Conditional Counterfactual Causal Effect for Individual Attribution (Supplementary Material)

Ruiqi Zhao Lei Zhang ${ }^{2}$ Shengyu Zhu ${ }^{3}$ Zitong Lu ${ }^{4} \quad$ Zhenhua Dong ${ }^{3}$ Chaoliang Zhang ${ }^{3} \quad$ Jun $^{\mathbf{X} \mathbf{X u}^{2}}$ Zhi Geng ${ }^{5}$ Yangbo $\mathbf{H e}^{* 1}$
${ }^{1}$ School of Mathematical Sciences, Peking University $\quad{ }^{2}$ Renmin University of China
${ }^{3}$ Huawei Noah's Ark Lab ${ }^{4}$ City University of Hong Kong
${ }^{5}$ School of Mathematics and Statistics, Beijing Technology and Business University

A PROOF OF LEMMA 1

We can write the conditional probability as

$$
\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1 \mid \mathbf{X}=\mathbf{x}\right)=\frac{\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{s}}^{0}}=1, \mathbf{X}=\mathbf{x}\right)}{\mathrm{P}(\mathbf{X}=\mathbf{x})}
$$

We first show the identifiability of the numerator.

$$
\begin{aligned}
& \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1, \mathbf{X}=\mathbf{x}\right) \\
&= \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1, \mathbf{A}_{k}=\mathbf{a}_{k}, X_{k}=x_{k}, \mathbf{D}_{k+1}=\mathbf{d}_{k+1}\right) \\
&= \sum_{c_{k} \leq x_{k}} \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1, \mathbf{A}_{k}=\mathbf{a}_{k},\left(X_{k}\right)_{\mathbf{a}_{k}}=x_{k},\left(X_{k}\right)_{\mathbf{a}_{k}, \mathbf{x}_{S}^{0}}=c_{k}, \mathbf{D}_{k+1}=\mathbf{d}_{k+1}\right) \\
&= \sum_{c_{k} \leq x_{k}} \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1, \mathbf{A}_{k}=\mathbf{a}_{k}, C_{k}=c_{k}, \mathbf{D}_{k+1}=\mathbf{d}_{k+1}\right) \\
&= \sum_{\left(c_{k}, c_{k+1}\right) \preceq\left(x_{k}, x_{k+1}\right)} \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1, \mathbf{A}_{k}=\mathbf{a}_{k}, C_{k}=c_{k},\left(X_{k+1}\right)_{\mathbf{a}_{k+1}}=x_{k+1},\right. \\
&=\left.\sum_{\mathbf{c}_{k: k+1} \preceq \mathbf{x}_{k: k+1}} \mathrm{P}\left(X_{k+1}\right)_{\mathbf{a}_{k}, c_{k}, \mathbf{x}_{S}^{0}}=c_{k+1}, \mathbf{D}_{k+2}=\mathbf{d}_{k+2}\right) \\
&\left.=1, \mathbf{A}_{k}=\mathbf{a}_{k}, C_{k}=c_{k}, C_{k+1}=c_{k+1}, \mathbf{D}_{k+2}=\mathbf{d}_{k+2}\right),
\end{aligned}
$$

where for ease of presentation we use $C_{l}=c_{l}$ to denote $\left(\left(X_{l}\right)_{\mathbf{a}_{l}},\left(X_{l}\right)_{\mathbf{a}_{k}, \mathbf{c}_{k: l-1}, \mathbf{x}_{\mathbf{S}}^{0}}\right)=\left(x_{l}, c_{l}\right)$ for $k \leq l \leq p$ and $x_{l} \geq c_{l}$, and $c_{l}=x_{l}^{0}$ if $l \in \mathbf{S}$. The second equality holds because of the consistency and the monotonicity assumptions.

[^0]Recursively, by the consistency and the composition, we have

$$
\begin{aligned}
& \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1, \mathbf{X}=\mathbf{x}\right) \\
= & \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1, \mathbf{A}_{k}=\mathbf{a}_{k}, \mathbf{D}_{k}=\mathbf{d}_{k}\right) \\
= & \sum_{\mathbf{c}_{k: p} \preceq \mathbf{d}_{k}} \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1, \mathbf{A}_{k}=\mathbf{a}_{k}, C_{k}=c_{k}, \cdots, C_{p}=c_{p}\right) \\
= & \sum_{\mathbf{c}_{k: p} \preceq \mathbf{d}_{k}} \mathrm{P}\left(Y_{\mathbf{a}_{k}, \mathbf{c}_{k: p}}=1, \mathbf{A}_{k}=\mathbf{a}_{k}, C_{k}=c_{k}, \cdots, C_{p}=c_{p}\right) \\
= & \sum_{\mathbf{c}_{k: p} \preceq \mathbf{d}_{k}} \mathrm{P}\left(Y_{\mathbf{a}_{k}, \mathbf{c}_{k: p}}=1, C_{k}=c_{k}, \cdots, C_{p}=c_{p} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \times \mathrm{P}\left(\mathbf{A}_{k}=\mathbf{a}_{k}\right), \\
= & \sum_{\mathbf{c}_{k: p} \preceq \mathbf{d}_{k}} \mathrm{P}\left(Y_{\mathbf{a}_{k}, \mathbf{c}_{k: p}}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \times \prod_{l=k}^{p} \mathrm{P}\left(C_{l}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \times \mathrm{P}\left(\mathbf{A}_{k}=\mathbf{a}_{k}\right),
\end{aligned}
$$

where the last equality holds as the potential outcomes $\mathbf{C}_{k: p}=\left(C_{k}, \cdots, C_{p}\right)$ are conditionally independent given \mathbf{A}_{k}. By the no confounding assumption, the first factor can be identified by

$$
\mathrm{P}\left(Y_{\mathbf{a}_{k}, \mathbf{c}_{k: p}}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right)=\mathrm{P}\left(Y=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}, X_{k}=c_{k}, \cdots, X_{p}=c_{p}\right)
$$

