
Nature Machine Intelligence | Volume 5 | July 2023 | 765–779 765

nature machine intelligence

https://doi.org/10.1038/s42256-023-00685-7Article

Encoding physics to learn reaction–diffusion
processes

Chengping Rao1,2,7, Pu Ren   3,7, Qi Wang   1, Oral Buyukozturk4, Hao Sun   1,5 &
Yang Liu   6

Modelling complex spatiotemporal dynamical systems, such as reaction–
diffusion processes, which can be found in many fundamental dynamical
effects in various disciplines, has largely relied on finding the underlying
partial differential equations (PDEs). However, predicting the evolution
of these systems remains a challenging task for many cases owing to
insufficient prior knowledge and a lack of explicit PDE formulation for
describing the nonlinear process of the system variables. With recent
data-driven approaches, it is possible to learn from measurement data
while adding prior physics knowledge. However, existing physics-informed
machine learning paradigms impose physics laws through soft penalty
constraints, and the solution quality largely depends on a trial-and-error
proper setting of hyperparameters. Here we propose a deep learning
framework that forcibly encodes a given physics structure in a recurrent
convolutional neural network to facilitate learning of the spatiotemporal
dynamics in sparse data regimes. We show with extensive numerical
experiments how the proposed approach can be applied to a variety of
problems regarding reaction–diffusion processes and other PDE systems,
including forward and inverse analysis, data-driven modelling and discovery
of PDEs. We find that our physics-encoding machine learning approach
shows high accuracy, robustness, interpretability and generalizability.

Spatiotemporal dynamics is ubiquitous in nature. For example, reac-
tion–diffusion processes exhibit interesting phenomena and are com-
monly seen in many disciplines such as chemistry, biology, geology,
physics and ecology. The autonomous formation mechanism of stripe
(Turing) patterns in the skin of tropical fishes can be revealed by dif-
fusion and reaction. Like many other systems, understanding their
complex spatiotemporal dynamics, governed by the inherent partial
differential equations (PDEs), is a central task. Nevertheless, the princi-
pled laws in the context of closed-form governing equations for many
underexplored systems remain uncertain or partially unknown (for
example, the reaction mechanism is typically nonlinear and intractable

to model). Even for some dynamical systems, for example, other than
reaction–diffusion processes, whose PDEs are already known (such as
Naiver–Stokes equations), the computational cost of accurate numeri-
cal simulation is also prohibitive for scientific applications involving
large-scale spatiotemporal domains. Yet, machine learning has opened
up new avenues for scientific modelling or discovery of the aforemen-
tioned systems in a data-driven manner.

In fact, the history of knowledge discovery from data (or obser-
vation) can be dated back to the time of Kepler, who discovered the
well-known law of planetary motion from massive documented data.
Recently, the revived machine learning methods have pushed the

Received: 6 September 2022

Accepted: 5 June 2023

Published online: 17 July 2023

 Check for updates

1Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China. 2Department of Mechanical and Industrial Engineering, Northeastern
University, Boston, MA, USA. 3Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA. 4Department of Civil and
Environmental Engineering, MIT, Cambridge, MA, USA. 5Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China. 6School of
Engineering Science, University of Chinese Academy of Sciences, Beijing, China. 7These authors contributed equally: Chengping Rao, Pu Ren.

 e-mail: haosun@ruc.edu.cn; liuyang22@ucas.ac.cn

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-023-00685-7
http://orcid.org/0000-0002-6354-385X
http://orcid.org/0009-0009-4712-3474
http://orcid.org/0000-0002-5145-3259
http://orcid.org/0000-0003-0127-4030
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-023-00685-7&domain=pdf
mailto:haosun@ruc.edu.cn
mailto:liuyang22@ucas.ac.cn

Nature Machine Intelligence | Volume 5 | July 2023 | 765–779 766

Article https://doi.org/10.1038/s42256-023-00685-7

unique network has been demonstrated (with mathematical proof and
numerical experiments) to promote the expressiveness of our model
on nonlinear spatiotemporal dynamics. (3) Owing to the discretization
with time, our network is able to incorporate well-known numeri-
cal time integration methods (for example, forward Euler scheme,
Runge–Kutta scheme) for encoding incomplete PDEs into the network
architecture. Throughout this article, we demonstrate the capabilities
of the proposed network architecture by applying it to various tasks
in scientific modelling of spatiotemporal dynamics such as reaction–
diffusion processes.

Results
Physics-encoded spatiotemporal learning
The motivation of the physics-encoded spatiotemporal learning para-
digm is to establish a generalizable and robust model for predicting the
physical system state based on very limited low-resolution and noisy
measurement data. The established model is expected to deliver good
extrapolation capability over the temporal horizon and generaliza-
tion to different ICs. These demands essentially require the proposed
model to learn the underlying spatiotemporal dynamics from data. To
this end, we propose a novel network, namely, the physics-encoded
recurrent convolutional neural network (PeRCNN), as shown in Fig. 1.
The network is designed to preserve the given physics structure, for
example, structure or specific terms of the governing PDEs, ICs and
BCs. The prior physics knowledge is forcibly ‘encoded’, which makes
the network possess interpretability. More details are given in Methods.

Reaction–diffusion systems
Reaction–diffusion (RD) equations have found wide applications in
the analysis of pattern formation50, such as population dynamics51,
chemical reactions52, cell proliferations53 and so on. In this article, we
specifically consider three different RD systems of the lambda–omega
(λ–Ω), FitzHugh–Nagumo (FN) and Gray–Scott (GS) types to verify the
proposed approach. In general, the RD system can be described by the
following governing equation

ut = DΔu + R(u) (1)

where u ∈ ℝn is the vector of concentration variables, the subscript t
denotes time derivative, n represents the system dimension, D ∈ ℝn×n
is the diagonal diffusion coefficient matrix, Δ is the Laplacian operator
and R(u) is the reaction vector that represents the interactions among
components of u. Without loss of generality, let us assume the RD sys-
tem features two components, that is, u = [u, v]T. Specifically, the λ–Ω
RD system is governed by

ut = μuΔu + (1 − u2 − v2)u + β (u2 + v2) v

vt = μvΔv − β (u2 + v2)u + (1 − u2 − v2) v
(2)

while the FN RD system can be described by

ut = μuΔu + u − u3 − v + α

vt = μvΔv + (u − v)β
(3)

where α and β are the coefficients prescribing the reaction process and
take different values. Similarly, the GS RD system can be described by

ut = μuΔu − uv2 + F(1 − u)

vt = μvΔv + uv2 − (F + κ)v
(4)

where κ and F denote the kill and feed rate, respectively. For the FN
and GS RD systems, we consider both two-dimensional (2D) and

renaissance of the data-driven scientific computing, such as modelling
of complex systems1–9, super-resolution of scientific data10–12, material
property prediction13, system identification and equation discovery14–17,
among others. These successful applications are largely attributed to
the extraordinary expressiveness of deep learning models, which ena-
bles the automatic learning of the nonlinear mapping among variables
from rich labelled data18. In particular, the latest research has shown
that deep learning19–22 could accelerate the discovery of underlying gov-
erning PDEs given sparse or noisy data. However, the pure data-driven
methods rooted on deep learning typically learn representations from
and highly rely on big data (for example, from experiment or simula-
tion), which are often insufficient in most scientific problems. The
resulting model often fails to satisfy physical constraints (for example,
conservation laws, invariants), whose generalizability cannot be guar-
anteed either23. To tackle this issue, physics-informed neural networks
(PINNs)24–26 have taken a remarkable leap in scientific machine learning
and become a major paradigm, which leverages our prior knowledge of
underlying physics to enable learning in small data regimes.

PINNs have shown effectiveness in a wide range of scientific
applications, including solving general PDEs24,27,28, reduced-order
modelling29,30, uncertainty quantification31,32, inverse problems24,33,
data-driven knowledge discovery21 and others. In particular, the para-
digm has been demonstrated to be effective in modelling a variety
of physical systems, such as fluid dynamics25,34, subsurface trans-
port35,36 and engineering mechanics33,37–39. However, the dominant
physics-informed learning model, the PINN, generally represents a
continuous learning paradigm as it employs fully connected neural
networks (FCNNs) for the continuous approximation of the solution
to the physical system. The resultant continuous representation of
the system’s prediction brings several limitations, including poor
computational efficiency due to the nature of the FCNN, inaccurate
physical constraints due to the soft penalty in the loss function and
a lack of capability to hard-encode prior physics into the learning
model. Fortunately, the latest studies in discrete learning models,
such as convolutional neural networks32,40–42, graph neural networks43
and transformers44, show promise in overcoming some of the above
limitations. Compared with the continuous learning model, the dis-
crete learning approaches have a distinct advantage of hard encoding
the initial conditions (ICs) and boundary conditions (BCs), as well as
the incomplete PDE structure, into the learning model. This practice
could avoid the ill-posedness of the optimization even without any
labelled data as shown in very recent studies41,45,46. Therefore, we are
motivated to establish an effective, interpretable and generalizable
discrete learning paradigm that can be leveraged for predicting the
nonlinear physical systems, which remains a substantial challenge in
scientific machine learning. Recent advances have shown that operator
learning can naturally achieve this goal, for example, DeepONet47 and
Fourier Neural Operator48. However, a rich set of labelled data should
be supplied to train reliable operators for these methods. Although
adding prior physics to constrain DeepONet helps alleviate the need of
large data49, the explicit expression of PDE(s) must be given, which falls
short in dealing with systems whose governing equations are partially
or completely unknown.

To this end, we propose the physics-encoded model that encodes
the prior physics knowledge in the network architecture, in contrast to
‘teaching’ models the physics through a penalized loss function com-
monly seen in physics-informed learning. In particular, our model has
four major characteristics. (1) Compared with the dominant method
of PINN that utilizes an FCNN as a continuous approximator to the
solution, the physics-encoded model is discrete (that is, the solution
is spatially mesh based and defined on discrete time steps) and hard
encodes the given physics structure into the network architecture.
(2) Our model employs a unique convolutional network (that is, a
Π-block, discussed in Methods) to capture the spatial patterns of the
system while the time marching is performed by the recurrent unit. This

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | July 2023 | 765–779 767

Article https://doi.org/10.1038/s42256-023-00685-7

three-dimensional (3D) cases in this article. To generate the numeri-
cal solution as the ground-truth reference, we discretize the regular
physical domain with Cartesian grid and utilize a high-order finite
difference (FD) method to simulate the evolution of the RD system.
The computational and discretization parameters for each case are
provided in Extended Data Table 1.

