
diffusion processes.

Results
Physics-encoded spatiotemporal learning
The motivation of the physics-encoded spatiotemporal learning para-
digm is to establish a generalizable and robust model for predicting the 
physical system state based on very limited low-resolution and noisy 
measurement data. The established model is expected to deliver good 
extrapolation capability over the temporal horizon and generaliza-
tion to different ICs. These demands essentially require the proposed 
model to learn the underlying spatiotemporal dynamics from data. To 
this end, we propose a novel network, namely, the physics-encoded 
recurrent convolutional neural network (PeRCNN), as shown in Fig. 1. 
The network is designed to preserve the given physics structure, for 
example, structure or specific terms of the governing PDEs, ICs and 
BCs. The prior physics knowledge is forcibly ‘encoded’, which makes 
the network possess interpretability. More details are given in Methods.

Reaction–diffusion systems
Reaction–diffusion (RD) equations have found wide applications in 
the analysis of pattern formation50, such as population dynamics51, 
chemical reactions52, cell proliferations53 and so on. In this article, we 
specifically consider three different RD systems of the lambda–omega 
(λ–Ω), FitzHugh–Nagumo (FN) and Gray–Scott (GS) types to verify the 
proposed approach. In general, the RD system can be described by the 
following governing equation

ut = DΔu + R(u) (1)

where u ∈ ℝn is the vector of concentration variables, the subscript t 
denotes time derivative, n represents the system dimension, D ∈ ℝn×n 
is the diagonal diffusion coefficient matrix, Δ is the Laplacian operator 
and R(u) is the reaction vector that represents the interactions among 
components of u. Without loss of generality, let us assume the RD sys-
tem features two components, that is, u = [u, v]T. Specifically, the λ–Ω 
RD system is governed by

ut = μuΔu + (1 − u2 − v2)u + β (u2 + v2) v

vt = μvΔv − β (u2 + v2)u + (1 − u2 − v2) v
(2)

while the FN RD system can be described by

ut = μuΔu + u − u3 − v + α

vt = μvΔv + (u − v)β
(3)

where α and β are the coefficients prescribing the reaction process and 
take different values. Similarly, the GS RD system can be described by

ut = μuΔu − uv2 + F(1 − u)

vt = μvΔv + uv2 − (F + κ)v
(4)

where κ and F denote the kill and feed rate, respectively. For the FN 
and GS RD systems, we consider both two-dimensional (2D) and 

renaissance of the data-driven scientific computing, such as modelling 
of complex systems1–9, super-resolution of scientific data10–12, material 
property prediction13, system identification and equation discovery14–17, 
among others. These successful applications are largely attributed to 
the extraordinary expressiveness of deep learning models, which ena-
bles the automatic learning of the nonlinear mapping among variables 
from rich labelled data18. In particular, the latest research has shown 
that deep learning19–22 could accelerate the discovery of underlying gov-
erning PDEs given sparse or noisy data. However, the pure data-driven 
methods rooted on deep learning typically learn representations from 
and highly rely on big data (for example, from experiment or simula-
tion), which are often insufficient in most scientific problems. The 
resulting model often fails to satisfy physical constraints (for example, 
conservation laws, invariants), whose generalizability cannot be guar-
anteed either23. To tackle this issue, physics-informed neural networks 
(PINNs)24–26 have taken a remarkable leap in scientific machine learning 
and become a major paradigm, which leverages our prior knowledge of 
underlying physics to enable learning in small data regimes.

PINNs have shown effectiveness in a wide range of scientific 
applications, including solving general PDEs24,27,28, reduced-order 
modelling29,30, uncertainty quantification31,32, inverse problems24,33, 
data-driven knowledge discovery21 and others. In particular, the para-
digm has been demonstrated to be effective in modelling a variety 
of physical systems, such as fluid dynamics25,34, subsurface trans-
port35,36 and engineering mechanics33,37–39. However, the dominant 
physics-informed learning model, the PINN, generally represents a 
continuous learning paradigm as it employs fully connected neural 
networks (FCNNs) for the continuous approximation of the solution 
to the physical system. The resultant continuous representation of 
the system’s prediction brings several limitations, including poor 
computational efficiency due to the nature of the FCNN, inaccurate 
physical constraints due to the soft penalty in the loss function and 
a lack of capability to hard-encode prior physics into the learning 
model. Fortunately, the latest studies in discrete learning models, 
such as convolutional neural networks32,40–42, graph neural networks43 
and transformers44, show promise in overcoming some of the above 
limitations. Compared with the continuous learning model, the dis-
crete learning approaches have a distinct advantage of hard encoding 
the initial conditions (ICs) and boundary conditions (BCs), as well as 
the incomplete PDE structure, into the learning model. This practice 
could avoid the ill-posedness of the optimization even without any 
labelled data as shown in very recent studies41,45,46. Therefore, we are 
motivated to establish an effective, interpretable and generalizable 
discrete learning paradigm that can be leveraged for predicting the 
nonlinear physical systems, which remains a substantial challenge in 
scientific machine learning. Recent advances have shown that operator 
learning can naturally achieve this goal, for example, DeepONet47 and 
Fourier Neural Operator48. However, a rich set of labelled data should 
be supplied to train reliable operators for these methods. Although 
adding prior physics to constrain DeepONet helps alleviate the need of 
large data49, the explicit expression of PDE(s) must be given, which falls 
short in dealing with systems whose governing equations are partially 
or completely unknown.

To this end, we propose the physics-encoded model that encodes 
the prior physics knowledge in the network architecture, in contrast to 
‘teaching’ models the physics through a penalized loss function com-
monly seen in physics-informed learning. In particular, our model has 
four major characteristics. (1) Compared with the dominant method 
of PINN that utilizes an FCNN as a continuous approximator to the 
solution, the physics-encoded model is discrete (that is, the solution 
is spatially mesh based and defined on discrete time steps) and hard 
encodes the given physics structure into the network architecture. 
(2) Our model employs a unique convolutional network (that is, a 
Π-block, discussed in Methods) to capture the spatial patterns of the 
system while the time marching is performed by the recurrent unit. This 
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three-dimensional (3D) cases in this article. To generate the numeri-
cal solution as the ground-truth reference, we discretize the regular 
physical domain with Cartesian grid and utilize a high-order finite 
difference (FD) method to simulate the evolution of the RD system. 
The computational and discretization parameters for each case are 
provided in Extended Data Table 1.

Forward analysis of PDE systems
Solving general PDEs is undoubtedly the cornerstone of scientific 
computing. We herein demonstrate the capability of the PeRCNN for 
forward analysis of PDE systems (that is, solving PDEs), in particular, 
the aforementioned RD systems. It is assumed that the governing PDEs, 
together with the necessary ICs and BCs, of the physical system are 
completely known. Therefore, the prescribed initial state is fed to the 
network for the recurrent computation without resorting to the ini-
tial state generator (ISG). Once the forward recurrent computation is 
finished, the snapshot (or prediction) at each time step is collected. 
The FD is then applied on the discrete snapshots for computing the 
partial derivatives involved in the governing PDE. The mean squared 
error of the equation residual is used as the optimization objective (or 
loss function) for obtaining a set of model’s parameters. Multiple RD 
systems, including the 2D λ–Ω, 2D/3D FN and 2D GS RD equations, are 
considered herein as the numerical examples. The ground-truth refer-
ence solution is generated by the high-order FD method. The govern-
ing PDEs, computational domain and discretization settings for each 
system are provided in Extended Data Table 1. Detailed discussions on 
the network settings are given in Supplementary Note C. Details on how 
to properly select the spatial and temporal grid sizes, to ensure the 
model’s numerical stability and achieve desired solution resolution, 
are given in Supplementary Note H.