Next, we consider the identifiability of $\mathrm{P}\left(C_{l}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right)$ for $l=k+1, \ldots, p$. For $l \in \mathbf{S}$, we have

$$
\begin{aligned}
& \mathrm{P}\left(C_{l}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=x_{l},\left(X_{l}\right)_{\mathbf{a}_{k}, \mathbf{c}_{k: l-1}, \mathbf{x}_{\mathbf{S}}^{1}}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & 1_{c_{l}=x_{l}} \cdot \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=x_{l},\left(X_{l}\right)_{\mathbf{a}_{k}, \mathbf{c}_{k: l-1}, x_{l}^{1}}=x_{l}^{1} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & 1_{c_{l}=x_{l}} \cdot \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=x_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & 1_{c_{l}=x_{l}} \cdot \mathrm{P}\left(X_{l}=x_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right)
\end{aligned}
$$

where the second equality holds by the definition of c_{l} and the third equality holds by the consistency.
For $l \notin \mathbf{S}$, we have the following three cases according to the values of $\left(x_{l}, c_{l}\right)$:

- $\left(x_{l}, c_{l}\right)=(0,0)$: for this case, we have

$$
\begin{aligned}
& \mathrm{P}\left(C_{l}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=0,\left(X_{l}\right)_{\mathbf{a}_{k}, \mathbf{c}_{k: l-1}, \mathbf{x}_{\mathbf{S}}^{0}}=0 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=0 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(X_{l}=0 \mid \mathbf{A}_{l}=\mathbf{a}_{l}\right)
\end{aligned}
$$

where the second and the third equalities hold because of the monotonicity and no confounding assumptions, respectively;

- For the case of $\left(x_{l}, c_{l}\right)=(1,1)$, we have

$$
\begin{aligned}
& \mathrm{P}\left(C_{l}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=1,\left(X_{l}\right)_{\mathbf{a}_{k}, \mathbf{c}_{k: l-1}, \mathbf{x}_{\mathbf{S}}^{0}}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{k}, \mathbf{c}_{k: l-1}, \mathbf{x}_{\mathbf{S}}^{0}}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(X_{l}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}, \mathbf{X}_{k: l-1}=\mathbf{c}_{k+l-1}\right)
\end{aligned}
$$

- For the case of $\left(x_{l}, c_{l}\right)=(1,0)$, we have

$$
\begin{aligned}
& \mathrm{P}\left(C_{l}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=1,\left(X_{l}\right)_{\mathbf{a}_{k}, \mathbf{c}_{k: l-1}, \mathbf{x}_{\mathbf{S}}^{0}}=0 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right)-\mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=1,\left(X_{l}\right)_{\mathbf{a}_{k}, \mathbf{c}_{k: l-1}, \mathbf{x}_{\mathbf{S}}^{0}}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(X_{l}=1 \mid \mathbf{A}_{l}=\mathbf{a}_{l}\right)-\mathrm{P}\left(X_{l}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}, \mathbf{X}_{k: l-1}=\mathbf{c}_{k+l-1}\right) .
\end{aligned}
$$

Summarizing the identification equations for the three cases, we get

$$
\begin{aligned}
& \prod_{l=k}^{p} \mathrm{P}\left(C_{l}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \prod_{i \in\{k, \ldots, p\} \backslash \mathbf{S}}\left\{\left(1-x_{i}\right) \times \mathrm{P}\left(X_{i}=0 \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)+x_{i}\left(1-c_{i}\right) \times \mathrm{P}\left(X_{i}=1 \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)\right. \\
& \left.+x_{i}(-1)^{1-c_{i}} \times \mathrm{P}\left(X_{i}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}, \mathbf{X}_{k: i-1}=\mathbf{c}_{k: i-1}\right)\right\} \times \prod_{i \in \mathbf{S}} \mathrm{P}\left(X_{i}=x_{i} \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right) \\
& \times 1_{\mathbf{x}_{S}=\mathbf{c}_{S}} .
\end{aligned}
$$

From the above results, the identification formula of $\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1 \mid \mathbf{X}=\mathbf{x}\right)$ can be derived as follows