Forward analysis of PDE systems
Solving general PDEs is undoubtedly the cornerstone of scientific
computing. We herein demonstrate the capability of the PeRCNN for
forward analysis of PDE systems (that is, solving PDEs), in particular,
the aforementioned RD systems. It is assumed that the governing PDEs,
together with the necessary ICs and BCs, of the physical system are
completely known. Therefore, the prescribed initial state is fed to the
network for the recurrent computation without resorting to the ini-
tial state generator (ISG). Once the forward recurrent computation is
finished, the snapshot (or prediction) at each time step is collected.
The FD is then applied on the discrete snapshots for computing the
partial derivatives involved in the governing PDE. The mean squared
error of the equation residual is used as the optimization objective (or
loss function) for obtaining a set of model’s parameters. Multiple RD
systems, including the 2D λ–Ω, 2D/3D FN and 2D GS RD equations, are
considered herein as the numerical examples. The ground-truth refer-
ence solution is generated by the high-order FD method. The govern-
ing PDEs, computational domain and discretization settings for each
system are provided in Extended Data Table 1. Detailed discussions on
the network settings are given in Supplementary Note C. Details on how
to properly select the spatial and temporal grid sizes, to ensure the
model’s numerical stability and achieve desired solution resolution,
are given in Supplementary Note H.

Figure 2 shows the snapshots predicted by the PeRCNN for each
system at a given time. To compare the performance of the proposed
approach with existing methods, we also provide the result of two
baseline models, namely, the convolutional long-short term memory
(ConvLSTM)54 and the PINN24. It can be seen that the solution obtained
by the PeRCNN agrees well with the reference for all four cases. In con-
trast, the ConvLSTM and the PINN perform differently on 2D and 3D

cases; in particular, they get a fairly good prediction for 2D cases while
considerably deviate from the reference for 3D cases. To examine the
accuracy of each method as a PDE solver, we compute the accumula-
tive root mean square error (RMSE) of the prediction. It shows that the
PeRCNN achieves a significantly lower error throughout the considered
time-marching interval. Although existing techniques (for example,
finite difference, volume and element methods) for solving PDEs are
already mature nowadays, the result in this part demonstrates the prom-
ise of the PeRCNN on modelling and simulation of complex systems.

Inverse analysis of PDE systems
Calibrating the unknown parameters of a given model against experi-
mental data is a commonly seen problem in scientific discovery, for
example, one might be interested in uncovering the scalar coefficients
in the governing PDEs given very limited observed snapshots of the
system. As the proposed PeRCNN has the capability of encoding the
PDE structure (for example, known terms) into the network architec-
ture for predicting spatiotemporal systems, we can apply it to identify
the unknown coefficients by treating them as trainable variables. To
verify the effectiveness of the PeRCNN in inverse analysis of PDEs, we
consider the 2D GS RD system governed by the following two coupled
equations: ut = μuΔu − c1uv2 + cF(1 − u) and vt = μvΔv + c2uv2 − (cF + cκ)v,
where μu, μv, c1, c2, cF and cκ are unknown coefficients. As the explicit
form of the governing PDEs is known, we construct the physics-based
FD convolutional connections (that is, diffusion and other polynomial
terms) according to the right-hand side of the governing equation. Note
that no element-wise product layer is involved in the network. Mean-
while, each unknown coefficient is treated as an individual trainable
variable in the computational graph for the forwards and backwards
computations.

To examine the capability of the model in scenarios of various
data availability, we consider two different sets of measurement data.
In the first scenario (S1), the available measurement includes multiple
noisy and low-resolution snapshots of the system, which means the
available data are scarce spatially while somewhat abundant in the
temporal dimension. In the second scenario (S2), we assume only
the first and last snapshots of the system with decent resolution are

Dirichlet BCs Neumann BCs

Internal nodes
Constant nodes

Ghost nodes
Conv filter

Hard-encoding of BCs
a b

c
Residual connection via a forward Euler scheme:

 (U(k)) =

Element-wise product to mimic nonlinear PDE terms

Encode prior knowledge on PDEs via physics-based
finite-dierence convolutional layer

Conv

Conv

Conv

Conv
(1 × 1)∏

Identity

U
pconv
Tanh

C
onv

U
pconv
Tanh

Physics-based FD
convolutional (optional)

∏

∏-block

Element-wise product + Element-wise addition

Recurrent

Low-
resolution IC

u(0)

High-resolution IC

Initial state generator (ISG) Main network

Zoom-in view

Multiplied by δt

U(k+1)

(U(k))

~ U(0) U(k+1)

U(k)

δt

δt
δU(k)

+
U(k + 1) = U(k) + (U(k)) . δt

Nc Nl

l = 1c = 1
Wc

 . (kc,l U(k) + bl)Σ ∏

Fig. 1 | Schematic architecture of the PeRCNN. a, The network with a Π-block for
the recurrent computation. b, Embedding of BCs. c, Key features of the network.
Here, ̃u(0) denotes the low-resolution and noisy measurement of the initial state,

while Û(k) denotes the predicted fine-resolution solution at time tk. The decoder
(ISG) is used to downscale/upsample the low-resolution initial state. Conv
denotes ‘convolution’.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | July 2023 | 765–779 768

Article https://doi.org/10.1038/s42256-023-00685-7

a

b

u

v

Reference PeRCNN ConvLSTM PINN

t = 8

Error propagation

Error propagation

t = 7

u

v

c

u

v

t = 2.4

Error propagation

Reference PeRCNN ConvLSTM PINN

Reference PeRCNN ConvLSTM PINN

d Error propagation Reference PeRCNN ConvLSTM PINN

t = 600

u

v

PeRCNN
PINN
ConvLSTM

PeRCNN
PINN
ConvLSTM

PeRCNN
PINN
ConvLSTM

PeRCNN
PINN
ConvLSTM

100

10–2

10–4

RM
SE

M
agnitude u

M
agnitude v

M
agnitude u

M
agnitude v

M
agnitude u

M
agnitude v

10–6

10–8

10–1

10–2

10–3

10–4

RM
SE

10–6

10–5

10–7

–0.4

–0.2

0

0.2

0.4
–1.0

–0.5

0

0.5

1.0

0.1

0.15

0.05

0

0

0.4

0.2

0.6

–1.0

–0.6

0.2

–0.2

0.6

1.0
–1.0

–0.6

0.2

–0.2

0.6

1.0

0 2 4 6 8

0 42 6 10
t (s)

t (s)

0
0

0.2

0.4

0.6

RM
SE

 (×
10

–2
)

RM
SE

0.8

1.0

0.9 1.8 2.7 3.6
t (s)

0
0

0.05

0.10

0.15

0.20

0.25

175 350 525 700
t (s)

–50–25
0

25
50

50

25

0–2
5–50

–25

0

25

50

z

y x

–50–25
0

25
50

50

25

0–2
5–50

–25

0

25

50

z

y x

–50–25
0

25
50

50

25

0–2
5–50

–25

0

25

50

z

y x

–50–25
0

25
50

50

25

0–2
5–50

–25

0

25

50

z

y x

–50–25
0

25
50

50

25

0–2
5–50

–25

0

25

50

z

y x

–50–25
0

25
50

50

25

0–2
5–50

–25

0

25

50

z

y x

–50–25
0

25
50

50

25

0–2
5–50

–25

0

25

50

z

y x

–50–25
0

25
50

50

25

0–2
5–50

–25

0

25

50

z

y x

Fig. 2 | Error propagation curve and predicted snapshots by PeRCNN, ConvLSTM and PINN on various RD systems. a, 2D λ–Ω RD equation. b, 2D FN RD equation.
c, 3D FN RD equation. d, 3D GS RD equation. Note that only a corner of the solution field is shown for the FN RD systems in c for better visualization of the internal
solution distribution.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | July 2023 | 765–779 769

Article https://doi.org/10.1038/s42256-023-00685-7

available. These two scenarios reflect the trade-off between the spatial
and temporal resolution of the existing measurement. These synthetic
measurements accompanied with 10% Gaussian noise are shown in
Fig. 3a,b. The misfit error between the prediction and the measurement
data is computed as the loss function for optimizing the unknowns. To
prevent the overfitting to noise, early stopping is employed by split-
ting the dataset into training and validation sets. The details of com-
putational parameters for dataset generation, network architecture,
initialization of coefficients and optimization settings are presented
in Supplementary Note D.

To test the effects of noise, the experiment is also performed on
clean data. Each case encompasses ten runs with various random seed
for coefficient initialization. The identified coefficients are presented
in Fig. 3c and Extended Data Table 2. It can be seen that, in all cases, the
PeRCNN is able to uncover the unknown coefficients with satisfactory
accuracy. Compared with the identified coefficients in the noise-free
case, the result deteriorates only slightly with 10% noise. In the absence
of the noise, the identified coefficients feature high accuracy, with
the mean absolute relative error for all the coefficients being 0.6%. For
the case with 10% noise, the mean absolute relative error is 1.61% in spite
of 10% Gaussian noise in the measurement. The PeRCNN also shows
superiority to the PINN (see the result reported in Supplementary
Table 4). Moreover, the potential of employing the PeRCNN to identify
space-varying coefficients is further demonstrated in Supplementary
Note D.5). The numerical results in this section illustrates the good
capability of our model on the inverse analysis of PDE systems.

Data-driven modelling of spatiotemporal dynamics
PDEs play an an essential role in modelling physical systems. However,
there still exist a considerable portion of systems, such as those in

epidemiology, climate science and biology, whose underlying gov-
erning PDEs are either completely unknown or only partially known.
Owing to the ever-growing data availability as well as recent advances in
scientific machine learning, data-driven modelling nowadays becomes
an effective way to establish predictive models for physical systems.
As the proposed network is characterized with excellent expressive-
ness for representing nonlinear dynamics (see ‘Universal polynomial
approximation property for the Π-block’ in Methods) and the capabil-
ity of encoding an incomplete governing PDE, it has great potential to
serve as a generalizable and robust data-driven model for predicting
high-resolution nonlinear spatiotemporal dynamics. In this part, we
primarily focus on data-driven modelling of spatiotemporal dynamics
by the proposed physics-encoded learning paradigm given limited,
noisy measurement data.