Figure 2 shows the snapshots predicted by the PeRCNN for each 
system at a given time. To compare the performance of the proposed 
approach with existing methods, we also provide the result of two 
baseline models, namely, the convolutional long-short term memory 
(ConvLSTM)54 and the PINN24. It can be seen that the solution obtained 
by the PeRCNN agrees well with the reference for all four cases. In con-
trast, the ConvLSTM and the PINN perform differently on 2D and 3D 

cases; in particular, they get a fairly good prediction for 2D cases while 
considerably deviate from the reference for 3D cases. To examine the 
accuracy of each method as a PDE solver, we compute the accumula-
tive root mean square error (RMSE) of the prediction. It shows that the 
PeRCNN achieves a significantly lower error throughout the considered 
time-marching interval. Although existing techniques (for example, 
finite difference, volume and element methods) for solving PDEs are 
already mature nowadays, the result in this part demonstrates the prom-
ise of the PeRCNN on modelling and simulation of complex systems.

Inverse analysis of PDE systems
Calibrating the unknown parameters of a given model against experi-
mental data is a commonly seen problem in scientific discovery, for 
example, one might be interested in uncovering the scalar coefficients 
in the governing PDEs given very limited observed snapshots of the 
system. As the proposed PeRCNN has the capability of encoding the 
PDE structure (for example, known terms) into the network architec-
ture for predicting spatiotemporal systems, we can apply it to identify 
the unknown coefficients by treating them as trainable variables. To 
verify the effectiveness of the PeRCNN in inverse analysis of PDEs, we 
consider the 2D GS RD system governed by the following two coupled 
equations: ut = μuΔu − c1uv2 + cF(1 − u) and vt = μvΔv + c2uv2 − (cF + cκ)v, 
where μu, μv, c1, c2, cF and cκ are unknown coefficients. As the explicit 
form of the governing PDEs is known, we construct the physics-based 
FD convolutional connections (that is, diffusion and other polynomial 
terms) according to the right-hand side of the governing equation. Note 
that no element-wise product layer is involved in the network. Mean-
while, each unknown coefficient is treated as an individual trainable 
variable in the computational graph for the forwards and backwards 
computations.

To examine the capability of the model in scenarios of various 
data availability, we consider two different sets of measurement data. 
In the first scenario (S1), the available measurement includes multiple 
noisy and low-resolution snapshots of the system, which means the 
available data are scarce spatially while somewhat abundant in the 
temporal dimension. In the second scenario (S2), we assume only 
the first and last snapshots of the system with decent resolution are 
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available. These two scenarios reflect the trade-off between the spatial 
and temporal resolution of the existing measurement. These synthetic 
measurements accompanied with 10% Gaussian noise are shown in  
Fig. 3a,b. The misfit error between the prediction and the measurement 
data is computed as the loss function for optimizing the unknowns. To 
prevent the overfitting to noise, early stopping is employed by split-
ting the dataset into training and validation sets. The details of com-
putational parameters for dataset generation, network architecture, 
initialization of coefficients and optimization settings are presented 
in Supplementary Note D.

To test the effects of noise, the experiment is also performed on 
clean data. Each case encompasses ten runs with various random seed 
for coefficient initialization. The identified coefficients are presented 
in Fig. 3c and Extended Data Table 2. It can be seen that, in all cases, the 
PeRCNN is able to uncover the unknown coefficients with satisfactory 
accuracy. Compared with the identified coefficients in the noise-free 
case, the result deteriorates only slightly with 10% noise. In the absence 
of the noise, the identified coefficients feature high accuracy, with  
the mean absolute relative error for all the coefficients being 0.6%. For 
the case with 10% noise, the mean absolute relative error is 1.61% in spite 
of 10% Gaussian noise in the measurement. The PeRCNN also shows 
superiority to the PINN (see the result reported in Supplementary 
Table 4). Moreover, the potential of employing the PeRCNN to identify 
space-varying coefficients is further demonstrated in Supplementary 
Note D.5). The numerical results in this section illustrates the good 
capability of our model on the inverse analysis of PDE systems.

Data-driven modelling of spatiotemporal dynamics
PDEs play an an essential role in modelling physical systems. However, 
there still exist a considerable portion of systems, such as those in 

epidemiology, climate science and biology, whose underlying gov-
erning PDEs are either completely unknown or only partially known. 
Owing to the ever-growing data availability as well as recent advances in 
scientific machine learning, data-driven modelling nowadays becomes 
an effective way to establish predictive models for physical systems. 
As the proposed network is characterized with excellent expressive-
ness for representing nonlinear dynamics (see ‘Universal polynomial 
approximation property for the Π-block’ in Methods) and the capabil-
ity of encoding an incomplete governing PDE, it has great potential to 
serve as a generalizable and robust data-driven model for predicting 
high-resolution nonlinear spatiotemporal dynamics. In this part, we 
primarily focus on data-driven modelling of spatiotemporal dynamics 
by the proposed physics-encoded learning paradigm given limited, 
noisy measurement data.

Let us assume some low-resolution and potentially noisy snap-
shots of the system are measured, that is, ũ ∈ ℝn′t×n×H

′×W′
 where n′t  is 

the number of snapshots, n is the number of state variable components 
and H′ ×W′ is the resolution of each snapshot. We seek to establish a 
predictive model that gives the most likely high-resolution solution 
Û ∈ ℝnt×n×H×W  where n′t < nt, H′ < H  and W′ < W , and possesses sat-
isfactory extrapolation ability over the temporal horizon (for example, 
for t > tnt). As we have seen, one salient characteristic of the PeRCNN 
is the capability of encoding prior knowledge (for example, the general 
PDE structure and/or the ICs/BCs) into the learning model. In particular, 
we assume the basic PDE form as shown in equation (4) is given, where 
the diffusion term is known a priori whose coefficients are however 
unknown. To compare the PeRCNN with existing methods, we also 
perform experiments on several baseline models, namely, the recurrent 
ResNet55,56, ConvLSTM54, PDE-Net5 and the deep hidden physics model57. 
Once the training is done, we infer the high-resolution prediction from 
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the predictive data-driven models. The accumulative RMSE and the 
physics residual (see Supplementary Note E.3 for definition) are utilized 
to evaluate the accuracy of the established data-driven models.