$$
\begin{aligned}
& \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1 \mid \mathbf{X}=\mathbf{x}\right)=\frac{\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1, \mathbf{X}=\mathbf{x}\right)}{\mathrm{P}(\mathbf{X}=\mathbf{x})} \\
= & \sum_{\mathbf{c}_{k: p} \preceq \mathbf{d}_{k}}\left[\frac{\mathrm{P}\left(Y_{\mathbf{a}_{k}, \mathbf{c}_{k: p}}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right)}{\mathrm{P}\left(\mathbf{D}_{k}=\mathbf{d}_{k} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right)} \times \prod_{l=k}^{p} \mathrm{P}\left(C_{l}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right)\right] \\
= & \sum_{\mathbf{c}_{k: p} \preceq \mathbf{d}_{k}}\left\{1_{\mathbf{x}_{S}=\mathbf{c}_{S}} \times \frac{\mathrm{P}\left(Y=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}, \mathbf{D}_{k}=\mathbf{c}_{k: p}\right)}{\mathrm{P}\left(\mathbf{D}_{k}=\mathbf{d}_{k} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right)} \times \prod_{i \in \mathbf{S}} \mathrm{P}\left(X_{i}=x_{i} \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)\right. \\
& \times \prod_{i \in\{k, \ldots, p\} \backslash \mathbf{S}}\left[\left(1-x_{i}\right) \times \mathrm{P}\left(X_{i}=0 \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)+x_{i}\left(1-c_{i}\right) \times \mathrm{P}\left(X_{i}=1 \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)\right. \\
& \left.\left.+x_{i}(-1)^{1-c_{i}} \times \mathrm{P}\left(X_{i}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}, \mathbf{X}_{k: i-1}=\mathbf{c}_{k: i-1}\right)\right]\right\} \\
= & \sum_{\mathbf{c}_{k: p} \preceq \mathbf{d}_{k}}\left\{1_{\mathbf{x}_{S}=\mathbf{c}_{S}} \times \mathrm{P}\left(Y=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}, \mathbf{D}_{k}=\mathbf{c}_{k: p}\right)\right. \\
& \left.\times \prod_{i \in\{k, \ldots, p\} \backslash \mathbf{S}}\left[1-x_{i} c_{i}+x_{i}(-1)^{1-c_{i}} \times \frac{\mathrm{P}\left(X_{i}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}, \mathbf{X}_{k: i-1}=\mathbf{c}_{k: i-1}\right)}{\mathrm{P}\left(X_{i}=x_{i} \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)}\right]\right\},
\end{aligned}
$$

where the last equality holds because

$$
\left(1-x_{i}\right) \times \frac{\mathrm{P}\left(X_{i}=0 \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)}{\mathrm{P}\left(X_{i}=x_{i} \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)}= \begin{cases}0, & \text { if } x_{i}=1 \\ 1-x_{i}, & \text { if } x_{i}=0\end{cases}
$$

and

$$
x_{i}\left(1-c_{i}\right) \times \frac{\mathrm{P}\left(X_{i}=1 \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)}{\mathrm{P}\left(X_{i}=x_{i} \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)}= \begin{cases}x_{i}\left(1-c_{i}\right), & \text { if } x_{i}=1 \\ 0, & \text { if } x_{i}=0\end{cases}
$$

B PROOF OF LEMMA 2

We write the conditional probability as

$$
\mathrm{P}\left(Y_{\mathbf{x}_{\mathrm{S}}^{1}}=1 \mid \mathbf{X}=\mathbf{x}\right)=\frac{\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=1, \mathbf{X}=\mathbf{x}\right)}{\mathrm{P}(\mathbf{X}=\mathbf{x})}
$$

and we first show the identifiability of the numerator above.

$$
\begin{aligned}
& \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=1, \mathbf{X}=\mathbf{x}\right) \\
&= \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=1, \mathbf{A}_{k}=\mathbf{a}_{k}, X_{k}=x_{k}, \mathbf{D}_{k+1}=\mathbf{d}_{k+1}\right) \\
&= \sum_{c_{k} \geq x_{k}} \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=1, \mathbf{A}_{k}=\mathbf{a}_{k},\left(X_{k}\right)_{\mathbf{a}_{k}}=x_{k},\left(X_{k}\right)_{\mathbf{a}_{k}, \mathbf{x}_{S}^{1}}=c_{k}, \mathbf{D}_{k+1}=\mathbf{d}_{k+1}\right) \\
&= \sum_{c_{k} \geq x_{k}} \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=1, \mathbf{A}_{k}=\mathbf{a}_{k}, C_{k}=c_{k}, \mathbf{D}_{k+1}=\mathbf{d}_{k+1}\right) \\
&= \sum_{\left(c_{k}, c_{k+1}\right) \succeq\left(x_{k}, x_{k+1}\right)} \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=1, \mathbf{A}_{k}=\mathbf{a}_{k}, C_{k}=c_{k},\left(X_{k+1}\right)_{\mathbf{a}_{k+1}}=x_{k+1},\right. \\
&=\left.\sum_{\mathbf{c}_{k: k+1} \succeq \mathbf{x}_{k: k+1}} \mathrm{P}\left(X_{k+1}\right)_{\mathbf{a}_{k}, c_{k}, \mathbf{x}_{S}^{1}}=c_{k+1}, \mathbf{D}_{k+2}=\mathbf{d}_{k+2}\right) \\
&\left.=1, \mathbf{A}_{k}=\mathbf{a}_{k}, C_{k}=c_{k}, C_{k+1}=c_{k+1}, \mathbf{D}_{k+2}=\mathbf{d}_{k+2}\right),
\end{aligned}
$$

where $C_{l}=c_{l}$ denotes $\left(\left(X_{l}\right)_{\mathbf{a}_{l}},\left(X_{l}\right)_{\mathbf{a}_{k}, \mathbf{c}_{k: l-1}, \mathbf{x}_{\mathbf{S}}^{1}}\right)=\left(x_{l}, c_{l}\right)$ for any $k \leq l \leq p$ satisfying $x_{l} \leq c_{l}$ and $c_{l}=x_{l}^{1}$ if $l \in \mathbf{S}$. The second equality holds because of the consistency and Assumption 2(a).
Recursively, by the consistency and the composition, we have