Let us assume some low-resolution and potentially noisy snap-
shots of the system are measured, that is, ũ ∈ ℝn′t×n×H

′×W′
 where n′t is

the number of snapshots, n is the number of state variable components
and H′ ×W′ is the resolution of each snapshot. We seek to establish a
predictive model that gives the most likely high-resolution solution
Û ∈ ℝnt×n×H×W where n′t < nt, H′ < H and W′ < W , and possesses sat-
isfactory extrapolation ability over the temporal horizon (for example,
for t > tnt). As we have seen, one salient characteristic of the PeRCNN
is the capability of encoding prior knowledge (for example, the general
PDE structure and/or the ICs/BCs) into the learning model. In particular,
we assume the basic PDE form as shown in equation (4) is given, where
the diffusion term is known a priori whose coefficients are however
unknown. To compare the PeRCNN with existing methods, we also
perform experiments on several baseline models, namely, the recurrent
ResNet55,56, ConvLSTM54, PDE-Net5 and the deep hidden physics model57.
Once the training is done, we infer the high-resolution prediction from

a b

c

u (measured)u (measured)u (measured)

M
agnitude u

M
agnitude v

M
agnitude u

M
agnitude v

u (measured)u (measured)u (measured)

v (measured) v (measured) v (measured) v (measured) v (measured) v (measured)

1.00

1.00

0.75

0.75

0.50

0.50

0.25

0.25

0

0

1.10

1.05

1.00

Re
la

tiv
e

va
lu

e

0.95

0.90
µu µv c1 c2 cF ck

Coefficient

S1, 0% noise

S1, 10% noise

S2, 0% noise

S2, 10% noise

1.00

1.00

0.75

0.75

0.50

0.50

0.25

0.25

0

0

1.00

1.00

0.75

0.75

0.50

0.50

0.25

0.25

0

0

1.00

1.00

0.75

0.75

0.50

0.50

0.25

0.25

0

0

1.00

1.00

0.75

0.75

0.50

0.50

0.25

0.25

0

0

1.00

1.00

0.75

0.75

0.50

0.50

0.25

0.25

0

0

Fig. 3 | Snapshots of the measurement data employed in the experiment and the identified coefficients. a, Data availability in S1 (multiple snapshots with 26 × 26
resolution). b, Data availability in S2 (initial and last snapshots with 51 × 51 resolution). c, Identified coefficient at various noise levels and data availability.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | July 2023 | 765–779 770

Article https://doi.org/10.1038/s42256-023-00685-7

the predictive data-driven models. The accumulative RMSE and the
physics residual (see Supplementary Note E.3 for definition) are utilized
to evaluate the accuracy of the established data-driven models.

We verify the performance of the PeRCNN using synthetic datasets
of the 2D and 3D GS RD equation systems, whose computational param-
eters and discretization setting are provided in Extended Data Table 1.
In the experiments, we fix the amount of data, training, validation and
testing dataset splitting, the number of prediction steps, the Gaussian
noise level (10%), and the random seed for each method. The hyperpa-
rameters for each case are selected through hold-out cross-validation.
The synthetic measurement data (that is, some low-resolution snap-
shots) are downsampled (in both spatial and temporal dimensions)
from the numerical solution. Once the model is finalized, extrapolation
beyond temporal horizon, for example, for t > tnt, would be performed
to examine the extrapolation ability of each model. Note that compre-
hensive sensitivity tests of the PeRCNN in the context of some major
hyperparameters (that is, filter size, number of convolutional layers
and number of channels) are presented in Supplementary Note E.4.

2D GS RD equation. In this case, we consider a data availability scenario
where the resolution of measurement data is relatively low in space but
decent in time. The available measurement data in this case encom-
passes 41 noisy snapshots of on a 26 × 26 grid, ranging from t = 0 to
t = 400 s. As we assume the dynamical system of interest features the
ubiquitous diffusion phenomenon, the governing PDE (that is, ℱ) is
known to have a diffusion term (Δu) whose scalar coefficients are still
unknown. Therefore, we encode the diffusion term into the PeRCNN
by creating a physics-based FD convolutional connection with the
discrete Laplace operator as the convolutional kernel (Supplementary
Note B.3). Furthermore, the diffusion coefficient (μ̃) is first estimated
by solving a linear regression problem of ut = μ̃Δu with the available
data. Then a lower bound of 0 and upper-bound of 2μ̃ are applied to

ensure the stability of diffusion. Each model is responsible for predict-
ing 801 fine-resolution snapshots during the training phase, while 1,700
extra snapshots are predicted for extrapolation.

Snapshots at different time instants are presented in Fig. 4a, which
reveal the complex maze-like pattern of the GS RD system. We report
that the recurrent ResNet and PDE-Net are unable to reconstruct the
fine-resolution snapshots even in the training due to the limited noisy
training data, after trying all the hyperparameter combinations within
a range (Supplementary Note E.5.1). Apart from that, it can be seen
from the snapshots that the PeRCNN is the only model working well
for long-time extrapolation in spite of minor discrepancies. It is also
interesting to note that PeRCNN with filter size of 1 works as good as
the model with larger filters (for example, 3 or 5). This is because the
reaction term of the GS RD system contains no spatial derivatives,
making the 1 × 1 filter sufficient for representing the nonlinear reaction
terms. This implies that prior knowledge on the governing PDE can
also be employed while designing the data-driven model. To quanti-
tatively measure the extrapolation capability of our model, we also
plot the evolution of accumulative RMSE in Fig. 4a. It is observed that
the PeRCNN outperforms the competitors at all stages in the context
of error propagation, which further confirms the extrapolation abil-
ity of the PeRCNN. We may notice that the accumulative RMSE starts
from an initial high value. This is due to the fact that the training data
are corrupted by 10% Gaussian noise and the metric is computed from
one single snapshot at the beginning. The effect of the unrelated noise
gradually fades out as more time steps are considered.

3D GS RD equation. In this example, we test our method on the 3D GS
RD system. As the computational intensity of this higher-dimensional
example brings challenges to the existing methods, we aim to scrutinize
the performance of our PeRCNN regarding the scalability and compu-
tational efficiency. The training data used to establish the data-driven

a

b

u

v

Reference PeRCNN ConvLSTM ResNet DHPM

M
agnitude u

M
agnitude v

Reference PeRCNN ConvLSTM ResNet DHPM

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

t = 1,125

Error propagation

Error propagation

t = 480

u

v

PDE-Net

PDE-Net

0

0
25

50

z

y x

00

0

y x

00

0

–50–250
25

50
25

–25

50

–50

50

25

0–2
5–50

–25

50

25

0–25–50
–25

0

0
25

50

zz

y x25

–25

50

–50

5025

0–25–50
–25

0
25

50

z z

yy xx

–50–250
25

50

50

25
0–2

5–50
–25

0
25

50

z

y x

–50–250
25

50

50

25
0–2

5–50
–25

0
25

50

z

y x

–50–250
25

50

50

25
0–2

5–50
–25

0
25

50

z

y x

–50–250
25

50

50

25
0–2

5–50
–25
0

25

50

z

y x

–50–250
25

50

50

25
0–2

5–50
–25

0
25

50
z

y x

–50–250
25

50

50

25
0–2

5–50
–25

0
25

50

z

y x

–50–250
25

5050

25
0–25–50

–25
0

25
50

z

y x

Training

Extrapolation

Extrapolation

Training

0
0

0.05

0.10

0.15

0.20

0.25

0.30

RM
SE

0

0.1

0.2

0.3

0.4

0 100 200 300 400 500

RM
SE

250 500 750 1,000 1,250
t (s)

t (v)

PeRCNN
DHPM
ResNet

PDE-Net
ConvLSTM

PeRCNN
DHPM
ResNet

PDE-Net
ConvLSTM

Fig. 4 | Error propagation curve of the prediction and the extrapolated snapshots from each data-driven model compared with the reference solution.
Note that extrapolation is performed beyond the time horizon of the measurement data while the time of each snapshot is marked by a dashed red line in the error
propagation curve. a, 2D GS RD equation. b, 3D GS RD equation.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | July 2023 | 765–779 771

Article https://doi.org/10.1038/s42256-023-00685-7

model include 21 noisy low-resolution snapshots (253) uniformly sam-
pled from t = 0 to t = 150 s. The prior knowledge on the system and the
estimation of the diffusion coefficients as discussed in the previous 2D
GS RD example are adopted here as well. Each trained model produces
301 high-resolution (493) snapshots during the learning stage, while
700 extrapolation steps are predicted once each model is finalized.
The predicted isosurfaces of two levels are plotted in Fig. 4b. It should
be noted that the plot of PDE-Net is blank because the prediction range
falls out of the two selected isosurface levels. Similar to the previous
case, we observe that PeRCNN is the only model that gives a satisfactory
long-term prediction. The flat error propagation curve of the PeRCNN,
as shown in Fig. 4b, also demonstrates the remarkable generalization
capability of PeRCNN.

In Supplementary Note E.5, we compare the number of trainable
parameters, the training time per epoch, and the RMSE of both train-
ing and extrapolation for each model. It is found that the PeRCNN is
characterized with good model efficiency as it uses the least amount
of training parameters. For the 3D case where the training efficiency
of the network is of great concern, the elapsed time for training one
epoch by PeRCNN is comparable to that of the ResNet, which is widely
acknowledged to be an efficient network architecture. As for the accu-
racy of the training and extrapolation, our model outperforms the
baselines consistently across different examples. In a nutshell, the
PeRCNN outperforms the other three baselines with much fewer train-
able parameters and higher accuracy.

Generalization to different ICs. It is evident that the trained model
has good extrapolation capability along the time horizon. Here we
further explore how the trained model generalizes to different ICs. To
set up the experiment, we employ the above trained model to perform
inference with a different IC. It should be noted that the baseline deep
hidden physics model is ineligible for inference with different ICs as it
is based on an FCNN. The prediction result is depicted in Fig. 5. It is seen

that the PeRCNN gives consistent prediction compared with the
ground-truth reference solution. On the contrary, the considered
baseline models (for example, recurrent ResNet, ConvLSTM and
PDE-Net) are unable to generalize to an unseen IC. They give wild pre-
diction because of their incapability of learning the underlying physics
(for example, caused by the black-box property of the model). In addi-
tion, the error propagation of the prediction in Fig. 5 indicates clearly
the excellent generalization capability of the proposed model. In the
later section ‘Interpretability of the learned model’, we show that the
extracted expression from the trained PeRCNN model is very close to
the genuine ℱ , which to a large degree explains the remarkable gener-
alization capability of our model given the fact that the trained PeRCNN
model parameterizes the spatiotemporal dynamics well.