We verify the performance of the PeRCNN using synthetic datasets 
of the 2D and 3D GS RD equation systems, whose computational param-
eters and discretization setting are provided in Extended Data Table 1. 
In the experiments, we fix the amount of data, training, validation and 
testing dataset splitting, the number of prediction steps, the Gaussian 
noise level (10%), and the random seed for each method. The hyperpa-
rameters for each case are selected through hold-out cross-validation. 
The synthetic measurement data (that is, some low-resolution snap-
shots) are downsampled (in both spatial and temporal dimensions) 
from the numerical solution. Once the model is finalized, extrapolation 
beyond temporal horizon, for example, for t > tnt, would be performed 
to examine the extrapolation ability of each model. Note that compre-
hensive sensitivity tests of the PeRCNN in the context of some major 
hyperparameters (that is, filter size, number of convolutional layers 
and number of channels) are presented in Supplementary Note E.4.

2D GS RD equation. In this case, we consider a data availability scenario 
where the resolution of measurement data is relatively low in space but 
decent in time. The available measurement data in this case encom-
passes 41 noisy snapshots of on a 26 × 26 grid, ranging from t = 0 to 
t = 400 s. As we assume the dynamical system of interest features the 
ubiquitous diffusion phenomenon, the governing PDE (that is, ℱ ) is 
known to have a diffusion term (Δu) whose scalar coefficients are still 
unknown. Therefore, we encode the diffusion term into the PeRCNN 
by creating a physics-based FD convolutional connection with the 
discrete Laplace operator as the convolutional kernel (Supplementary 
Note B.3). Furthermore, the diffusion coefficient ( μ̃) is first estimated 
by solving a linear regression problem of ut = μ̃Δu with the available 
data. Then a lower bound of 0 and upper-bound of 2μ̃ are applied to 

ensure the stability of diffusion. Each model is responsible for predict-
ing 801 fine-resolution snapshots during the training phase, while 1,700 
extra snapshots are predicted for extrapolation.

Snapshots at different time instants are presented in Fig. 4a, which 
reveal the complex maze-like pattern of the GS RD system. We report 
that the recurrent ResNet and PDE-Net are unable to reconstruct the 
fine-resolution snapshots even in the training due to the limited noisy 
training data, after trying all the hyperparameter combinations within 
a range (Supplementary Note E.5.1). Apart from that, it can be seen 
from the snapshots that the PeRCNN is the only model working well 
for long-time extrapolation in spite of minor discrepancies. It is also 
interesting to note that PeRCNN with filter size of 1 works as good as 
the model with larger filters (for example, 3 or 5). This is because the 
reaction term of the GS RD system contains no spatial derivatives, 
making the 1 × 1 filter sufficient for representing the nonlinear reaction 
terms. This implies that prior knowledge on the governing PDE can 
also be employed while designing the data-driven model. To quanti-
tatively measure the extrapolation capability of our model, we also 
plot the evolution of accumulative RMSE in Fig. 4a. It is observed that 
the PeRCNN outperforms the competitors at all stages in the context 
of error propagation, which further confirms the extrapolation abil-
ity of the PeRCNN. We may notice that the accumulative RMSE starts 
from an initial high value. This is due to the fact that the training data 
are corrupted by 10% Gaussian noise and the metric is computed from 
one single snapshot at the beginning. The effect of the unrelated noise 
gradually fades out as more time steps are considered.

3D GS RD equation. In this example, we test our method on the 3D GS 
RD system. As the computational intensity of this higher-dimensional 
example brings challenges to the existing methods, we aim to scrutinize 
the performance of our PeRCNN regarding the scalability and compu-
tational efficiency. The training data used to establish the data-driven 
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model include 21 noisy low-resolution snapshots (253) uniformly sam-
pled from t = 0 to t = 150 s. The prior knowledge on the system and the 
estimation of the diffusion coefficients as discussed in the previous 2D 
GS RD example are adopted here as well. Each trained model produces 
301 high-resolution (493) snapshots during the learning stage, while 
700 extrapolation steps are predicted once each model is finalized. 
The predicted isosurfaces of two levels are plotted in Fig. 4b. It should 
be noted that the plot of PDE-Net is blank because the prediction range 
falls out of the two selected isosurface levels. Similar to the previous 
case, we observe that PeRCNN is the only model that gives a satisfactory 
long-term prediction. The flat error propagation curve of the PeRCNN, 
as shown in Fig. 4b, also demonstrates the remarkable generalization 
capability of PeRCNN.

In Supplementary Note E.5, we compare the number of trainable 
parameters, the training time per epoch, and the RMSE of both train-
ing and extrapolation for each model. It is found that the PeRCNN is 
characterized with good model efficiency as it uses the least amount 
of training parameters. For the 3D case where the training efficiency 
of the network is of great concern, the elapsed time for training one 
epoch by PeRCNN is comparable to that of the ResNet, which is widely 
acknowledged to be an efficient network architecture. As for the accu-
racy of the training and extrapolation, our model outperforms the 
baselines consistently across different examples. In a nutshell, the 
PeRCNN outperforms the other three baselines with much fewer train-
able parameters and higher accuracy.

Generalization to different ICs. It is evident that the trained model 
has good extrapolation capability along the time horizon. Here we 
further explore how the trained model generalizes to different ICs. To 
set up the experiment, we employ the above trained model to perform 
inference with a different IC. It should be noted that the baseline deep 
hidden physics model is ineligible for inference with different ICs as it 
is based on an FCNN. The prediction result is depicted in Fig. 5. It is seen 

that the PeRCNN gives consistent prediction compared with the 
ground-truth reference solution. On the contrary, the considered 
baseline models (for example, recurrent ResNet, ConvLSTM and 
PDE-Net) are unable to generalize to an unseen IC. They give wild pre-
diction because of their incapability of learning the underlying physics 
(for example, caused by the black-box property of the model). In addi-
tion, the error propagation of the prediction in Fig. 5 indicates clearly 
the excellent generalization capability of the proposed model. In the 
later section ‘Interpretability of the learned model’, we show that the 
extracted expression from the trained PeRCNN model is very close to 
the genuine ℱ , which to a large degree explains the remarkable gener-
alization capability of our model given the fact that the trained PeRCNN 
model parameterizes the spatiotemporal dynamics well.

Data-driven discovery of PDEs with scarce and noisy data
In previous sections, we primarily investigate the scientific modelling 
tasks (for example, forward simulation or data-driven modelling) using 
the proposed model, which exhibits excellent accuracy and extrapo-
lation ability as identified from the numerical results. However, the 
process of knowledge discovery does not end at modelling the physi-
cal phenomena of interests. More importantly, it is the translation of 
the learned patterns from the data (for example, formulated PDEs 
or empirical relationships) that lead scientists to understand the 
cause–effect relationship among physical variables, and further make 
inference on similar problems. Therefore, in this section, we extend 
the proposed physics-encoded learning model for discovering the 
closed-form governing PDEs58. To formulate this problem, let us again 
consider the nonlinear system described by equation (7). The objective 
of the equation discovery is to recover the closed form of the governing 
PDEs given the scarce and noisy measurement of the system. To this 
end, we integrate the sparse regression technique15 with our PeRCNN 
model for solving this problem. The proposed framework for the PDE 
discovery is presented in Fig. 6 with the example of 2D GS RD equation. 
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The entire procedure consists of three steps, data reconstruction  
(Fig. 6a), sparse regression (Fig. 6b) and fine-tuning of coefficients  
(Fig. 6c), as discussed in ‘Equation discovery’ in Methods.