$$
\begin{aligned}
& \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=1, \mathbf{X}=\mathbf{x}\right) \\
= & \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=1, \mathbf{A}_{k}=\mathbf{a}_{k}, \mathbf{D}_{k}=\mathbf{d}_{k}\right) \\
= & \sum_{\mathbf{c}_{k: p} \succeq \mathbf{d}_{k}} \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=1, \mathbf{A}_{k}=\mathbf{a}_{k}, C_{k}=c_{k}, \cdots, C_{p}=c_{p}\right) \\
= & \sum_{\mathbf{c}_{k: p} \succeq \mathbf{d}_{k}} \mathrm{P}\left(Y_{\mathbf{a}_{k}, \mathbf{c}_{k: p}}=1, \mathbf{A}_{k}=\mathbf{a}_{k}, C_{k}=c_{k}, \cdots, C_{p}=c_{p}\right) \\
= & \sum_{\mathbf{c}_{k: p} \succeq \mathbf{d}_{k}} \mathrm{P}\left(Y_{\mathbf{a}_{k}, \mathbf{c}_{k: p}}=1, C_{k}=c_{k}, \cdots, C_{p}=c_{p} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \times \mathrm{P}\left(\mathbf{A}_{k}=\mathbf{a}_{k}\right), \\
= & \sum_{\mathbf{c}_{k: p} \succeq \mathbf{d}_{k}} \mathrm{P}\left(Y_{\mathbf{a}_{k}, \mathbf{c}_{k: p}}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \times \prod_{l=k}^{p} \mathrm{P}\left(C_{l}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \times \mathrm{P}\left(\mathbf{A}_{k}=\mathbf{a}_{k}\right),
\end{aligned}
$$

where the last equality holds because of the conditional independencies between the potential outcomes $\mathbf{C}_{k: p}=$ $\left(C_{k}, \cdots, C_{p}\right)$ given \mathbf{A}_{k}. By the no confounding assumption, the first factor above can be identified by

$$
\begin{aligned}
& \mathrm{P}\left(Y_{\mathbf{a}_{k}, \mathbf{c}_{k: p}}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(Y=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}, X_{k}=c_{k}, \cdots, X_{p}=c_{p}\right)
\end{aligned}
$$

Next, we consider the identifiability of $\mathrm{P}\left(C_{l}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right)$ for $l=k+1, \ldots, p$.
For $l \in \mathbf{S}$, we have

$$
\begin{aligned}
& \mathrm{P}\left(C_{l}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=x_{l},\left(X_{l}\right)_{\mathbf{a}_{k}, \mathbf{c}_{k: l-1}, \mathbf{x}_{\mathbf{S}}^{1}}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & 1_{c_{l}=x_{l}} \cdot \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=x_{l},\left(X_{l}\right)_{\mathbf{a}_{k}, \mathbf{c}_{k: l-1}, x_{l}^{1}}=x_{l}^{1} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & 1_{c_{l}=x_{l}} \cdot \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=x_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & 1_{c_{l}=x_{l}} \cdot \mathrm{P}\left(X_{l}=x_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right),
\end{aligned}
$$

where the second equality holds by the definition of c_{l} and the third equality holds by the consistency.
For $l \notin \mathbf{S}$, according to the value of $\left(x_{l}, c_{l}\right)$ we discuss it for three cases.

- For the case of $\left(x_{l}, c_{l}\right)=(0,0)$, we have

$$
\begin{aligned}
& \mathrm{P}\left(C_{l}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=0,\left(X_{l}\right)_{\mathbf{a}_{k}, \mathbf{c}_{k: l-1}, \mathbf{x}_{\mathrm{S}}^{1}}=0 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{k}, \mathbf{c}_{k: l-1}, \mathbf{x}_{\mathbf{S}}^{1}}=0 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(X_{l}=0 \mid \mathbf{A}_{k}=\mathbf{a}_{k}, \mathbf{X}_{k: l-1}=\mathbf{c}_{k: l-1}\right),
\end{aligned}
$$

where the second and the third equalities hold bacause of the monotonicity and no confounding assumptions, respectively;

- For the case of $\left(x_{l}, c_{l}\right)=(1,1)$, we have

$$
\begin{aligned}
& \mathrm{P}\left(C_{l}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=1,\left(X_{l}\right)_{\mathbf{a}_{k}, \mathbf{c}_{k: l-1}, \mathbf{x}_{\mathbf{S}}^{1}}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(X_{l}=1 \mid \mathbf{A}_{l}=\mathbf{a}_{l}\right)
\end{aligned}
$$

- For the case of $\left(x_{l}, c_{l}\right)=(0,1)$, we have

$$
\begin{aligned}
& \mathrm{P}\left(C_{l}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=0,\left(X_{l}\right)_{\mathbf{a}_{k}, \mathbf{c}_{k: l-1}, \mathbf{x}_{\mathrm{S}}^{1}}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=0 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right)-\mathrm{P}\left(\left(X_{l}\right)_{\mathbf{a}_{l}}=0,\left(X_{l}\right)_{\mathbf{a}_{k}, \mathbf{c}_{k: l-1}, \mathbf{x}_{\mathbf{S}}^{1}}=0 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & \mathrm{P}\left(X_{l}=0 \mid \mathbf{A}_{l}=\mathbf{a}_{l}\right)-\mathrm{P}\left(X_{l}=0 \mid \mathbf{A}_{k}=\mathbf{a}_{k}, \mathbf{X}_{k: l-1}=\mathbf{c}_{k+l-1}\right) .
\end{aligned}
$$