Data-driven discovery of PDEs with scarce and noisy data
In previous sections, we primarily investigate the scientific modelling
tasks (for example, forward simulation or data-driven modelling) using
the proposed model, which exhibits excellent accuracy and extrapo-
lation ability as identified from the numerical results. However, the
process of knowledge discovery does not end at modelling the physi-
cal phenomena of interests. More importantly, it is the translation of
the learned patterns from the data (for example, formulated PDEs
or empirical relationships) that lead scientists to understand the
cause–effect relationship among physical variables, and further make
inference on similar problems. Therefore, in this section, we extend
the proposed physics-encoded learning model for discovering the
closed-form governing PDEs58. To formulate this problem, let us again
consider the nonlinear system described by equation (7). The objective
of the equation discovery is to recover the closed form of the governing
PDEs given the scarce and noisy measurement of the system. To this
end, we integrate the sparse regression technique15 with our PeRCNN
model for solving this problem. The proposed framework for the PDE
discovery is presented in Fig. 6 with the example of 2D GS RD equation.

a

b

t = 650

Error propagation

Error propagation

t = 450

u

v

u

v

IC Reference PeRCNN ConvLSTM ResNet

M
agnitude u

M
agnitude v

Reference PeRCNN ConvLSTM

PDE-Net

IC ResNetPDE-Net

0
0

100 200 300 500

0.1

0.2

0.3

RM
SE

0.4

0.5
PeRCNN
ConvLSTM
ResNet
PDE-Net

t (s)

0
0

150 300 450 600 750

0.1

0.2

0.3

RM
SE

0.4

0.5
PeRCNN
ConvLSTM
ResNet
PDE-Net

t (s)

1.00
0.75
0.50
0.25

1.00

0

0.75
0.50
0.25
0

00

0z

y x

00

0z

y x00

0z

y x

00

0

–50–250
25

50

50
25

0–2
5–50

–25
0

25

50

zz

yy
xx

–50–250
25

50

50

25
0–2

5–50
–25

0
25

50

z

y x

–50–250
25

50

50

25
0–2

5–50
–25
0

25

50

z

y x

–50–250
25

5050
25

0–2
5–50

–25
0

25

50

z

y x

–50–250
25

50

50

25
0–2

5–50
–25
0

25

50

z

y x

–50–250
25

50

50

25
0–2

5–50
–25
0

25

50

z

y x

–50–250
25

50

50

25
0–2

5–50
–25
0

25

50

z
y x

–50–250
25

50

50

25
0–2

5–50
–25
0

25

50

z

y x

Fig. 5 | Error propagation curve and the snapshots of the inference result. The results are obtained by performing inference on the data-driven model from the
section ‘Data-driven modelling of spatiotemporal dynamics’ using a different IC. a, 2D GS RD equation. b, 3D GS RD equation.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | July 2023 | 765–779 772

Article https://doi.org/10.1038/s42256-023-00685-7

The entire procedure consists of three steps, data reconstruction
(Fig. 6a), sparse regression (Fig. 6b) and fine-tuning of coefficients
(Fig. 6c), as discussed in ‘Equation discovery’ in Methods.

To validate the effectiveness of the our method, we perform the
equation discovery on two RD systems (for example, 2D GS and λ–Ω RD
systems) using synthetic datasets, which are obtained by downsam-
pling the noise-corrupted numerical solution. Two different Gaussian
noise levels (5% and 10%), as well as the noise-free case, are considered
in the experiment. As we assume the ubiquitous diffusion phenomenon
exists in the concerned system, a short-cut diffusion convolutional
layer is encoded into the network for data reconstruction (Fig. 1a).
Accordingly, the coefficients corresponding to Δ(u) are exempted from
being filtered in the Sequential Threshold Ridge regression (STRidge)
algorithm. Once the equation discovery is finished, we measure the
performance of the proposed method using the metrics of precision,
recall and relative ℓ2 error of the coefficient vector. Technical details
of the generation of synthetic measurement data and the evaluation
metrics can be found in Supplementary Note F.3.

The discovered PDEs by our method are provided in Extended Data
Table 3. It is seen that our method is able to recover the governing PDEs
completely when the measurement data are clean or mildly polluted
by noise. Even though the noise level grows to 10%, our approach still
exhibits competitive performance, that is, it uncovers the majority of
terms in the PDEs. Empirical study in Supplementary Note F.5 shows
that our method could handle even a much larger noise level, that
is, 30% Gaussian noise. In Supplementary Note F.4, we also compare
our approach with some existing methods (or baselines) for govern-
ing PDE discovery, including PDE-FIND16, sparse regression coupled
with an FCNN or PDE-Net5. The comparison shows that our approach
outperforms (if not performs as good as) the considered baselines con-
sistently under different noise levels and data richness. Visualizing the
reconstructed high-fidelity data from each method (Supplementary
Fig. 17), we observe that our method has a much smaller reconstruc-
tion error as a result of fully utilizing the prior physics knowledge
and the powerful expressiveness of the model. This would give rise to

more accurate derivative terms in the linear system, facilitating the
discovery of the governing PDEs. In summary, the effectiveness of
the proposed approach is demonstrated for solving the data-driven
equation discovery problem, especially when the measurement data
are characterized by poor resolution and noise.

Interpretability of the learned model
Compared with the traditional deep neural networks, which are usually
considered to be ‘black box’, the proposed network architecture is
designed to possess good interpretability. As each channel of the input
for the Π-block (that is, Û(k) where k denotes the discrete time instant)
corresponds to a solution component (that is, u and v), the multiplica-
tive form of the Π-block (equation (8)) makes it possible to extract an
explicit form of learned ℱ from the learned weights and biases via
symbolic computations. This section is dedicated to the discussion on
how the learned model can be interpreted as an analytical expression,
which is useful for people to understand the underlying cause–effect
relationships among physical variables.

To demonstrate how to interpret the learned model, we first use
the learned model from 3D GS RD case in ‘Data-driven modelling of
spatiotemporal dynamics’ as an example. In this case, the parallel con-
volutional layers in the Π-block have the filter size of 1, which implies
that each output channel is the linear combination of u, v and a constant.
With the element-wise product operation among three convolutional
layers, a third-degree polynomial will be produced to account for the
reaction term of the system. With the help of the SymPy59—a symbolic
computation Python package—we can extract the learned reaction term:

R(u) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−0.0074u3 − 0.0051u2v − 0.2uv2 − 0.0386v3 − 0.0018u2

−0.11uv − 0.055v2 − 0.016u − 0.022v + 0.025;

0.0005u3 − 0.013u2v + 0.54uv2 − 0.087v3 − 0.0076u2

+0.023uv + 0.046v2 + 0.017u − 0.036v − 0.0097

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5)

Data-driven
model

Low-resolution noisy
measurement

High-resolution prediction

…

D
at

a
po

in
ts

0
0

∆u ∆v 1 u u2 v3vtut

µv

v

Sparse regression: = arg min −
2Z
2

+ λ 0

Collect terms, flatten and downsample

1

v
u

u2

uv2

v3

…
…

0.0356
0.0271

0
0

− 0.8644

0
…

…

0
0

−0.0735
0

0.9203

0

…
…

After thresholding

Identified PDE structure

Note: c1–c7 are PDE coe�icients
for further tuning

Physics-based
model

Low-resolution noisy
measurement

Coe�icients
fine-tuning

ut = 2.001 × 10−5∆u − 1.003uv2 − 0.04008u + 0.04008

vt = 5.042 × 10−6∆v + 1.009uv2 − 0.1007v

Identified PDE formulation a

b

– =

c

Z

› ›
››

Ф

›

Ф

› ›› ›››

µu

›
›

› ›

ut = c1∆u + c2uv2 + c3u + c4

vt = c5∆v + c6uv2 + c7v

vu

vu

Fig. 6 | Flowchart of the discovery of governing PDEs. a, Data reconstruction:
data-driven model constructed from low-resolution and noisy measurement
is used to generate high-resolution prediction for sparse regression. b, Sparse

regression: the STRidge algorithm is used to obtain the sparse coefficient matrix
Ξ. c, Fine-tuning of coefficients: the PeRCNN built based on the identified PDE
structure is employed to fine-tune the coefficient from the sparse regression.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | July 2023 | 765–779 773

Article https://doi.org/10.1038/s42256-023-00685-7

Meanwhile, the identified diffusion term can be also extracted from the
trainable variables in diffusion connections, which reads
D(u) = [0.18Δu,0.08Δv]

T
. Comparing the extracted term with the

ground-truth PDEs, we observe some distracting terms due to the 10%
noise in the training data and the redundancy of the network. Further
pruning on the raw expression can be done to make it more parsimonious.

The above example is a special case where the convolutional layer
in the Π-block has filter size of 1, which indicates no spatial derivatives
are involved in reaction terms. However, we can extend the network
architecture design to make it applicable to general cases. To interpret
terms involving partial derivatives (for example, uΔu, uux), we could
completely freeze or impose moment matrix constraints on part of the
convolutional filters5. Here, an experiment is conducted on the 2D
Burgers’ equation, which has wide applications in applied mathematics
such as fluid and traffic flow modelling, given by ut + u ⋅ ∇ u = νΔu,
where u = [u, v]T denotes the fluid velocities and ν is the viscosity coef-
ficient. The network employed in the experiment has two convolutional
layers with two channels. The first convolutional layer is associated
with derivative operators ∂(⋅)/∂x and ∂(⋅)/∂y, respectively, by fixing the
filters with corresponding FD stencils. The synthetic dataset is gener-
ated on 101 × 101 Cartesian grid using high-order FD method with
ν = 0.005. The noise-free synthetic measurement data used for con-
structing the model include 11 low-resolution (51 × 51) snapshots uni-
formly selected from the time period of t ∈ [0, 0.1].

After the model is trained, we interpret the expression from the
PeRCNN model, which reads:

ut =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.0051Δu − 0.95ux(1.07u − 0.0065v − 0.17)

+0.98uy(0.0045u − 1.01v + 0.17) + 0.053;

0.0051Δv − 0.82vx(1.22u + 0.0078v − 0.18)

−0.91vy(0.0063u + 1.08v − 0.17) + 0.058

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(6)

It can be observed that the equivalent expression of the learned model
matches well the genuine governing PDEs, except for some minor terms
whose coefficients are close to zero. In addition, the extracted expres-
sion helps explain the extraordinary extrapolation and generalization
capabilities of our model. Although the selection of differential oper-
ators to be embedded is crucial for identifying the genuine form of the
ℱ , the above two examples demonstrate the interpretability of PeRCNN
over common black-box models.

Discussion
This paper introduces a novel deep learning architecture, namely,
PeRCNN, for modelling and discovery of nonlinear spatiotempo-
ral dynamical systems based on sparse and noisy data. One major
advantage of the PeRCNN is that the prior physics knowledge can be
encoded into the network, which guarantees that the resulting network
strictly obeys given physics (for example, ICs and BCs, general PDE
structure, and known terms in PDEs). This brings distinct benefits for
improving the convergence of training and accuracy of the model.
Through extensive numerical experiments, we show the efficacy of the
PeRCNN for forward and inverse analysis of RD-type PDEs. The com-
parison with several baseline models demonstrates that the proposed
physics-encoded learning paradigm uniquely possesses remarkable
extrapolation ability, generalizability and robustness against data
noise and/or scarcity. Although we demonstrate the effectiveness of
the PeRCNN on various RD systems, the model is in theory applicable to
other types of spatiotemporal PDE (for example, the 2D Burgers’ equa-
tion with the convection term shown in Supplementary Note F.4, and
the Kolmogorov turbulent flows at Reynolds number 1,000, discussed
in Supplementary Note J).

Equally important, the PeRCNN shows good interpretability due
to the multiplicative form of the Π-block. An analytical expression

that governs the underlying physics can be further extracted from
the learned model via symbolic computation. In particular, we suc-
cessfully marry PeRCNN to the sparse regression algorithm to solve
the crucial PDE discovery issues. The coupled scheme enables us to
iteratively optimize the network parameters, and fine-tune the dis-
covered PDE structures and coefficients, essentially leading to the
final parsimonious closed-form PDEs. The resulting framework will
serve as an effective, interpretable and flexible approach to accurately
and reliably discover the underlying physical laws from imperfect and
coarse-meshed measurements.