To validate the effectiveness of the our method, we perform the 
equation discovery on two RD systems (for example, 2D GS and λ–Ω RD 
systems) using synthetic datasets, which are obtained by downsam-
pling the noise-corrupted numerical solution. Two different Gaussian 
noise levels (5% and 10%), as well as the noise-free case, are considered 
in the experiment. As we assume the ubiquitous diffusion phenomenon 
exists in the concerned system, a short-cut diffusion convolutional 
layer is encoded into the network for data reconstruction (Fig. 1a). 
Accordingly, the coefficients corresponding to Δ(u) are exempted from 
being filtered in the Sequential Threshold Ridge regression (STRidge) 
algorithm. Once the equation discovery is finished, we measure the 
performance of the proposed method using the metrics of precision, 
recall and relative ℓ2 error of the coefficient vector. Technical details 
of the generation of synthetic measurement data and the evaluation 
metrics can be found in Supplementary Note F.3.

The discovered PDEs by our method are provided in Extended Data 
Table 3. It is seen that our method is able to recover the governing PDEs 
completely when the measurement data are clean or mildly polluted 
by noise. Even though the noise level grows to 10%, our approach still 
exhibits competitive performance, that is, it uncovers the majority of 
terms in the PDEs. Empirical study in Supplementary Note F.5 shows 
that our method could handle even a much larger noise level, that 
is, 30% Gaussian noise. In Supplementary Note F.4, we also compare 
our approach with some existing methods (or baselines) for govern-
ing PDE discovery, including PDE-FIND16, sparse regression coupled 
with an FCNN or PDE-Net5. The comparison shows that our approach 
outperforms (if not performs as good as) the considered baselines con-
sistently under different noise levels and data richness. Visualizing the 
reconstructed high-fidelity data from each method (Supplementary 
Fig. 17), we observe that our method has a much smaller reconstruc-
tion error as a result of fully utilizing the prior physics knowledge 
and the powerful expressiveness of the model. This would give rise to 

more accurate derivative terms in the linear system, facilitating the 
discovery of the governing PDEs. In summary, the effectiveness of 
the proposed approach is demonstrated for solving the data-driven 
equation discovery problem, especially when the measurement data 
are characterized by poor resolution and noise.

Interpretability of the learned model
Compared with the traditional deep neural networks, which are usually 
considered to be ‘black box’, the proposed network architecture is 
designed to possess good interpretability. As each channel of the input 
for the Π-block (that is, Û(k) where k denotes the discrete time instant) 
corresponds to a solution component (that is, u and v), the multiplica-
tive form of the Π-block (equation (8)) makes it possible to extract an 
explicit form of learned ℱ  from the learned weights and biases via 
symbolic computations. This section is dedicated to the discussion on 
how the learned model can be interpreted as an analytical expression, 
which is useful for people to understand the underlying cause–effect 
relationships among physical variables.

To demonstrate how to interpret the learned model, we first use 
the learned model from 3D GS RD case in ‘Data-driven modelling of 
spatiotemporal dynamics’ as an example. In this case, the parallel con-
volutional layers in the Π-block have the filter size of 1, which implies 
that each output channel is the linear combination of u, v and a constant. 
With the element-wise product operation among three convolutional 
layers, a third-degree polynomial will be produced to account for the 
reaction term of the system. With the help of the SymPy59—a symbolic 
computation Python package—we can extract the learned reaction term:

R(u) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−0.0074u3 − 0.0051u2v − 0.2uv2 − 0.0386v3 − 0.0018u2

−0.11uv − 0.055v2 − 0.016u − 0.022v + 0.025;

0.0005u3 − 0.013u2v + 0.54uv2 − 0.087v3 − 0.0076u2

+0.023uv + 0.046v2 + 0.017u − 0.036v − 0.0097

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5)
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data-driven model constructed from low-resolution and noisy measurement 
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Ξ. c, Fine-tuning of coefficients: the PeRCNN built based on the identified PDE 
structure is employed to fine-tune the coefficient from the sparse regression.
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Meanwhile, the identified diffusion term can be also extracted from the 
trainable variables in diffusion connections, which reads 
D(u) = [0.18Δu,0.08Δv ]

T
. Comparing the extracted term with the 

ground-truth PDEs, we observe some distracting terms due to the 10% 
noise in the training data and the redundancy of the network. Further 
pruning on the raw expression can be done to make it more parsimonious.

The above example is a special case where the convolutional layer 
in the Π-block has filter size of 1, which indicates no spatial derivatives 
are involved in reaction terms. However, we can extend the network 
architecture design to make it applicable to general cases. To interpret 
terms involving partial derivatives (for example, uΔu, uux), we could 
completely freeze or impose moment matrix constraints on part of the 
convolutional filters5. Here, an experiment is conducted on the 2D 
Burgers’ equation, which has wide applications in applied mathematics 
such as fluid and traffic flow modelling, given by ut + u ⋅ ∇ u = νΔu, 
where u = [u, v]T denotes the fluid velocities and ν is the viscosity coef-
ficient. The network employed in the experiment has two convolutional 
layers with two channels. The first convolutional layer is associated 
with derivative operators ∂(⋅)/∂x and ∂(⋅)/∂y, respectively, by fixing the 
filters with corresponding FD stencils. The synthetic dataset is gener-
ated on 101 × 101 Cartesian grid using high-order FD method with 
ν = 0.005. The noise-free synthetic measurement data used for con-
structing the model include 11 low-resolution (51 × 51) snapshots uni-
formly selected from the time period of t ∈ [0, 0.1].

After the model is trained, we interpret the expression from the 
PeRCNN model, which reads:

ut =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.0051Δu − 0.95ux(1.07u − 0.0065v − 0.17)

+0.98uy(0.0045u − 1.01v + 0.17) + 0.053;

0.0051Δv − 0.82vx(1.22u + 0.0078v − 0.18)

−0.91vy(0.0063u + 1.08v − 0.17) + 0.058

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(6)

It can be observed that the equivalent expression of the learned model 
matches well the genuine governing PDEs, except for some minor terms 
whose coefficients are close to zero. In addition, the extracted expres-
sion helps explain the extraordinary extrapolation and generalization 
capabilities of our model. Although the selection of differential oper-
ators to be embedded is crucial for identifying the genuine form of the 
ℱ , the above two examples demonstrate the interpretability of PeRCNN 
over common black-box models.

Discussion
This paper introduces a novel deep learning architecture, namely, 
PeRCNN, for modelling and discovery of nonlinear spatiotempo-
ral dynamical systems based on sparse and noisy data. One major 
advantage of the PeRCNN is that the prior physics knowledge can be 
encoded into the network, which guarantees that the resulting network 
strictly obeys given physics (for example, ICs and BCs, general PDE 
structure, and known terms in PDEs). This brings distinct benefits for 
improving the convergence of training and accuracy of the model. 
Through extensive numerical experiments, we show the efficacy of the 
PeRCNN for forward and inverse analysis of RD-type PDEs. The com-
parison with several baseline models demonstrates that the proposed 
physics-encoded learning paradigm uniquely possesses remarkable 
extrapolation ability, generalizability and robustness against data 
noise and/or scarcity. Although we demonstrate the effectiveness of 
the PeRCNN on various RD systems, the model is in theory applicable to 
other types of spatiotemporal PDE (for example, the 2D Burgers’ equa-
tion with the convection term shown in Supplementary Note F.4, and 
the Kolmogorov turbulent flows at Reynolds number 1,000, discussed 
in Supplementary Note J).