Summarizing the identification equations for the three cases, we get

$$
\begin{aligned}
& \prod_{l=k}^{p} \mathrm{P}\left(C_{l}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right) \\
= & 1_{\mathbf{x}_{S}=\mathbf{c}_{S}} \times \prod_{i \in\{k, \ldots, p\} \backslash \mathbf{S}}\left\{\left(1-x_{i}\right) c_{i} \times \mathrm{P}\left(X_{i}=0 \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)+x_{i} \times \mathrm{P}\left(X_{i}=1 \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)\right. \\
& \left.+\left(1-x_{i}\right)(-1)^{c_{i}} \times \mathrm{P}\left(X_{i}=0 \mid \mathbf{A}_{k}=\mathbf{a}_{k}, \mathbf{X}_{k: i-1}=\mathbf{c}_{k: i-1}\right)\right\} \times \prod_{i \in \mathbf{S}} \mathrm{P}\left(X_{i}=x_{i} \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)
\end{aligned}
$$

From the above results, the identification formula of $\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{s}}^{1}}=1 \mid \mathbf{X}=\mathbf{x}\right)$ can be derived as follows

$$
\begin{aligned}
& \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=1 \mid \mathbf{X}=\mathbf{x}\right)=\frac{\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=1, \mathbf{X}=\mathbf{x}\right)}{\mathrm{P}(\mathbf{X}=\mathbf{x})} \\
= & \sum_{\mathbf{c}_{k: p} \succeq \mathbf{d}_{k}}\left[\frac{\mathrm{P}\left(Y_{\mathbf{a}_{k}, \mathbf{c}_{k: p}}=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right)}{\mathrm{P}\left(\mathbf{D}_{k}=\mathbf{d}_{k} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right)} \times \prod_{l=k}^{p} \mathrm{P}\left(C_{l}=c_{l} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right)\right] \\
= & \sum_{\mathbf{c}_{k: p} \succeq \mathbf{d}_{k}}\left\{1_{\mathbf{x}_{S}=\mathbf{c}_{S}} \times \frac{\mathrm{P}\left(Y=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}, \mathbf{D}_{k}=\mathbf{c}_{k: p}\right)}{\mathrm{P}\left(\mathbf{D}_{k}=\mathbf{d}_{k} \mid \mathbf{A}_{k}=\mathbf{a}_{k}\right)} \times \prod_{i \in \mathbf{S}} \mathrm{P}\left(X_{i}=x_{i} \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)\right. \\
& \times \prod_{i \in\{k, \ldots, p\} \backslash \mathbf{S}}\left[\left(1-x_{i}\right) c_{i} \times \mathrm{P}\left(X_{i}=0 \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)+x_{i} \times \mathrm{P}\left(X_{i}=1 \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)\right. \\
& \left.\left.+\left(1-x_{i}\right)(-1)^{c_{i}} \times \mathrm{P}\left(X_{i}=0 \mid \mathbf{A}_{k}=\mathbf{a}_{k}, \mathbf{X}_{k: i-1}=\mathbf{c}_{k: i-1}\right)\right]\right\} \\
= & \sum_{\mathbf{c}_{k: p} \succeq \mathbf{d}_{k}}\left\{1_{\mathbf{x}_{S}=\mathbf{c}_{S}} \times \mathrm{P}\left(Y=1 \mid \mathbf{A}_{k}=\mathbf{a}_{k}, \mathbf{D}_{k}=\mathbf{c}_{k: p}\right)\right. \\
& \left.\times \prod_{i \in\{k, \ldots, p\} \backslash \mathbf{S}}\left[x_{i}+c_{i}-x_{i} c_{i}+\left(1-x_{i}\right)(-1)^{c_{i}} \times \frac{\mathrm{P}\left(X_{i}=0 \mid \mathbf{A}_{k}=\mathbf{a}_{k}, \mathbf{X}_{k: i-1}=\mathbf{c}_{k: i-1}\right)}{\mathrm{P}\left(X_{i}=x_{i} \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)}\right]\right\},
\end{aligned}
$$

where the last equality holds because

$$
\left(1-x_{i}\right) c_{i} \times \frac{\mathrm{P}\left(X_{i}=0 \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)}{\mathrm{P}\left(X_{i}=x_{i} \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)}= \begin{cases}0, & \text { if } x_{i}=1 \\ \left(1-x_{i}\right) c_{i}, & \text { if } x_{i}=0\end{cases}
$$

and

$$
x_{i} \times \frac{\mathrm{P}\left(X_{i}=1 \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)}{\mathrm{P}\left(X_{i}=x_{i} \mid \mathbf{A}_{i}=\mathbf{a}_{i}\right)}= \begin{cases}x_{i}, & \text { if } x_{i}=1 \\ 0, & \text { if } x_{i}=0\end{cases}
$$

C PROOF OF THEOREM 1

The conclusion follows directly from Lemma 1, Lemma 2 and the definition of CCCE.