Although the PeRCNN shows promise in data-driven modelling of
complex systems, it is restricted by the computational bottleneck due
to the high dimensionality of the discretized system, especially when it
comes to systems in a large 3D spatial domain with long-term evolution.
However, this issue is expected to be addressed via temporal batch and
multi-graphics-processing-unit training. In addition, the current model
is rooted in standard convolution operations, which limits its appli-
cability to irregular meshes of arbitrary computational geometries.
This issue might be resolved by introducing graph convolution into
the network architecture. Lastly, as the PeRCNN network is designed
based on the assumption that the underlying governing PDEs have a
polynomial form (commonly seen in standard PDEs for modelling of
physics such as diffusion, reaction, convection and rotation), it might
be less capable or too redundant (if many channels are used to achieve
a high polynomial degree) of modelling unique spatiotemporal dynam-
ics whose governing PDEs are parsimonious but involve other advanced
symbolic operators such as division, sin, cos, exp, tan, sinh, log and so
on. Although the PeRCNN shows success in data-driven modelling of a
PDE system with a non-polynomial term in Supplementary Note I, how
to design a network that properly incorporates a limited number of
mathematical operators as symbolic activation functions to improve
the representation ability still remains an open question. We aim to
systematically address these issues in our future study.

Methods
We herein introduce the method of the proposed PeRCNN model. More
details can be found in Supplementary Note B.

Network architecture
Let us first consider a spatiotemporal dynamical system described by
a set of nonlinear, coupled PDEs as

ut = ℱ (x, t,u,u2,∇xu,u ⋅ ∇xu,∇2u,⋯) (7)

where u(x, t) ∈ ℝn denotes the state variable with n components defined
over the spatiotemporal domain {(x, t)} ∈ Ω × 𝒯𝒯 . Here, Ω and 𝒯𝒯 repre-
sent the spatial and temporal domains, respectively; ∇x is the nabla
operator with respect to the spatial coordinate x; and ℱ(⋅) is a nonlinear
function describing the right-hand side of the PDEs. The solution to
this problem is subject to the IC ℐ(u; t = 0,x ∈ Ω) = 0 and the BC
ℬ(u,∇xu,⋯ ;x ∈ ∂Ω) = 0 . Since we mainly focus on regular physical
domains in this paper, the state variable u is defined on a discretized
Cartesian grid.

Borrowing the concepts of numerical discretization, we build the
physics-encoded spatiotemporal learning model on the basis of a
forward Euler scheme. That said, the state variable u would be updated
by a recurrent network given by û(k+1) = û(k) + ℱ̂ (û(k);θ)δt, where δt is
the time spacing, û(k) is the prediction at time tk and ℱ̂ is the approxi-
mated ℱ parameterized by θ that ensembles a series of operations for
computing the right-hand side of equation (7). Similar ideas of applying
numerical discretization (for example, backwards Euler or Runge–
Kutta) to designing deep learning architectures can be found in some
recent literature5,60–64.

Following the above intuition, here we introduce the proposed
network, namely, the PeRCNN. The architecture of this network (as

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | July 2023 | 765–779 774

Article https://doi.org/10.1038/s42256-023-00685-7

shown in Fig. 1) consists of two major components: a fully convolutional
network as the ISG and a novel convolutional block called the Π-block
(product) used for recurrent computation. The ISG is introduced to
produce the high-resolution initial state Û(0) in the case that only
low-resolution initial state (or measurement) ũ(0) is available as the IC.
Note that ũ is used to denote the low-resolution snapshots (or measure-
ment) while the superscript ‘0’ indicates the first one. Similarly, Û is
used to represent the high-resolution prediction from the model.
Within the Π-block, the core of PeRCNN, the state variable Û(k) from the
previous time step goes through multiple parallel convolutional layers.
The feature maps produced by these layers are then fused through an
element-wise product layer. The 1 × 1 convolutional layer is subse-
quently used to linearly combine multiple channels into the desired
output (that is, approximated ℱ). Mathematically, the Π-block seeks
to approximate the function ℱ via polynomial combination of solution
Û(k) and its spatial derivatives, given by

ℱ̂ (Û(k)) =
Nc

∑
c=1

Wc ⋅ [
Nl

∏
l=1

(𝒦𝒦c,l ⊛ Û(k) + bl)] (8)

where Nc and Nl are the numbers of channels and parallel convolutional
layers, respectively; ⊛ denotes the convolutional operation; 𝒦𝒦c,l
denotes the weight of the convolutional filter of the lth layer and the
cth channel, while bl represents the bias of the lth layer; and Wc is the
weight corresponding to the cth channel in the 1 × 1 convolutional layer
while the bias is omitted for simplicity. This multiplicative representa-
tion promotes the network expressiveness for nonlinear functions ℱ ,
compared with the additive representation commonly seen in related
work5,65. For detailed discussion on the design of the Π-block, please
refer to Supplementary Note B.

Due to the discretized scheme of the learning model, it is possible
to encode prior physics knowledge of the system into network archi-
tecture, which contributes to a well-posed optimization problem. Given
some existing terms in the PDE, we could encode these terms into the
network by creating a short-cut connection, namely the physics-based
FD convolutional connection, from Û(k) to Û(k+1), as shown in Fig. 1. The
convolutional kernel in this physics-based convolutional layer would
be fixed with the corresponding FD stencil to account for the known
terms. A major advantage of this encoding mechanism over the soft
penalty in physics-informed learning models is the capability to lever-
age the incomplete PDE in the learning. In the numerical examples, we
demonstrate that such a highway connection could accelerate the
training speed and improve the model inference accuracy significantly.
In a nutshell, the physics-based convolutional connection is built to
account for the known physics, while the Π-block is designed to learn
the complementary unknown dynamics.

In addition to the incomplete PDE, the boundary conditions (for
example, Dirichlet or Neumann type) can also be encoded into the
learning model. Inspired by the idea from the FD method, we apply the
physics-based padding to the model’s prediction at each time step, as
shown by Fig. 1b. Specifically, for the Dirichlet BCs, we pad the predic-
tion with prescribed values. Likewise, the padding value of Neumann
or Robin BCs will be computed based on the boundary values and the
gradient information. A comprehensive discussion on the padding
mechanism for various BCs (for example, Dirichlet, Neumann, Robin
and periodic) can be found in Supplementary Note B.3. In particular,
we show the effectiveness of the proposed padding method in Supple-
mentary Note G, where the Neumann BCs are considered for example.

Motivation of the network architecture design
In the ‘Physics-encoded spatiotemporal learning’ section, we have
introduced the proposed network architecture for learning spati-
otemporal dynamical systems. Here a further discussion on the design
philosophy is presented to showcase the primary motivations. A dis-
tinct characteristic of this architecture is the usage of the Π-block as

a universal polynomial approximator to nonlinear functions, instead
of utilizing a sequence of linear layers intertwined with nonlinear
activation layers commonly seen in traditional deep networks. The
motivations for introducing the element-wise product operation in
the Π-block are threefold:

•	 Although the nonlinear activation function is crucial to the
universal approximation property of the deep neural network,
it is also a source of poor interpretability. For example, the con-
ventional deep neural network would form a prolonged nested
function that is usually intractable to humans. We consider it
unfavourable to use these nonlinear functions to build a recur-
rent block that aims to generalize the unknown physics.

•	 The element-wise product operation makes a better approxima-
tion to ℱ in the form of multivariate polynomial (for example,
u ⋅ ∇ u + u2v), which covers a wide range of well-known dynamical
systems, such as Navier–Stokes, RD, Lorenz, Schrödinger
equations, to name only a few. Since the spatial derivatives can
be computed by convolutional filters66, a Π-block with n parallel
convolutional layers of appropriate filter size is able to represent
a polynomial up to the nth order.

•	 Compared with the regression models (for example, linear or
symbolic regression) relying on predefined basis functions or
prior knowledge (for example, the highest order) on ℱ
(refs. 5,15), the Π-block is flexible at generalizing the nonlinear
function ℱ . For example, a Π-block with two parallel layers of
appropriate filter size ensembles a family of polynomials up to
the second order (for example, u, Δu, uv, u ⋅ ∇ u), with no need to
explicitly define the basis.

Since the network architecture roots on numerical discretization,
nice mathematical properties (see the next section) exist to guarantee
the universal polynomial approximation property of the Π-block. In
addition, the flexibility to deal with a variety of problems in scientific
modelling is another advantage possessed by the proposed network
architecture. The Π-block acts as a universal polynomial approximator
to unknown nonlinear function while the physics-based convolutional
layer accounts for the prior knowledge on the governing equation.
Such a way of encoding the prior physics knowledge into the network
architecture could effectively narrow down the space of feasible model
parameters, hence leading to the reduced training effort required (for
example memory, floating point operations per second and so on).
Furthermore, in many prediction tasks involving nonlinear system,
a mixture of partial physics knowledge and a scarce amount of meas-
urement data of the system is available, which is when the proposed
PeRCNN has a huge advantage over the traditional deep network. As
shown in the ‘Data-driven modelling of spatiotemporal dynamics’
section, we demonstrated the capability of the proposed PeRCNN at
handling the modelling tasks given limited physics knowledge and
some low-resolution snapshots of the system. An extreme case is when
the analytical form of a physical system is completely known except
some scalar coefficients. The physics-based convolutional layers asso-
ciated with trainable variables can be created to exactly express the
physical system up to discretization error. In such a case, the PeRCNN
can be assumed to recover to FD method with some trainable variables.
In the ‘Inverse analysis of PDE systems’ section, we showed how the
proposed PeRCNN can be applied to identify the system coefficients
from the noisy and scarce data in such a scenario.