Equally important, the PeRCNN shows good interpretability due 
to the multiplicative form of the Π-block. An analytical expression 

that governs the underlying physics can be further extracted from 
the learned model via symbolic computation. In particular, we suc-
cessfully marry PeRCNN to the sparse regression algorithm to solve 
the crucial PDE discovery issues. The coupled scheme enables us to 
iteratively optimize the network parameters, and fine-tune the dis-
covered PDE structures and coefficients, essentially leading to the 
final parsimonious closed-form PDEs. The resulting framework will 
serve as an effective, interpretable and flexible approach to accurately 
and reliably discover the underlying physical laws from imperfect and 
coarse-meshed measurements.

Although the PeRCNN shows promise in data-driven modelling of 
complex systems, it is restricted by the computational bottleneck due 
to the high dimensionality of the discretized system, especially when it 
comes to systems in a large 3D spatial domain with long-term evolution. 
However, this issue is expected to be addressed via temporal batch and 
multi-graphics-processing-unit training. In addition, the current model 
is rooted in standard convolution operations, which limits its appli-
cability to irregular meshes of arbitrary computational geometries. 
This issue might be resolved by introducing graph convolution into 
the network architecture. Lastly, as the PeRCNN network is designed 
based on the assumption that the underlying governing PDEs have a 
polynomial form (commonly seen in standard PDEs for modelling of 
physics such as diffusion, reaction, convection and rotation), it might 
be less capable or too redundant (if many channels are used to achieve 
a high polynomial degree) of modelling unique spatiotemporal dynam-
ics whose governing PDEs are parsimonious but involve other advanced 
symbolic operators such as division, sin, cos, exp, tan, sinh, log and so 
on. Although the PeRCNN shows success in data-driven modelling of a 
PDE system with a non-polynomial term in Supplementary Note I, how 
to design a network that properly incorporates a limited number of 
mathematical operators as symbolic activation functions to improve 
the representation ability still remains an open question. We aim to 
systematically address these issues in our future study.

Methods
We herein introduce the method of the proposed PeRCNN model. More 
details can be found in Supplementary Note B.

Network architecture
Let us first consider a spatiotemporal dynamical system described by 
a set of nonlinear, coupled PDEs as

ut = ℱ (x, t,u,u2,∇xu,u ⋅ ∇xu,∇2u,⋯ ) (7)

where u(x, t) ∈ ℝn denotes the state variable with n components defined 
over the spatiotemporal domain {(x, t)} ∈ Ω × 𝒯𝒯 . Here, Ω and 𝒯𝒯  repre-
sent the spatial and temporal domains, respectively; ∇x is the nabla 
operator with respect to the spatial coordinate x; and ℱ(⋅) is a nonlinear 
function describing the right-hand side of the PDEs. The solution to 
this problem is subject to the IC ℐ(u; t = 0,x ∈ Ω) = 0  and the BC 
ℬ(u,∇xu,⋯ ;x ∈ ∂Ω) = 0 . Since we mainly focus on regular physical 
domains in this paper, the state variable u is defined on a discretized 
Cartesian grid.

Borrowing the concepts of numerical discretization, we build the 
physics-encoded spatiotemporal learning model on the basis of a 
forward Euler scheme. That said, the state variable u would be updated 
by a recurrent network given by û(k+1) = û(k) + ℱ̂ (û(k);θ)δt, where δt is 
the time spacing, û(k) is the prediction at time tk and ℱ̂  is the approxi-
mated ℱ  parameterized by θ that ensembles a series of operations for 
computing the right-hand side of equation (7). Similar ideas of applying 
numerical discretization (for example, backwards Euler or Runge–
Kutta) to designing deep learning architectures can be found in some 
recent literature5,60–64.

Following the above intuition, here we introduce the proposed 
network, namely, the PeRCNN. The architecture of this network (as 
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shown in Fig. 1) consists of two major components: a fully convolutional 
network as the ISG and a novel convolutional block called the Π-block 
(product) used for recurrent computation. The ISG is introduced to 
produce the high-resolution initial state Û(0) in the case that only 
low-resolution initial state (or measurement) ũ(0) is available as the IC. 
Note that ũ is used to denote the low-resolution snapshots (or measure-
ment) while the superscript ‘0’ indicates the first one. Similarly, Û is 
used to represent the high-resolution prediction from the model. 
Within the Π-block, the core of PeRCNN, the state variable Û(k) from the 
previous time step goes through multiple parallel convolutional layers. 
The feature maps produced by these layers are then fused through an 
element-wise product layer. The 1 × 1 convolutional layer is subse-
quently used to linearly combine multiple channels into the desired 
output (that is, approximated ℱ). Mathematically, the Π-block seeks 
to approximate the function ℱ  via polynomial combination of solution 
Û(k) and its spatial derivatives, given by

ℱ̂ (Û(k)) =
Nc

∑
c=1

Wc ⋅ [
Nl

∏
l=1

(𝒦𝒦c,l ⊛ Û(k) + bl)] (8)

where Nc and Nl are the numbers of channels and parallel convolutional 
layers, respectively; ⊛ denotes the convolutional operation; 𝒦𝒦c,l  
denotes the weight of the convolutional filter of the lth layer and the 
cth channel, while bl represents the bias of the lth layer; and Wc is the 
weight corresponding to the cth channel in the 1 × 1 convolutional layer 
while the bias is omitted for simplicity. This multiplicative representa-
tion promotes the network expressiveness for nonlinear functions ℱ , 
compared with the additive representation commonly seen in related 
work5,65. For detailed discussion on the design of the Π-block, please 
refer to Supplementary Note B.

Due to the discretized scheme of the learning model, it is possible 
to encode prior physics knowledge of the system into network archi-
tecture, which contributes to a well-posed optimization problem. Given 
some existing terms in the PDE, we could encode these terms into the 
network by creating a short-cut connection, namely the physics-based 
FD convolutional connection, from Û(k) to Û(k+1), as shown in Fig. 1. The 
convolutional kernel in this physics-based convolutional layer would 
be fixed with the corresponding FD stencil to account for the known 
terms. A major advantage of this encoding mechanism over the soft 
penalty in physics-informed learning models is the capability to lever-
age the incomplete PDE in the learning. In the numerical examples, we 
demonstrate that such a highway connection could accelerate the 
training speed and improve the model inference accuracy significantly. 
In a nutshell, the physics-based convolutional connection is built to 
account for the known physics, while the Π-block is designed to learn 
the complementary unknown dynamics.