D PROOF OF COROLLARY 1

For any subset $\mathbf{X}^{\prime} \subseteq \mathbf{X}$, we have

$$
\begin{aligned}
& \operatorname{CCCE}\left(\mathbf{X}_{\mathbf{S}} \Rightarrow Y \mid \mathbf{X}^{\prime}=\mathbf{x}^{\prime}\right) \\
= & \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=1 \mid \mathbf{X}^{\prime}=\mathbf{x}^{\prime}\right)-\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1 \mid \mathbf{X}^{\prime}=\mathbf{x}^{\prime}\right) \\
= & \sum_{\mathbf{x}: \mathbf{x} \supseteq \mathbf{x}^{\prime}}\left[\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=1 \mid \mathbf{X}=\mathbf{x}\right)-\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1 \mid \mathbf{X}=\mathbf{x}\right)\right] \times \mathrm{P}\left(\mathbf{X}=\mathbf{x} \mid \mathbf{X}^{\prime}=\mathbf{x}^{\prime}\right) \\
= & \sum_{\mathbf{x}: \mathbf{x} \supseteq \mathbf{x}^{\prime}} \operatorname{CCCE}\left(\mathbf{X}_{\mathbf{S}} \Rightarrow Y \mid \mathbf{X}=\mathbf{x}\right) \times \mathrm{P}\left(\mathbf{X}=\mathbf{x} \mid \mathbf{X}^{\prime}=\mathbf{x}^{\prime}\right)
\end{aligned}
$$

Hence, $\operatorname{CCCE}\left(\mathbf{X}_{\mathbf{S}} \Rightarrow Y \mid \mathbf{X}^{\prime}=\mathbf{x}^{\prime}\right)$ is identifiable if and only if $\operatorname{CCCE}\left(\mathbf{X}_{\mathbf{S}} \Rightarrow Y \mid \mathbf{X}=\mathbf{x}\right)$ is identifiable, and its identification formula can be obtained by Theorem 1.

E PROOF OF THEOREM 2

E. $1 \quad \mathbf{C C C E}\left(\mathbf{X}_{\mathbf{S}} \Rightarrow Y \mid \mathbf{X}=\mathbf{x}, Y=1\right)$

For $Y=1$, we have

$$
\begin{aligned}
& \operatorname{CCCE}\left(\mathbf{X}_{\mathbf{S}} \Rightarrow Y \mid \mathbf{X}=\mathbf{x}, Y=1\right)=\mathrm{E}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}-Y_{\mathbf{x}_{\mathbf{S}}^{0}} \mid \mathbf{X}=\mathbf{x}, Y=1\right) \\
= & 1-\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1 \mid \mathbf{X}=\mathbf{x}, Y=1\right)=1-\frac{\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1, \mathbf{X}=\mathbf{x}, Y=1\right)}{\mathrm{P}(\mathbf{X}=\mathbf{x}, Y=1)}
\end{aligned}
$$

By consistency, composition and Assumption 2(a), we have

$$
\begin{aligned}
& \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1, \mathbf{X}=\mathbf{x}, Y=1\right) \\
= & \sum_{\mathbf{c}_{k} \preceq \mathbf{d}_{k}} \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1, Y_{\mathbf{x}}=1,\left(\mathbf{A}_{k}\right)_{\mathbf{x}_{\mathbf{S}}^{0}}=\mathbf{a}_{k},\left(\mathbf{D}_{k}\right)_{\mathbf{a}_{k}, \mathbf{x}_{\mathbf{S}}^{0}}=\mathbf{c}_{k}, \mathbf{X}=\mathbf{x}\right) \\
= & \sum_{\mathbf{c}_{k} \preceq \mathbf{d}_{k}} \mathrm{P}\left(Y_{\mathbf{a}_{k}, \mathbf{x}_{\mathbf{S}}^{0}, \mathbf{c}_{k}}=1, Y_{\mathbf{x}}=1,\left(\mathbf{A}_{k}\right)_{\mathbf{x}_{\mathbf{S}}^{0}}=\mathbf{a}_{k},\left(\mathbf{D}_{k}\right)_{\mathbf{a}_{k}, \mathbf{x}_{\mathbf{S}}^{0}}=\mathbf{c}_{k}, \mathbf{X}=\mathbf{x}\right) \\
= & \sum_{\mathbf{c}_{k} \preceq \mathbf{d}_{k}} \mathrm{P}\left(Y_{\mathbf{a}_{k}, \mathbf{x}_{\mathbf{S}}^{0}, \mathbf{c}_{k}}=1,\left(\mathbf{A}_{k}\right)_{\mathbf{x}_{\mathbf{S}}^{0}}=\mathbf{a}_{k},\left(\mathbf{D}_{k}\right)_{\mathbf{a}_{k}, \mathbf{x}_{\mathbf{S}}^{0}}=\mathbf{c}_{k}, \mathbf{X}=\mathbf{x}\right) \\
= & \sum_{\mathbf{c}_{k} \preceq \mathbf{d}_{k}} \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1,\left(\mathbf{D}_{k}\right)_{\mathbf{a}_{k}, \mathbf{x}_{\mathbf{S}}^{0}}=\mathbf{c}_{k}, \mathbf{X}=\mathbf{x}\right) \\
= & \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1, \mathbf{X}=\mathbf{x}\right),
\end{aligned}
$$

where $k=\min \mathbf{S}$. Hence, we have

$$
\begin{aligned}
& \operatorname{CCCE}\left(\mathbf{X}_{\mathbf{S}} \Rightarrow Y \mid \mathbf{X}=\mathbf{x}, Y=1\right)=1-\frac{\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{s}}^{0}}=1, \mathbf{X}=\mathbf{x}, Y=1\right)}{\mathrm{P}(\mathbf{X}=\mathbf{x}, Y=1)} \\
= & 1-\frac{\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1, \mathbf{X}=\mathbf{x}\right)}{\mathrm{P}(\mathbf{X}=\mathbf{x}, Y=1)}=1-\frac{\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1 \mid \mathbf{X}=\mathbf{x}\right)}{\mathrm{P}(Y=1 \mid \mathbf{X}=\mathbf{x})} .
\end{aligned}
$$