Noteworthy, we mainly consider the nonlinear function ℱ in the
form of polynomial, which is very commonly seen in PDEs. Other terms
such as trigonometric and exponential functions are not considered
in this work for simplicity. However, incorporating them would require
no more effort than adding a particular symbolic activation (for exam-
ple, sin, cos, exp and so on) layer following the convolutional operation.
Furthermore, these functions can be approximated by polynomials
based on a Taylor series as argued in ref. 15.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | July 2023 | 765–779 775

Article https://doi.org/10.1038/s42256-023-00685-7

Universal polynomial approximation property for the Π-block
In the proposed PeRCNN, the Π-block acts as an universal polynomial
approximator to unknown nonlinear functions while the physics-based
FD convolutional layer (that is, with FD stencil as the convolutional
filter) accounts for the prior knowledge on the governing equation.
Notably, the Π-block achieves its nonlinearity through the element-wise
product operation (equation (8)), which renders the network better
expressiveness compared with the additive form representation
ℱ̂(u) = ∑1≤i≤N fi ⋅ (𝒦𝒦i ⊛ u) seen in related work5,65 where N is the number
of convolutional layers, 𝒦𝒦i is the convolutional kernel of the ith layer
and fi is the weight of the ith layer’s output. To support this claim, we
propose the following Theorem and Lemmas to prove that any dynami-
cal system described by equation (7) whose ℱ is continuous (for exam-
ple, preferably in the form of polynomial) can be approximated by the
proposed network. Without loss of generality, we consider the state
variable u with one components u. Lemma 1 and Lemma 2 guarantee
the accuracy of the approximation of ℱ̂ (equation (8)) and the forward
computation û(k+1) = û(k) + ℱ̂ (û(k);θ)δt, respectively.
Lemma 1. The trainable convolutional filter 𝒦𝒦 can approximate any
differential operator with prescribed order of accuracy.
Proof. Consider a bivariate differential operator ℒ(⋅), we have20:

ℒ(u) =
p−1
2
∑

k1 ,k2=−
p−1
2

𝒦𝒦[k1, k2]
p−1
∑
i,j=0

∂i+ju

∂ix∂jy
||(x,y)

ki1k
j
2

i!j!
δxiδy j + 𝒪𝒪 (|δx|p−1 + |δy|p−1)

=
p−1
2
∑

k1 ,k2=−
p−1
2

𝒦𝒦[k1, k2]u(x + k1δx, y + k2δy) + 𝒪𝒪 (|δx|p−1 + |δy|p−1)

= 𝒦𝒦 ⊛ u + 𝒪𝒪 (|δx|p−1 + |δy|p−1)
(9)

where p is the size of the filter indexed by k1 and k2. Letting the filter’s
entry 𝒦𝒦[k1, k2] be the corresponding Taylor series coefficient, we can
see the error of approximation is bounded by 𝒪𝒪 (|δx|p−1 + |δy|p−1).
Lemma 2. The local truncation error of the forward computation (that
is, û(k+1) = û(k) + ℱ̂ (û(k);θ)δt) diminishes as δt decreases.
Proof. With the Taylor expansion of u(k+1) = u(k) + ℱ (u(k))δt + 𝒪𝒪 (δt2) ,
we can see the truncation error of the forward computation converges
to zero as δt decreases.
Theorem 1. Suppose ℱ ∶ ℝs → ℝ is a continuous real-valued function of
multidimensional variables η ∈ ℝs, where η denotes the set of system
state u and its derivative terms, consisting of s elements in total. For any
small positive number ϵ, there exist positive integers M and N, real num-
bers wj, γij and bj (i = 1, 2, …, N and j = 1, 2, …, M), and variable set
E ∈ ℝN×M, such that:

||||
ℱ(η) −

M

∑
j=1

wj ⋅ [
N

∏
i=1

(γijEij + bi)]
||||
< ϵ (10)

Proof. Let us first denote the set of system state u and its derivative
terms, consisting of s elements in total, as η = [u, ℒ1(u),
ℒ2(u),… ,ℒs−1(u)]

T ∈ ℝs. For example, η = [u, v,ux, vy,…]
T. The right-hand

side of the PDEs in equation (7) can then be represented by ℱ(η). Based
on the multivariate Taylor’s theorem, for any small positive number ϵ,
there is a real-valued polynomial function 𝒯𝒯 such that

|ℱ(η) − 𝒯𝒯(η)| < ϵ (11)

Here, 𝒯𝒯(η) can be expressed as:

𝒯𝒯(η) =
n

∑
n1=0

n

∑
n2=0

⋯
n

∑
ns=0

𝒩𝒩(η) (12)

where

𝒩𝒩(η) = cn1cn2 ⋯ cns
(η1 − b̄1)

n1 (η2 − b̄2)
n2 ⋯(ηs − b̄s)

ns (13)

Here, c terms denote the real-valued coefficients, b̄ terms denote the
biases and n is the maximum polynomial order. For simplicity, we omit
the subscripts {n1, …, ns} in 𝒩𝒩(η).
Lemma 3. For real numbers η, b and c, and integer n′, there exist
real-valued vector ααα ∈ ℝn+1, real number ̃b and integer n′ ≤ n such that
c(η − b)n

′
= ∏n

i=0 (αiη − ̃b) if ∥ ααα∥0 = n′.
Based on Lemma 3, there are real number α terms and ̃b terms such

that 𝒩𝒩(η) can be re-written as:

𝒩𝒩(η) =
n

∏
i=0

[(αi1η1 − ̃b1) (αi2η2 − ̃b2)⋯ (αisηs − ̃bs)] s.t. ∥ αk∥0 = nk

(14)

where αk = [α0k,α1k,… ,αnk]
T ∈ ℝn+1 is the kth vector of the α terms

(k = 0, 1, …, s); ∥⋅∥0 denotes the ℓ0 norm of a vector. By defining proper
weights (βββ ∈ ℝ(n+1)s) and biases (b̂ ∈ ℝ(n+1)s), we can further express 𝒩𝒩(η)
by:

𝒩𝒩(η) =
(n+1)s
∏
i=1

[βiη̂i + ̂bi] (15)

where η̂ ∶= ℓℓℓ ⊗ η ∈ ℝ(n+1)s is the Kronecker transformation of η; ℓℓℓ ∈ ℝn+1
is a column vector with all elements equal to 1; and ⊗ denotes the
Kronecker product. Note that β is sparse. Substituting equation (15)
into equation (12), we obtain the equivalent formulation for 𝒯𝒯(η) as
follows:

𝒯𝒯(η) =
M

∑
j=1

wj ⋅ [
N

∏
i=1

(γijEij + bi)] (16)

where E ∶= ̃ℓ ⊗ η̂ ∈ ℝN×M is the Kronecker transformation of Ê; ̃ℓ ∈ ℝM
is a row vector with all elements equal to 1; w ∈ ℝM and γγγ ∈ ℝN×M denote
some properly defined real-valued coefficients; and b ∈ ℝN is the bias
vector. Note that the formulation of equation (16) can be guaranteed
when M ≥ (n + 1)s and N ≥ (n + 1)s. Substituting equation (16) into equa-
tion (11) can thus prove Theorem 1.

It is noted that the term γijEij in equation (16) can be approximated
by a series convolutional filters as shown in Lemma 1, inspiring the
design of the universal polynomial approximator shown in equation
(8). Although Theorem 1 still holds by selecting different values of M,
N, w and b, the approximation capability might be affected (with vary-
ing approximation errors). In particular, a small value of n (thus M and
N) that represents less polynomial terms used for approximation will
probably lead to a large truncation error. Nevertheless, since the pro-
posed universal polynomial approximator is fully learnable, an equiva-
lent model can be achieved by adapting the channel number (see
Supplementary Note I). If the underlying form of ℱ is a polynomial
type, Theorem 1 holds with much fewer parameters and terms required
for satisfactory accuracy.

Loss functions
We employ different loss functions depending on the problem at hand.
In the case of forward analysis of nonlinear systems, we assume the full
knowledge on the system (for example, governing equation, ICs, BCs)
is available. The most straightforward approach to construct a predic-
tive model would be utilizing the numerical discretization, that is,
customizing all the physics-based connections to realize the FD time
updating. That is to say, the network architecture parameterizes an
explicit solver of PDE system which hence has a requirement on δt for
numerical stability. To avoid this issue, we construct the predictive
model in an implicit manner. To be more concrete, we employ a Π-block
in the network as the approximator to ℱ and compute the governing
equation’s residual from the spatiotemporal prediction using high-order
FD stencils. The mean squared error (MSE) of the physics residual (fol-
lowing equation (7)) is employed as the loss function, which reads

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | July 2023 | 765–779 776

Article https://doi.org/10.1038/s42256-023-00685-7

𝒥𝒥(W,b) = MSE (Ût − ℱ (Û)) (17)

where Û ∈ ℝnt×n×H×W is the high-resolution prediction from the model,
Ût is the time derivative of Û computed through numerical discretiza-
tion while ℱ(Û) is the right-hand side of equation (7), and (W, b) denotes
the trainable parameters of the network. With the gradient descent
method for optimization, we can obtain a suitable set of Π-block param-
eters. This implicit way of establishing predictive model is more stable
numerically regarding the selection of δt. We also need to note that the
loss of ICs and BCs is not included in the loss function as they are already
encoded through customized padding (see ‘Physics-encoded spati-
otemporal learning’).

In the problem of data-driven modelling, the goal is to reconstruct
the most likely full-field solution Û given some low-resolution snap-
shots ũ ∈ ℝn′t×n×H′×W′ where n′t < nt, H′ < H and W′ < W . Therefore, the
loss function to train the network is defined as

𝒥𝒥(W,b) = MSE (Û(̃x) − ̃u) + λ ⋅MSE (Û(0) − 𝒫𝒫 (̃u(0))) (18)

where Û(̃x) denotes the mapping of high-resolution prediction
Û ∈ ℝnt×n×H×W on the coarse grid x̃; ̃u denotes the low-resolution meas-
urement; 𝒫𝒫(⋅) is a spatial interpolation function (for example, bicubic
or bilinear); and λ is the regularizer weighting. The regularization term
denotes the IC discrepancy between the interpolated high-resolution
initial state 𝒫𝒫 (̃u(0)) and the predicted high-resolution initial state Û(0)
from the ISG, which is found to be effective in preventing network
overfitting. Compared with the existing work on physics-informed
learning24,38,42,67, one major distinction of the loss function employed
here is the absence of the physics loss. This is because the prior physics
knowledge is already encoded into the network architecture as shown
in the ‘Physics-encoded spatiotemporal learning’ section. This facili-
tates the learning process of the spatiotemporal system significantly.
Equation (18) is also utilized as the loss function in the problem of system
coefficient identification where the noisy and scarce measurement is
available. However, a different network design is employed as elabo-
rated in Supplementary Fig. 10. In this case, multiple physics-based
convolutional layers are created to represent existing terms in the PDE
(for example, Δu, uv2, u) while each layer (or term) is associated with a
trainable variable to represent the corresponding coefficient. By mini-
mizing the the loss function with IC discrepancy regularizer, the
unknown scalar coefficients in the system could be obtained.

Equation discovery
The proposed PeRCNN-based PDE discovery model consists of three
steps, including data reconstruction, sparse regression and fine-tuning
of coefficients, discussed as follows.

Data reconstruction. As the available measurement data collected
in the real world are usually sparse and accompanied by noise, it is
common practice to pre-process the raw data to reconstruct the
high-fidelity data (for example, de-noised or high-resolution). In our
proposed framework, the data reconstruction step (Fig. 6a) is first
performed with the help of the PeRCNN as a high-resolution data-driven
predictive model. This step follows the same routine described in the
‘Data-driven modelling of spatiotemporal dynamics’ section. Specifi-
cally, we establish a data-driven model from some low-resolution snap-
shots and then infer the high-resolution prediction (or solution) from
the trained model. The reconstructed high-resolution data are then
employed in the subsequent sparse regression to ensure the accuracy
of the constructed library. The derivative terms in the library are esti-
mated via FD-based filtering on the reconstructed high-fidelity data.