In addition to the incomplete PDE, the boundary conditions (for 
example, Dirichlet or Neumann type) can also be encoded into the 
learning model. Inspired by the idea from the FD method, we apply the 
physics-based padding to the model’s prediction at each time step, as 
shown by Fig. 1b. Specifically, for the Dirichlet BCs, we pad the predic-
tion with prescribed values. Likewise, the padding value of Neumann 
or Robin BCs will be computed based on the boundary values and the 
gradient information. A comprehensive discussion on the padding 
mechanism for various BCs (for example, Dirichlet, Neumann, Robin 
and periodic) can be found in Supplementary Note B.3. In particular, 
we show the effectiveness of the proposed padding method in Supple-
mentary Note G, where the Neumann BCs are considered for example.

Motivation of the network architecture design
In the ‘Physics-encoded spatiotemporal learning’ section, we have 
introduced the proposed network architecture for learning spati-
otemporal dynamical systems. Here a further discussion on the design 
philosophy is presented to showcase the primary motivations. A dis-
tinct characteristic of this architecture is the usage of the Π-block as 

a universal polynomial approximator to nonlinear functions, instead 
of utilizing a sequence of linear layers intertwined with nonlinear 
activation layers commonly seen in traditional deep networks. The 
motivations for introducing the element-wise product operation in 
the Π-block are threefold:

•	 Although the nonlinear activation function is crucial to the 
universal approximation property of the deep neural network, 
it is also a source of poor interpretability. For example, the con-
ventional deep neural network would form a prolonged nested 
function that is usually intractable to humans. We consider it 
unfavourable to use these nonlinear functions to build a recur-
rent block that aims to generalize the unknown physics.

•	 The element-wise product operation makes a better approxima-
tion to ℱ  in the form of multivariate polynomial (for example, 
u ⋅ ∇ u + u2v), which covers a wide range of well-known dynamical 
systems, such as Navier–Stokes, RD, Lorenz, Schrödinger 
equations, to name only a few. Since the spatial derivatives can 
be computed by convolutional filters66, a Π-block with n parallel 
convolutional layers of appropriate filter size is able to represent 
a polynomial up to the nth order.

•	 Compared with the regression models (for example, linear or 
symbolic regression) relying on predefined basis functions or 
prior knowledge (for example, the highest order) on ℱ   
(refs. 5,15), the Π-block is flexible at generalizing the nonlinear 
function ℱ . For example, a Π-block with two parallel layers of 
appropriate filter size ensembles a family of polynomials up to 
the second order (for example, u, Δu, uv, u ⋅ ∇ u), with no need to 
explicitly define the basis.

Since the network architecture roots on numerical discretization, 
nice mathematical properties (see the next section) exist to guarantee 
the universal polynomial approximation property of the Π-block. In 
addition, the flexibility to deal with a variety of problems in scientific 
modelling is another advantage possessed by the proposed network 
architecture. The Π-block acts as a universal polynomial approximator 
to unknown nonlinear function while the physics-based convolutional 
layer accounts for the prior knowledge on the governing equation. 
Such a way of encoding the prior physics knowledge into the network 
architecture could effectively narrow down the space of feasible model 
parameters, hence leading to the reduced training effort required (for 
example memory, floating point operations per second and so on). 
Furthermore, in many prediction tasks involving nonlinear system, 
a mixture of partial physics knowledge and a scarce amount of meas-
urement data of the system is available, which is when the proposed 
PeRCNN has a huge advantage over the traditional deep network. As 
shown in the ‘Data-driven modelling of spatiotemporal dynamics’ 
section, we demonstrated the capability of the proposed PeRCNN at 
handling the modelling tasks given limited physics knowledge and 
some low-resolution snapshots of the system. An extreme case is when  
the analytical form of a physical system is completely known except 
some scalar coefficients. The physics-based convolutional layers asso-
ciated with trainable variables can be created to exactly express the 
physical system up to discretization error. In such a case, the PeRCNN 
can be assumed to recover to FD method with some trainable variables. 
In the ‘Inverse analysis of PDE systems’ section, we showed how the 
proposed PeRCNN can be applied to identify the system coefficients 
from the noisy and scarce data in such a scenario.

Noteworthy, we mainly consider the nonlinear function ℱ  in the 
form of polynomial, which is very commonly seen in PDEs. Other terms 
such as trigonometric and exponential functions are not considered 
in this work for simplicity. However, incorporating them would require 
no more effort than adding a particular symbolic activation (for exam-
ple, sin, cos, exp and so on) layer following the convolutional operation. 
Furthermore, these functions can be approximated by polynomials 
based on a Taylor series as argued in ref. 15.
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Universal polynomial approximation property for the Π-block
In the proposed PeRCNN, the Π-block acts as an universal polynomial 
approximator to unknown nonlinear functions while the physics-based 
FD convolutional layer (that is, with FD stencil as the convolutional 
filter) accounts for the prior knowledge on the governing equation. 
Notably, the Π-block achieves its nonlinearity through the element-wise 
product operation (equation (8)), which renders the network better 
expressiveness compared with the additive form representation 
ℱ̂(u) = ∑1≤i≤N fi ⋅ (𝒦𝒦i ⊛ u) seen in related work5,65 where N is the number 
of convolutional layers, 𝒦𝒦i is the convolutional kernel of the ith layer 
and fi is the weight of the ith layer’s output. To support this claim, we 
propose the following Theorem and Lemmas to prove that any dynami-
cal system described by equation (7) whose ℱ  is continuous (for exam-
ple, preferably in the form of polynomial) can be approximated by the 
proposed network. Without loss of generality, we consider the state 
variable u with one components u. Lemma 1 and Lemma 2 guarantee 
the accuracy of the approximation of ℱ̂  (equation (8)) and the forward 
computation û(k+1) = û(k) + ℱ̂ (û(k);θ)δt, respectively.
Lemma 1. The trainable convolutional filter 𝒦𝒦  can approximate any 
differential operator with prescribed order of accuracy.
Proof. Consider a bivariate differential operator ℒ(⋅), we have20:

ℒ(u) =
p−1
2
∑

k1 ,k2=−
p−1
2

𝒦𝒦[k1, k2]
p−1
∑
i,j=0

∂i+ju

∂ix∂jy
||(x,y)

ki1k
j
2

i!j!
δxiδy j + 𝒪𝒪 (|δx|p−1 + |δy|p−1)

=
p−1
2
∑

k1 ,k2=−
p−1
2

𝒦𝒦[k1, k2]u(x + k1δx, y + k2δy) + 𝒪𝒪 (|δx|p−1 + |δy|p−1)

= 𝒦𝒦 ⊛ u + 𝒪𝒪 (|δx|p−1 + |δy|p−1)
(9)

where p is the size of the filter indexed by k1 and k2. Letting the filter’s 
entry 𝒦𝒦[k1, k2] be the corresponding Taylor series coefficient, we can 
see the error of approximation is bounded by 𝒪𝒪 (|δx|p−1 + |δy|p−1).
Lemma 2. The local truncation error of the forward computation (that 
is, û(k+1) = û(k) + ℱ̂ (û(k);θ)δt) diminishes as δt decreases.
Proof. With the Taylor expansion of u(k+1) = u(k) + ℱ (u(k))δt + 𝒪𝒪 (δt2) , 
we can see the truncation error of the forward computation converges 
to zero as δt decreases.
Theorem 1. Suppose ℱ ∶ ℝs → ℝ is a continuous real-valued function of 
multidimensional variables η ∈ ℝs, where η denotes the set of system 
state u and its derivative terms, consisting of s elements in total. For any 
small positive number ϵ, there exist positive integers M and N, real num-
bers wj, γij and bj (i = 1, 2, …, N and j = 1, 2, …, M), and variable set 
E ∈ ℝN×M, such that:

||||
ℱ(η) −

M

∑
j=1

wj ⋅ [
N

∏
i=1

(γijEij + bi)]
||||
< ϵ (10)