E. $2 \mathbf{C C C E}\left(\mathbf{X}_{\mathbf{S}} \Rightarrow Y \mid \mathbf{X}=\mathbf{x}, Y=0\right)$

For $Y=0$, we have

$$
\begin{aligned}
& \operatorname{CCCE}\left(\mathbf{X}_{\mathbf{S}} \Rightarrow Y \mid \mathbf{X}=\mathbf{x}, Y=0\right)=\mathrm{E}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}-Y_{\mathbf{x}_{\mathbf{S}}^{0}} \mid \mathbf{X}=\mathbf{x}, Y=0\right) \\
= & \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=1 \mid \mathbf{X}=\mathbf{x}, Y=0\right)-0=1-\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=0 \mid \mathbf{X}=\mathbf{x}, Y=0\right) \\
= & 1-\frac{\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=0, \mathbf{X}=\mathbf{x}, Y=0\right)}{\mathrm{P}(\mathbf{X}=\mathbf{x}, Y=0)}
\end{aligned}
$$

By consistency, composition and Assumption 2(a), we have

$$
\begin{aligned}
& \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=0, \mathbf{X}=\mathbf{x}, Y=0\right) \\
= & \sum_{\mathbf{c}_{k} \succeq \mathbf{d}_{k}} \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=0, Y_{\mathbf{x}}=0,\left(\mathbf{A}_{k}\right)_{\mathbf{x}_{\mathbf{S}}^{1}}=\mathbf{a}_{k},\left(\mathbf{D}_{k}\right)_{\mathbf{a}_{k}, \mathbf{x}_{\mathbf{S}}^{1}}=\mathbf{c}_{k}, \mathbf{X}=\mathbf{x}\right) \\
= & \sum_{\mathbf{c}_{k} \succeq \mathbf{d}_{k}} \mathrm{P}\left(Y_{\mathbf{a}_{k}, \mathbf{x}_{\mathbf{S}}^{1}, \mathbf{c}_{k}}=0, Y_{\mathbf{x}}=0,\left(\mathbf{A}_{k}\right)_{\mathbf{x}_{\mathbf{S}}^{1}}=\mathbf{a}_{k},\left(\mathbf{D}_{k}\right)_{\mathbf{a}_{k}, \mathbf{x}_{\mathbf{S}}^{1}}=\mathbf{c}_{k}, \mathbf{X}=\mathbf{x}\right) \\
= & \sum_{\mathbf{c}_{k} \succeq \mathbf{d}_{k}} \mathrm{P}\left(Y_{\mathbf{a}_{k}, \mathbf{x}_{\mathbf{S}}^{1}, \mathbf{c}_{k}}=0,\left(\mathbf{A}_{k}\right)_{\mathbf{x}_{\mathbf{S}}^{1}}=\mathbf{a}_{k},\left(\mathbf{D}_{k}\right)_{\mathbf{a}_{k}, \mathbf{x}_{\mathbf{S}}^{1}}=\mathbf{c}_{k}, \mathbf{X}=\mathbf{x}\right) \\
= & \sum_{\mathbf{c}_{k} \succeq \mathbf{d}_{k}} \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=0,\left(\mathbf{D}_{k}\right)_{\mathbf{a}_{k}, \mathbf{x}_{\mathbf{S}}^{1}}=\mathbf{c}_{k}, \mathbf{X}=\mathbf{x}\right) \\
= & \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=0, \mathbf{X}=\mathbf{x}\right),
\end{aligned}
$$

where $k=\min \mathbf{S}$. Hence, we have

$$
\begin{aligned}
& \operatorname{CCCE}\left(\mathbf{X}_{\mathbf{S}} \Rightarrow Y \mid \mathbf{X}=\mathbf{x}, Y=0\right)=1-\frac{\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=0, \mathbf{X}=\mathbf{x}, Y=0\right)}{\mathrm{P}(\mathbf{X}=\mathbf{x}, Y=0)} \\
= & 1-\frac{\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=0, \mathbf{X}=\mathbf{x}\right)}{\mathrm{P}(\mathbf{X}=\mathbf{x}, Y=0)}=1-\frac{\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=0 \mid \mathbf{X}=\mathbf{x}\right)}{\mathrm{P}(Y=0 \mid \mathbf{X}=\mathbf{x})}
\end{aligned}
$$