Sparse regression. With the reconstructed high-fidelity (that is,
high-resolution and de-noised) solution, we are able to reliably estimate

the library and thus accurately perform sparse regression for the
explicit form or analytical structure of PDEs. Note that sparse regres-
sion is an extensively used technique for data-driven PDE discovery. It
is rooted on a critical observation that the right-hand side of equation
(7) for the majority of natural systems consists of only a few terms. To
demonstrate how the sparse regression works, let us consider the
measurement data with one single component, that is, u ∈ ℝns×nt, which
is defined on ns spatial locations and at nt time steps. After flattening
the state variable into a column vector U ∈ ℝns⋅nt×1, we are able to estab-
lish a library matrix ΘΘΘ(U) ∈ ℝns⋅nt×s such that each of s column vectors
denotes a candidate function in ℱ (for example, linear, nonlinear,
trigonometric and so on). Accordingly, each row of Θ(U) denotes a
spatiotemporal location. If the column space of the library matrix is
sufficiently rich, the governing PDE of the system can then be written
as a linear system, namely

Ut = ΘΘΘ(U)ΞΞΞ (19)

where Ut is the vector of time derivative of U; Θ(⋅) maps the original
state variable space to a higher-dimensional nonlinear space, for exam-
ple, Θ(U) = [1, U, U2, …, Ux, Uy, … ]; and ΞΞΞ ∈ ℝs×1 is the sparse coefficient
vector that represents the governing PDE. Sparse regression seeks to
find a suitable Ξ such that the sparsity of the vector and the regression
error are balanced. Specifically in our proposed framework, the
STRidge algorithm 16 is adopted among other effective
sparsity-promoting methods such as the iterative hard thresholding
method68,69, due to its superior performance compared with other
sparsity-promoting algorithms, such as LASSO70 and sequentially
thresholded least squares15. For a given tolerance that filters the entries
of Ξ with small value, we can obtain a sparse representation of ℱ with
the help of the STRidge algorithm, the technical details of which are
provided in Supplementary Note F.2. Iterative search with STRidge can
be performed to find the optimal tolerance according to the selection
criteria given by:

Ξ∗ = argmin
Ξ

{||Ut −Θ(U)Ξ||22 + γ||Ξ||0} (20)

where ∣∣Ξ∣∣0 is used to measure the sparsity of coefficient vector while
regression error ||Ut −Θ(U)Ξ||22 is used to measure model accuracy. As
the optimization objective has two components, we apply Pareto front
analysis to select an appropriate weighting coefficient γ (Supplemen-
tary Note F.5.3). As the accurate computation of the library matrix is
critical to obtaining an accurate coefficient vector via sparse regres-
sion, the reconstructed high-fidelity solution is subsequently used for
computing the partial derivative terms involved in the library.

As shown in Fig. 6b, we collect the candidate set from the network
for data reconstruction by performing symbolic computations on the
Π-block and establish the library matrix Θ(U). Note this is different
from the traditional sparse regression in which the candidate set is
predefined. A comparative study of these two ways of establishing
the library matrix is performed in Supplementary Note F.5.1. With the
established linear system, sparse regression is performed afterwards
to find a suitable coefficient vector Ξ that balances model complexity
and accuracy. This is realized by solving the optimization problem
described by equation (20) with the help by the STRidge algorithm.

Fine-tuning of coefficients. Due to the high dimensionality of the
reconstructed data, the sparse regression is performed on the subsam-
pled linear system (for example, randomly sampled 10% rows, 8.2 × 106
rows in the 2D GS RD case) to avoid the very large number of rows,
which retains computational efficiency without the loss of accuracy.
To fully exploit the available measurement and further improve the
accuracy of the discovered equations, we introduce the coefficient
fine-tuning step to produce the final explicit PDE formula. The rest of
training procedure is the same as that discussed in ‘Inverse analysis

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | July 2023 | 765–779 777

Article https://doi.org/10.1038/s42256-023-00685-7

of PDE systems’: all the original measurements are used to train a PDE
structure preserved network (Fig. 6c) while the coefficient of each
term is treated as a trainable variable. In Supplementary Note F.5.4, we
show that such a fine-tuning can considerably improve the accuracy
of the discovered PDEs.

Data availability
All the used datasets in this study are available in the Zenodo reposi-
tory71, the Gitee repository at https://gitee.com/chengzrz/percnn and
the GitHub repository at https://github.com/isds-neu/PeRCNN.

Code availability
All the source codes to reproduce the results in this study are available
in the Zenodo repository71, the Gitee repository at https://gitee.com/
chengzrz/percnn and the GitHub repository at https://github.com/
isds-neu/PeRCNN.

References
1. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Machine learning of

linear differential equations using Gaussian processes. J. Comput.
Phys. 348, 683–693 (2017).

2. Han, J., Jentzen, A. & Weinan, E. Solving high-dimensional partial
differential equations using deep learning. Proc. Natl Acad. Sci.
USA 115, 8505–8510 (2018).

3. Bar-Sinai, Y., Hoyer, S., Hickey, J. & Brenner, M. P. Learning
data-driven discretizations for partial differential equations. Proc.
Natl Acad. Sci. USA 116, 15344–15349 (2019).

4. Sanchez-Gonzalez, A. et al. Learning to simulate complex physics
with graph networks. In International Conference on Machine
Learning 8459–8468 (PMLR, 2020).

5. Long, Z., Lu, Y., Ma, X. & Dong, B. PDE-Net: learning PDEs from
data. In International Conference on Machine Learning 3208–3216
(PMLR, 2018).

6. Wang, R., Kashinath, K., Mustafa, M., Albert, A. & Yu, R. Towards
physics-informed deep learning for turbulent flow prediction. In
Proc. 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining 1457–1466 (ACM, 2020).

7. Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A. & Battaglia,
P. Learning mesh-based simulation with graph networks.
In International Conference on Learning Representations
(OpenReview.net, 2021).

8. de Avila Belbute-Peres, F., Economon, T. & Kolter, Z. Combining
differentiable PDE solvers and graph neural networks for fluid
flow prediction. In International Conference on Machine Learning
2402–2411 (PMLR, 2020).

9. Kochkov, D. et al. Machine learning-accelerated computational
fluid dynamics. Proc. Natl Acad. Sci. USA 118, e2101784118 (2021).

10. Erichson, N. B. Shallow neural networks for fluid flow
reconstruction with limited sensors. Proc. R. Soc. A 476,
20200097 (2020).

11. Stengel, K., Glaws, A., Hettinger, D. & King, R. N. Adversarial
super-resolution of climatological wind and solar data. Proc. Natl
Acad. Sci. USA 117, 16805–16815 (2020).

12. Fukami, K., Fukagata, K. & Taira, K. Machine-learning-based
spatio-temporal super resolution reconstruction of turbulent
flows. J. Fluid Mech. 909, A9 (2021).

13. Rao, C. & Liu, Y. Three-dimensional convolutional neural network
(3D-CNN) for heterogeneous material homogenization. Comput.
Mater. Sci. 184, 109850 (2020).

14. Schmidt, M. & Lipson, H. Distilling free-form natural laws from
experimental data. Science 324, 81–85 (2009).

15. Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing
equations from data by sparse identification of nonlinear
dynamical systems. Proc. Natl Acad. Sci. USA 113, 3932–3937
(2016).

16. Rudy, S. H., Brunton, S. L., Proctor, J. L. & Kutz, J. N. Data-driven
discovery of partial differential equations. Sci. Adv. 3, e1602614
(2017).

17. Udrescu, S.-M. & Tegmark, M. AI Feynman: a physics-inspired
method for symbolic regression. Sci. Adv. 6, eaay2631 (2020).

18. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,
436–444 (2015).

19. Lusch, B., Kutz, J. N. & Brunton, S. L. Deep learning for universal
linear embeddings of nonlinear dynamics. Nat. Commun. 9, 4950
(2018).

20. Long, Z., Lu, Y. & Dong, B. PDE-Net 2.0: learning PDEs from data
with a numeric-symbolic hybrid deep network. J. Comput. Phys.
399, 108925 (2019).

21. Chen, Z., Liu, Y. & Sun, H. Physics-informed learning of governing
equations from scarce data. Nat. Commun. 12, 6136 (2021).

22. Cranmer, M. D. et al. Discovering symbolic models from deep
learning with inductive biases. In Advances in Neural Information
Processing Systems (Curran Associates, 2020).

23. Karpatne, A. et al. Theory-guided data science: a new paradigm
for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 29,
2318–2331 (2017).

24. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed
neural networks: a deep learning framework for solving forward
and inverse problems involving nonlinear partial differential
equations. J. Comput. Phys. 378, 686–707 (2019).

25. Raissi, M., Yazdani, A. & Karniadakis, G. E. Hidden fluid mechanics:
learning velocity and pressure fields from flow visualizations.
Science 367, 1026–1030 (2020).

26. Karniadakis, G. E. et al. Physics-informed machine learning. Nat.
Rev. Phys. 3, 422–440 (2021).

27. Rao, C., Sun, H. & Liu, Y. Physics-informed deep learning for
incompressible laminar flows. Theor. Appl. Mech. Lett. 10, 207–212
(2020).

28. Sheng, H. & Yang, C. PFNN: a penalty-free neural network method
for solving a class of second-order boundary-value problems on
complex geometries. J. Comput. Phys. 428, 110085 (2021).

29. Sun, L., Gao, H., Pan, S. & Wang, J.-X. Surrogate modeling for
fluid flows based on physics-constrained deep learning without
simulation data. Comput. Methods Appl. Mech. Eng. 361, 112732
(2020).

30. Kim, Y., Choi, Y., Widemann, D. & Zohdi, T. A fast and accurate
physics-informed neural network reduced order model with
shallow masked autoencoder. J. Comput. Phys. 451, 110841 (2021).

31. Yang, Y. & Perdikaris, P. Adversarial uncertainty quantification in
physics-informed neural networks. J. Comput. Phys. 394, 136–152
(2019).

32. Zhu, Y., Zabaras, N., Koutsourelakis, P.-S. & Perdikaris, P.
Physics-constrained deep learning for high-dimensional
surrogate modeling and uncertainty quantification without
labeled data. J. Comput. Phys. 394, 56–81 (2019).

33. Haghighat, E., Raissi, M., Moure, A., Gomez, H. & Juanes, R. A
physics-informed deep learning framework for inversion and
surrogate modeling in solid mechanics. Comput. Methods Appl.
Mech. Eng. 379, 113741 (2021).

34. Jin, X., Cai, S., Li, H. & Em Karniadakis, G. NSFnets (Navier–
Stokes flow nets): physics-informed neural networks for the
incompressible Navier–Stokes equations. J. Comput. Phys. 426,
109951 (2021).

35. He, Q. Z., Barajas-Solano, D., Tartakovsky, G. & Tartakovsky, A.
M. Physics-informed neural networks for multiphysics data
assimilation with application to subsurface transport. Adv. Water
Resour. 141, 103610 (2020).