Proof. Let us first denote the set of system state u and its derivative 
terms, consisting of s  elements in total, as η = [ u, ℒ1(u),  
ℒ2(u),… ,ℒs−1(u) ]

T ∈ ℝs. For example, η = [u, v,ux, vy,…]
T. The right-hand 

side of the PDEs in equation (7) can then be represented by ℱ(η). Based 
on the multivariate Taylor’s theorem, for any small positive number ϵ, 
there is a real-valued polynomial function 𝒯𝒯  such that

|ℱ(η) − 𝒯𝒯(η)| < ϵ (11)

Here, 𝒯𝒯(η) can be expressed as:

𝒯𝒯(η) =
n

∑
n1=0

n

∑
n2=0

⋯
n

∑
ns=0

𝒩𝒩(η) (12)

where

𝒩𝒩(η) = cn1cn2 ⋯ cns
(η1 − b̄1)

n1 (η2 − b̄2)
n2 ⋯(ηs − b̄s)

ns (13)

Here, c terms denote the real-valued coefficients, b̄ terms denote the 
biases and n is the maximum polynomial order. For simplicity, we omit 
the subscripts {n1, …, ns} in 𝒩𝒩(η).
Lemma 3. For real numbers η, b and c, and integer n′, there exist 
real-valued vector ααα ∈ ℝn+1, real number ̃b and integer n′ ≤ n such that 
c(η − b)n

′
= ∏n

i=0 (αiη − ̃b) if ∥ ααα∥0 = n′.
Based on Lemma 3, there are real number α terms and ̃b terms such 

that 𝒩𝒩(η) can be re-written as:

𝒩𝒩(η) =
n

∏
i=0

[(αi1η1 − ̃b1) (αi2η2 − ̃b2)⋯ (αisηs − ̃bs)] s.t. ∥ αk∥0 = nk

(14)

where αk = [α0k,α1k,… ,αnk]
T ∈ ℝn+1  is the kth vector of the α terms 

(k = 0, 1, …, s); ∥⋅∥0 denotes the ℓ0 norm of a vector. By defining proper 
weights (βββ ∈ ℝ(n+1)s) and biases (b̂ ∈ ℝ(n+1)s), we can further express 𝒩𝒩(η) 
by:

𝒩𝒩(η) =
(n+1)s
∏
i=1

[βiη̂i + ̂bi] (15)

where η̂ ∶= ℓℓℓ ⊗ η ∈ ℝ(n+1)s is the Kronecker transformation of η; ℓℓℓ ∈ ℝn+1 
is a column vector with all elements equal to 1; and ⊗ denotes the 
Kronecker product. Note that β is sparse. Substituting equation (15) 
into equation (12), we obtain the equivalent formulation for 𝒯𝒯(η) as 
follows:

𝒯𝒯(η) =
M

∑
j=1

wj ⋅ [
N

∏
i=1

(γijEij + bi)] (16)

where E ∶= ̃ℓ ⊗ η̂ ∈ ℝN×M  is the Kronecker transformation of Ê; ̃ℓ ∈ ℝM  
is a row vector with all elements equal to 1; w ∈ ℝM and γγγ ∈ ℝN×M denote 
some properly defined real-valued coefficients; and b ∈ ℝN  is the bias 
vector. Note that the formulation of equation (16) can be guaranteed 
when M ≥ (n + 1)s and N ≥ (n + 1)s. Substituting equation (16) into equa-
tion (11) can thus prove Theorem 1.

It is noted that the term γijEij in equation (16) can be approximated 
by a series convolutional filters as shown in Lemma 1, inspiring the 
design of the universal polynomial approximator shown in equation 
(8). Although Theorem 1 still holds by selecting different values of M, 
N, w and b, the approximation capability might be affected (with vary-
ing approximation errors). In particular, a small value of n (thus M and 
N) that represents less polynomial terms used for approximation will 
probably lead to a large truncation error. Nevertheless, since the pro-
posed universal polynomial approximator is fully learnable, an equiva-
lent model can be achieved by adapting the channel number (see 
Supplementary Note I). If the underlying form of ℱ  is a polynomial 
type, Theorem 1 holds with much fewer parameters and terms required 
for satisfactory accuracy.

Loss functions
We employ different loss functions depending on the problem at hand. 
In the case of forward analysis of nonlinear systems, we assume the full 
knowledge on the system (for example, governing equation, ICs, BCs) 
is available. The most straightforward approach to construct a predic-
tive model would be utilizing the numerical discretization, that is, 
customizing all the physics-based connections to realize the FD time 
updating. That is to say, the network architecture parameterizes an 
explicit solver of PDE system which hence has a requirement on δt for 
numerical stability. To avoid this issue, we construct the predictive 
model in an implicit manner. To be more concrete, we employ a Π-block 
in the network as the approximator to ℱ  and compute the governing 
equation’s residual from the spatiotemporal prediction using high-order 
FD stencils. The mean squared error (MSE) of the physics residual (fol-
lowing equation (7)) is employed as the loss function, which reads
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𝒥𝒥(W,b) = MSE (Ût − ℱ (Û)) (17)

where Û ∈ ℝnt×n×H×W  is the high-resolution prediction from the model, 
Ût  is the time derivative of Û computed through numerical discretiza-
tion while ℱ(Û) is the right-hand side of equation (7), and (W, b) denotes 
the trainable parameters of the network. With the gradient descent 
method for optimization, we can obtain a suitable set of Π-block param-
eters. This implicit way of establishing predictive model is more stable 
numerically regarding the selection of δt. We also need to note that the 
loss of ICs and BCs is not included in the loss function as they are already 
encoded through customized padding (see ‘Physics-encoded spati-
otemporal learning’).

In the problem of data-driven modelling, the goal is to reconstruct 
the most likely full-field solution Û given some low-resolution snap-
shots ũ ∈ ℝn′t×n×H′×W′ where n′t < nt, H′ < H  and W′ < W . Therefore, the 
loss function to train the network is defined as

𝒥𝒥(W,b) = MSE (Û( ̃x) − ̃u) + λ ⋅MSE (Û(0) − 𝒫𝒫 ( ̃u(0))) (18)

where Û( ̃x)  denotes the mapping of high-resolution prediction 
Û ∈ ℝnt×n×H×W  on the coarse grid x̃; ̃u denotes the low-resolution meas-
urement; 𝒫𝒫(⋅) is a spatial interpolation function (for example, bicubic 
or bilinear); and λ is the regularizer weighting. The regularization term 
denotes the IC discrepancy between the interpolated high-resolution 
initial state 𝒫𝒫 ( ̃u(0)) and the predicted high-resolution initial state Û(0) 
from the ISG, which is found to be effective in preventing network 
overfitting. Compared with the existing work on physics-informed 
learning24,38,42,67, one major distinction of the loss function employed 
here is the absence of the physics loss. This is because the prior physics 
knowledge is already encoded into the network architecture as shown 
in the ‘Physics-encoded spatiotemporal learning’ section. This facili-
tates the learning process of the spatiotemporal system significantly. 
Equation (18) is also utilized as the loss function in the problem of system 
coefficient identification where the noisy and scarce measurement is 
available. However, a different network design is employed as elabo-
rated in Supplementary Fig. 10. In this case, multiple physics-based 
convolutional layers are created to represent existing terms in the PDE 
(for example, Δu, uv2, u) while each layer (or term) is associated with a 
trainable variable to represent the corresponding coefficient. By mini-
mizing the the loss function with IC discrepancy regularizer, the 
unknown scalar coefficients in the system could be obtained.