F PROOF OF LEMMA 3

Using the notations in this lemma, we have

$$
\begin{aligned}
& \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{*}}=1, \mathbf{X}=\mathbf{x}, Y=y, \mathbf{Z}=\mathbf{z}\right) \\
= & \sum_{\mathbf{x}^{*}} \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{*}}=1, \mathbf{X}_{\mathbf{x}_{\mathbf{S}}^{*}}=\mathbf{x}^{*}, \mathbf{X}=\mathbf{x}, Y=y, \mathbf{Z}=\mathbf{z}\right) \\
= & \sum_{\mathbf{x}^{*}} \mathrm{P}\left(Y_{\mathbf{x}^{*}}=1, \mathbf{X}_{\mathbf{x}_{\mathbf{S}}^{*}}=\mathbf{x}^{*}, \mathbf{X}=\mathbf{x}, Y=y, \mathbf{Z}=\mathbf{z}\right) \\
= & \sum_{\mathbf{x}^{*}} \mathrm{P}\left(Y_{\mathbf{x}^{*}}=1, \mathbf{X}_{\mathbf{x}_{\mathbf{S}}^{*}}=\mathbf{x}^{*}, \mathbf{Z}=\mathbf{z} \mid \mathbf{X}=\mathbf{x}, Y=y\right) \times \mathrm{P}(\mathbf{X}=\mathbf{x}, Y=y) \\
= & \sum_{\mathbf{x}^{*}} \mathrm{P}\left(Y_{\mathbf{x}^{*}}=1, \mathbf{X}_{\mathbf{x}_{\mathbf{S}}^{*}}=\mathbf{x}^{*} \mid \mathbf{X}=\mathbf{x}, Y=y\right) \times \mathrm{P}(\mathbf{Z}=\mathbf{z} \mid \mathbf{X}=\mathbf{x}, Y=y) \times \mathrm{P}(\mathbf{X}=\mathbf{x}, Y=y) \\
= & \sum_{\mathbf{x}^{*}} \mathrm{P}\left(Y_{\mathbf{x}^{*}}=1, \mathbf{X}_{\mathbf{x}_{\mathbf{S}}^{*}}=\mathbf{x}^{*} \mid \mathbf{X}=\mathbf{x}, Y=y\right) \times \mathrm{P}(\mathbf{X}=\mathbf{x}, Y=y, \mathbf{Z}=\mathbf{z})
\end{aligned}
$$

where the second and the fourth equalities hold because of the composition and Assumption 1(c), respectively. Hence, we have

$$
\begin{aligned}
& \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{*}}=1 \mid \mathbf{X}=\mathbf{x}, Y=y, \mathbf{Z}=\mathbf{z}\right)=\frac{\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{*}}=1, \mathbf{X}=\mathbf{x}, Y=y, \mathbf{Z}=\mathbf{z}\right)}{\mathrm{P}(\mathbf{X}=\mathbf{x}, Y=y, \mathbf{Z}=\mathbf{z})} \\
= & \sum_{\mathbf{x}^{*}} \mathrm{P}\left(Y_{\mathbf{x}^{*}}=1, \mathbf{X}_{\mathbf{x}_{\mathbf{S}}^{*}}=\mathbf{x}^{*} \mid \mathbf{X}=\mathbf{x}, Y=y\right) \\
= & \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{*}}=1 \mid \mathbf{X}=\mathbf{x}, Y=y\right) .
\end{aligned}
$$

G PROOF OF COROLLARY 3

The conclusion follows directly from Lemma 3 and the definition of CCCE.

H PROOF OF THEOREM 3

For any subset $\mathbf{W} \subseteq(\mathbf{X}, Y, \mathbf{Z})$, we have

$$
\begin{aligned}
& \operatorname{CCCE}\left(\mathbf{X}_{\mathbf{S}} \Rightarrow Y \mid \mathbf{W}=\mathbf{w}\right) \\
= & \mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=1 \mid \mathbf{W}=\mathbf{w}\right)-\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1 \mid \mathbf{W}=\mathbf{w}\right) \\
= & \sum_{(\mathbf{x}, y, \mathbf{z}):(\mathbf{x}, y, \mathbf{z}) \supseteq \mathbf{w}} \mathrm{P}(\mathbf{X}=\mathbf{x}, Y=y, \mathbf{Z}=\mathbf{z} \mid \mathbf{W}) \times\left[\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{1}}=1 \mid \mathbf{X}=\mathbf{x}, Y=y, \mathbf{Z}=\mathbf{z}\right)\right. \\
& \left.-\mathrm{P}\left(Y_{\mathbf{x}_{\mathbf{S}}^{0}}=1 \mid \mathbf{X}=\mathbf{x}, Y=y, \mathbf{Z}=\mathbf{z}\right)\right] \\
= & \sum_{(\mathbf{x}, y, \mathbf{z}):(\mathbf{x}, y, \mathbf{z}) \supseteq \mathbf{w}} \operatorname{CCCE}\left(\mathbf{X}_{\mathbf{S}} \Rightarrow Y \mid \mathbf{X}=\mathbf{x}, Y=y, \mathbf{Z}=\mathbf{z}\right) \times \mathrm{P}(\mathbf{X}=\mathbf{x}, Y=y, \mathbf{Z}=\mathbf{z} \mid \mathbf{W}) \\
= & \sum_{(\mathbf{x}, y, \mathbf{z}):(\mathbf{x}, y, \mathbf{z}) \supseteq \mathbf{w}} \operatorname{CCCE}\left(\mathbf{X}_{\mathbf{S}} \Rightarrow Y \mid \mathbf{X}=\mathbf{x}, Y=y\right) \times \mathrm{P}(\mathbf{X}=\mathbf{x}, Y=y, \mathbf{Z}=\mathbf{z} \mid \mathbf{W}),
\end{aligned}
$$

where the last equality holds because of Corollary 3 . Hence, $\operatorname{CCCE}\left(\mathbf{X}_{\mathbf{S}} \Rightarrow Y \mid \mathbf{W}=\mathbf{w}\right)$ is identifiable if and only if $\operatorname{CCCE}\left(\mathbf{X}_{\mathbf{S}} \Rightarrow Y \mid \mathbf{X}=\mathbf{x}, Y=y\right)$ is identifiable for any $(\mathbf{x}, y, \mathbf{z}) \supseteq \mathbf{w}$, and under Assumption 1 and Assumption 2, the identification equations are given by Theorem 2.

[^0]: *Correspondence to heyb@math.pku.edu.cn