36. He, Q. Z. & Tartakovsky, A. M. Physics-informed neural network
method for forward and backward advection-dispersion
equations. Water Resour. Res. 57, e2020WR029479 (2021).

http://www.nature.com/natmachintell
https://gitee.com/chengzrz/percnn
https://github.com/isds-neu/PeRCNN
https://gitee.com/chengzrz/percnn
https://gitee.com/chengzrz/percnn
https://github.com/isds-neu/PeRCNN
https://github.com/isds-neu/PeRCNN

Nature Machine Intelligence | Volume 5 | July 2023 | 765–779 778

Article https://doi.org/10.1038/s42256-023-00685-7

37. Zhang, R., Liu, Y. & Sun, H. Physics-informed multi-lstm networks
for metamodeling of nonlinear structures. Comput. Methods
Appl. Mech. Eng. 369, 113226 (2020).

38. Rao, C., Sun, H. & Liu, Y. Physics-informed deep learning for
computational elastodynamics without labeled data. J. Eng.
Mech. 147, 04021043 (2021).

39. Niaki, S. A., Haghighat, E., Campbell, T., Poursartip, A. & Vaziri, R.
Physics-informed neural network for modelling the thermochemical
curing process of composite-tool systems during manufacture.
Comput. Methods Appl. Mech. Eng. 384, 113959 (2021).

40. Weinan, E. & Yu, B. The Deep Ritz Method: a deep learning-based
numerical algorithm for solving variational problems. Commun.
Math. Stat. 6, 1–12 (2018).

41. Ren, P., Rao, C., Liu, Y., Wang, J.-X. & Sun, H. PhyCRNet: physics-
informed convolutional-recurrent network for solving
spatiotemporal PDEs. Compu. Methods Appl. Mech. Eng. 389,
114399 (2022).

42. Gao, H., Sun, L. & Wang, J.-X. PhyGeoNet: physics-informed
geometry-adaptive convolutional neural networks for solving
parameterized steady-state PDEs on irregular domain. J. Comput.
Phys. 428, 110079 (2021).

43. Gao, H., Zahr, M. J. & Wang, J.-X. Physics-informed graph neural
galerkin networks: a unified framework for solving PDE-governed
forward and inverse problems. Comput. Methods Appl. Mech.
Eng. 390, 114502 (2022).

44. Geneva, N. & Zabaras, N. Transformers for modeling physical
systems. Neural Netw. 146, 272–289 (2021).

45. Geneva, N. & Zabaras, N. Modeling the dynamics of PDE systems
with physics-constrained deep auto-regressive networks.
J. Comput. Phys. 403, 109056 (2020).

46. Gao, H., Sun, L. & Wang, J.-X. Super-resolution and denoising of
fluid flow using physics-informed convolutional neural networks
without high-resolution labels. Phys. Fluids 33, 073603 (2021).

47. Lu, L., Jin, P., Pang, G., Zhang, Z. & Karniadakis, G. E. Learning
nonlinear operators via DeepONet based on the universal
approximation theorem of operators. Nat. Mach. Intell. 3, 218–229
(2021).

48. Li, Z. et al. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning
Representations (OpenReview.net, 2021).

49. Wang, S., Wang, H. & Perdikaris, P. Learning the solution operator
of parametric partial differential equations with physics-informed
deeponets. Sci. Adv. 7, eabi8605 (2021).

50. Halatek, J. & Frey, E. Rethinking pattern formation in reaction–
diffusion systems. Nat. Phys. 14, 507–514 (2018).

51. Holmes, E. E., Lewis, M. A., Banks, J. E. & Veit, R. R. Partial
differential equations in ecology: spatial interactions and
population dynamics. Ecology 75, 17–29 (1994).

52. Vervloet, D., Kapteijn, F., Nijenhuis, J. & van Ommen, J. R. Fischer–
Tropsch reaction–diffusion in a cobalt catalyst particle: aspects
of activity and selectivity for a variable chain growth probability.
Catal. Sci. Technol. 2, 1221–1233 (2012).

53. Maini, P. K., McElwain, D. L. S. & Leavesley, D. I. Traveling wave
model to interpret a wound-healing cell migration assay for human
peritoneal mesothelial cells. Tissue Eng. 10, 475–482 (2004).

54. Shi, X. et al. Convolutional LSTM network: a machine learning
approach for precipitation nowcasting. In Advances in Neural
Information Processing Systems 802–810 (Curran Associates, 2015).

55. Liao, Q. & Poggio, T. Bridging the gaps between residual learning,
recurrent neural networks and visual cortex. Preprint at arXiv
https://arxiv.org/abs/1604.03640 (2016).

56. Zhang, J., Zheng, Y. & Qi, D. Deep spatio-temporal residual
networks for citywide crowd flows prediction. In Proc. AAAI
Conference on Artificial Intelligence Vol. 31, 1655–1661
(AAAI, 2017).

57. Raissi, M. Deep hidden physics models: deep learning of
nonlinear partial differential equations. J. Mach. Learn. Res. 19,
932–955 (2018).

58. Rao, C., Ren, P., Liu, Y. & Sun, H. Discovering nonlinear PDEs from
scarce data with physics-encoded learning. In International
Conference on Learning Representations (OpenReview.net, 2022).

59. Meurer, A. SymPy: symbolic computing in Python. PeerJ Comput.
Sci. 3, e103 (2017).

60. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for
image recognition. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition 770–778 (IEEE, 2016).

61. Chen, Y., Yu, W. & Pock, T. On learning optimized reaction
diffusion processes for effective image restoration. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition
5261–5269 (IEEE, 2015).

62. Lu, Y., Zhong, A., Li, Q. & Dong, B. Beyond finite layer neural
networks: bridging deep architectures and numerical differential
equations. In International Conference on Machine Learning
3276–3285 (PMLR, 2018).

63. Ruthotto, L. & Haber, E. Deep neural networks motivated by
partial differential equations. J. Math. Imaging Vis. 62, 352–364
(2019).

64. Larsson, G., Maire, M. & Shakhnarovich, G. FractalNet: ultra-deep
neural networks without residuals. In International Conference on
Learning Representations (OpenReview.net, 2017).

65. Le Guen, V. & Thome, N. Disentangling physical dynamics from
unknown factors for unsupervised video prediction. In Proc. IEEE/
CVF Conference on Computer Vision and Pattern Recognition
11474–11484 (IEEE, 2020).

66. Cai, J.-F., Dong, B., Osher, S. & Shen, Z. Image restoration: total
variation, wavelet frames, and beyond. J. Am. Math. Soc. 25,
1033–1089 (2012).

67. Raissi, M., Wang, Z., Triantafyllou, M. S. & Karniadakis, G. E. Deep
learning of vortex-induced vibrations. J. Fluid Mech. 861, 119–137
(2019).

68. Haupt, J. & Nowak, R. Signal reconstruction from noisy
random projections. IEEE Trans. Inf. Theor. 52,
4036–4048 (2006).

69. Blumensath, T. & Davies, M. E. Iterative hard thresholding for
compressed sensing. Appl. Comput. Harmon. Anal. 27, 265–274
(2009).

70. Tibshirani, R. Regression shrinkage and selection via the LASSO.
J. R. Stat. Soc. Ser. B 58, 267–288 (1996).

71. isds-neu & Ren, P. isds-neu/PeRCNN: encoding physics to learn
reaction-diffusion processes. Zenodo https://doi.org/10.5281/
zenodo.7955830 (2023).

Acknowledgements
The work is supported by the National Natural Science Foundation of
China (no. 92270118 and no. 62276269), the Beijing Natural Science
Foundation (no. 1232009), the National Key R&D Program of China
(no. 2021ZD0110400) and the Beijing Outstanding Young Scientist
Program (no. BJJWZYJH012019100020098). We also acknowledge
the support by the Huawei MindSpore platform. Y.L. and H.S.
acknowledge the support from the Fundamental Research Funds for
the Central Universities. C.R. acknowledges the sponsorship of visiting
research by H.S. at Renmin University of China.

Author contributions
C.R., H.S. and Y.L. contributed to the ideation and design of the
research. C.R., P.R. and Q.W. performed the research. C.R., P.R., O.B.,
H.S. and Y.L. wrote the paper.

Competing interests
The authors declare no competing interests.

http://www.nature.com/natmachintell
https://arxiv.org/abs/1604.03640
https://doi.org/10.5281/zenodo.7955830
https://doi.org/10.5281/zenodo.7955830

Nature Machine Intelligence | Volume 5 | July 2023 | 765–779 779

Article https://doi.org/10.1038/s42256-023-00685-7

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s42256-023-00685-7.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s42256-023-00685-7.

Correspondence and requests for materials should be addressed to
Hao Sun or Yang Liu.

Peer review information Nature Machine Intelligence thanks
Ilias Bilionis and Lu Lu for their contribution to the peer review
of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited
2023

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-023-00685-7
https://doi.org/10.1038/s42256-023-00685-7
https://doi.org/10.1038/s42256-023-00685-7
https://doi.org/10.1038/s42256-023-00685-7
http://www.nature.com/reprints

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00685-7

Extended Data Table 1 | Computational parameters for datasets generation

ẟx denotes the spacing of the grid while ẟt denotes the time spacing. A detailed discussion on how to properly select ẟx and ẟt is given in Supplementary Note H.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00685-7

Extended Data Table 2 | Summary of the coefficient identification results for 2D Gray–Scott reaction–diffusion system

The training dataset (or measurement) includes 26 snapshots with resolution of 26 × 26 for S1 while 2 snapshots with resolution of 51 × 51 for S2.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00685-7

Extended Data Table 3 | Discovered PDEs from the measurement data under various noise levels compared with the ground
truth

http://www.nature.com/natmachintell

	Encoding physics to learn reaction–diffusion processes
	Results
	Physics-encoded spatiotemporal learning
	Reaction–diffusion systems
	Forward analysis of PDE systems
	Inverse analysis of PDE systems
	Data-driven modelling of spatiotemporal dynamics
	2D GS RD equation
	3D GS RD equation
	Generalization to different ICs

	Data-driven discovery of PDEs with scarce and noisy data
	Interpretability of the learned model

	Discussion
	Methods
	Network architecture
	Motivation of the network architecture design
	Universal polynomial approximation property for the Π-block
	Loss functions
	Equation discovery
	Data reconstruction
	Sparse regression
	Fine-tuning of coefficients

	Acknowledgements
	Fig. 1 Schematic architecture of the PeRCNN.
	Fig. 2 Error propagation curve and predicted snapshots by PeRCNN, ConvLSTM and PINN on various RD systems.
	Fig. 3 Snapshots of the measurement data employed in the experiment and the identified coefficients.
	Fig. 4 Error propagation curve of the prediction and the extrapolated snapshots from each data-driven model compared with the reference solution.
	Fig. 5 Error propagation curve and the snapshots of the inference result.
	Fig. 6 Flowchart of the discovery of governing PDEs.
	Extended Data Table 1 Computational parameters for datasets generation.
	Extended Data Table 2 Summary of the coefficient identification results for 2D Gray–Scott reaction–diffusion system.
	Extended Data Table 3 Discovered PDEs from the measurement data under various noise levels compared with the ground truth.