Equation discovery
The proposed PeRCNN-based PDE discovery model consists of three 
steps, including data reconstruction, sparse regression and fine-tuning 
of coefficients, discussed as follows.

Data reconstruction. As the available measurement data collected 
in the real world are usually sparse and accompanied by noise, it is 
common practice to pre-process the raw data to reconstruct the 
high-fidelity data (for example, de-noised or high-resolution). In our 
proposed framework, the data reconstruction step (Fig. 6a) is first 
performed with the help of the PeRCNN as a high-resolution data-driven 
predictive model. This step follows the same routine described in the 
‘Data-driven modelling of spatiotemporal dynamics’ section. Specifi-
cally, we establish a data-driven model from some low-resolution snap-
shots and then infer the high-resolution prediction (or solution) from 
the trained model. The reconstructed high-resolution data are then 
employed in the subsequent sparse regression to ensure the accuracy 
of the constructed library. The derivative terms in the library are esti-
mated via FD-based filtering on the reconstructed high-fidelity data.

Sparse regression. With the reconstructed high-fidelity (that is, 
high-resolution and de-noised) solution, we are able to reliably estimate 

the library and thus accurately perform sparse regression for the 
explicit form or analytical structure of PDEs. Note that sparse regres-
sion is an extensively used technique for data-driven PDE discovery. It 
is rooted on a critical observation that the right-hand side of equation 
(7) for the majority of natural systems consists of only a few terms. To 
demonstrate how the sparse regression works, let us consider the 
measurement data with one single component, that is, u ∈ ℝns×nt, which 
is defined on ns spatial locations and at nt time steps. After flattening 
the state variable into a column vector U ∈ ℝns⋅nt×1, we are able to estab-
lish a library matrix ΘΘΘ(U) ∈ ℝns⋅nt×s such that each of s column vectors 
denotes a candidate function in ℱ  (for example, linear, nonlinear, 
trigonometric and so on). Accordingly, each row of Θ(U) denotes a 
spatiotemporal location. If the column space of the library matrix is 
sufficiently rich, the governing PDE of the system can then be written 
as a linear system, namely

Ut = ΘΘΘ(U)ΞΞΞ (19)

where Ut is the vector of time derivative of U; Θ(⋅) maps the original 
state variable space to a higher-dimensional nonlinear space, for exam-
ple, Θ(U) = [1, U, U2, …, Ux, Uy, … ]; and ΞΞΞ ∈ ℝs×1 is the sparse coefficient 
vector that represents the governing PDE. Sparse regression seeks to 
find a suitable Ξ such that the sparsity of the vector and the regression 
error are balanced. Specifically in our proposed framework, the 
STRidge algorithm 16 is adopted among other effective 
sparsity-promoting methods such as the iterative hard thresholding 
method68,69, due to its superior performance compared with other 
sparsity-promoting algorithms, such as LASSO70 and sequentially 
thresholded least squares15. For a given tolerance that filters the entries 
of Ξ with small value, we can obtain a sparse representation of ℱ  with 
the help of the STRidge algorithm, the technical details of which are 
provided in Supplementary Note F.2. Iterative search with STRidge can 
be performed to find the optimal tolerance according to the selection 
criteria given by:

Ξ∗ = argmin
Ξ

{||Ut −Θ(U)Ξ||22 + γ||Ξ||0} (20)

where ∣∣Ξ∣∣0 is used to measure the sparsity of coefficient vector while 
regression error ||Ut −Θ(U)Ξ||22 is used to measure model accuracy. As 
the optimization objective has two components, we apply Pareto front 
analysis to select an appropriate weighting coefficient γ (Supplemen-
tary Note F.5.3). As the accurate computation of the library matrix is 
critical to obtaining an accurate coefficient vector via sparse regres-
sion, the reconstructed high-fidelity solution is subsequently used for 
computing the partial derivative terms involved in the library.

As shown in Fig. 6b, we collect the candidate set from the network 
for data reconstruction by performing symbolic computations on the 
Π-block and establish the library matrix Θ(U). Note this is different 
from the traditional sparse regression in which the candidate set is 
predefined. A comparative study of these two ways of establishing 
the library matrix is performed in Supplementary Note F.5.1. With the 
established linear system, sparse regression is performed afterwards 
to find a suitable coefficient vector Ξ that balances model complexity 
and accuracy. This is realized by solving the optimization problem 
described by equation (20) with the help by the STRidge algorithm.

Fine-tuning of coefficients. Due to the high dimensionality of the 
reconstructed data, the sparse regression is performed on the subsam-
pled linear system (for example, randomly sampled 10% rows, 8.2 × 106 
rows in the 2D GS RD case) to avoid the very large number of rows, 
which retains computational efficiency without the loss of accuracy. 
To fully exploit the available measurement and further improve the 
accuracy of the discovered equations, we introduce the coefficient 
fine-tuning step to produce the final explicit PDE formula. The rest of 
training procedure is the same as that discussed in ‘Inverse analysis 
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of PDE systems’: all the original measurements are used to train a PDE 
structure preserved network (Fig. 6c) while the coefficient of each 
term is treated as a trainable variable. In Supplementary Note F.5.4, we 
show that such a fine-tuning can considerably improve the accuracy 
of the discovered PDEs.

Data availability
All the used datasets in this study are available in the Zenodo reposi-
tory71, the Gitee repository at https://gitee.com/chengzrz/percnn and 
the GitHub repository at https://github.com/isds-neu/PeRCNN.

Code availability
All the source codes to reproduce the results in this study are available 
in the Zenodo repository71, the Gitee repository at https://gitee.com/
chengzrz/percnn and the GitHub repository at https://github.com/
isds-neu/PeRCNN.
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Extended Data Table 1 | Computational parameters for datasets generation

ẟx denotes the spacing of the grid while ẟt denotes the time spacing. A detailed discussion on how to properly select ẟx and ẟt is given in Supplementary Note H.
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Extended Data Table 2 | Summary of the coefficient identification results for 2D Gray–Scott reaction–diffusion system

The training dataset (or measurement) includes 26 snapshots with resolution of 26 × 26 for S1 while 2 snapshots with resolution of 51 × 51 for S2.
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Extended Data Table 3 | Discovered PDEs from the measurement data under various noise levels compared with the ground 
truth
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