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Abstract

Identifying the causes of an event, also termed as causal attribution, is a commonly encountered task
in many application problems. Available methods, mostly in Bayesian or causal inference literature,
suffer from two main drawbacks: (1) cannot attribute for individuals, (2) attributing one single cause at
a time and cannot deal with the interaction effect among multiple causes. In this paper, based on our
proposed new measurement, called conditional counterfactual causal effect (CCCE), we introduce an
individual causal attribution method, which is able to utilize the individual observation as the evidence
and consider common influence and interaction effect of multiple causes simultaneously. We discuss
the identifiability of CCCE and also give the identification formulas under proper assumptions. Finally,
we conduct experiments on simulated and real data to illustrate the effectiveness of CCCE and the
results show that our proposed method outperforms significantly over state‐of‐the‐art methods.

Preliminary

Unless otherwise stated, we use capital letters such as X to denote random variables, and use boldface
letters like X to denote random variable sets or vectors. An instantiation of a variable or a vector is
denoted by a lowercase letter, e.g., x and x.

Notations

X: binary variables {X1, X2, · · · , Xp} which are possible causes of outcome.
Y : binary variable which is the outcome variable.
Z: binary variables {Z1, Z2, · · · , Zq} that do not affect X and Y .
π: a given topological ordering (X, Y, Z) of variables so that Wi is not affected by Wj for any
Wi, Wj ∈ π with i < j.
Ak: {X1, X2, · · · , Xk−1} in π.
Dk: X\Ak in π, that is, {Xk, Xk+1, ·, Xp}.
X−k: the set of variables Xi’s without Xk, that is, X\{Xk}.
Yx: potential outcome of Y under X = x.
x ⪯ x′: xi ≤ x′

i for all i.
|X|: the cardinality of set X.

Given a topological order π, the data generating mechanism for X and Y can be described as

Y = fY (X, ϵY ),
Xk = fk(Ak, ϵk), k = 1, 2, . . . , p,

where ϵk’s and ϵY are independent noise variables. The data generating mechanisms for variables in
Z can be similarly defined. Besides, we assume the consistency holds, that is, for any variable sets U
and V, we have Uv = U if V = v is observed. We also assume the composition holds, that is, for any
variable sets U, V and W, we have that Uv = u implies Wuv = Wv.

CCCE can be regarded as a generalization of PostTCE. Specifically, in the case ofZ = ∅ and XS = {X1},
if the evidence W = w is in the form of {U = u, Y = 1 : U ⊂ X}, then CCCE is reduced to E(YX1=1 −
YX1=0 | U = u, Y = 1), which is exactly PostTCE(X1 ⇒ Y | U = u, Y = 1). The details will be given in
next section. Further, in the case of Z = ∅ and XS = {X1}, if the evidence is given by {X1 = 1, Y = 1},
then CCCE is reduced to E(YX1=1 − YX1=0 | X1 = 1, Y = 1) = P(YX1=0 = 0 | X1 = 1, Y = 1), which is
exactly PN(X1 ⇒ Y ). What’s more, if the evidence is given by {X1 = 0, Y = 0}, then CCCE is reduced
to E(YX1=1 − YX1=0 | X1 = 0, Y = 0) = P(YX1=1 = 1 | X1 = 0, Y = 0), which is exactly PS(X1 ⇒ Y ).
Thus, CCCE can be considered as a generalization of PN, PS and PostTCE. It should be noted that this
generalization is not trivial, because CCCE calculates the impact of randommultiple causes on the result
simultaneously, and also adds Z into the evidence set, which makes the identifiability of CCCE more
complex than PostTCE.

Definition

Conditional Counterfactual Causal Effect

Given the variable set V = {X, Y, Z}, the evidence W = w and a set of causes XS ⊆ X, the conditional
counterfactual causal effect (CCCE) of XS on Y is defined as

CCCE(XS ⇒ Y | W = w) = E
(

Yx1
S

− Yx0
S

| W = w
)

, (1)

in which W ⊆ V and x1
S ⪰ x0

S.

In many applications, we would set x1
S and x0

S as 1|S| and 0|S|, which are vectors with all entries being
1 and 0, respectively. By this definition, CCCE can measure the joint influence of all causes in XS on
the outcome Y . We remark that x1

S and x0
S can be set to other values given other cases of interest. In

addition, the evidence W = w always contains the observation of Y . For example, in order to evaluate
the effect of advertising, we are more concerned about the conversion rate of recommendations among
people with buying behavior (Y = 1). Hence, CCCE measures the causation for causes in XS. The
larger the CCCE of XS on Y is, the larger the attribution of the effect to the causes XS is. Note
that the evidence W = w can contain the observation of XS. Therefore, CCCE is different from the
conditional causal effect. The former is a counterfactual variable, while the latter only conditions on
covariates except XS, that is, the conditional causal effect only involves intervention variables and can
be identified with observational and interventional data under suitable assumptions.

Assumptions

To give the identification formula of CCCE, the following assumptions are required.

Assumption 1 (No confounding)

(a) There is no confounding among variables in X, that is, (Xk)ak ⊥ Ak for all ak;

(b) There is no confounding between Y and X, that is, Yx ⊥ X for all x;

(c) Given X and Y , there is no confounding between (X, Y ) and Z, that is, (Yx, XxS) ⊥ Z | X, Y for
all x, xS and XS ⊆ X.

The assumption of no confounding is also known as the assumption of ignorability or exogeneity, im‐
plying that there is no unobserved confounders. The Assumptions 1(a) and 1(b) are satisfied if ϵ1, . . . , ϵp

are mutually independent and (ϵ1, . . . , ϵp) and ϵY are independent, respectively, while the Assumption
1(c) is satisfied when (ϵ1, . . . , ϵp, ϵY ) and the noise variables of Z are independent.

Assumption 2 (Monotonicity)

(a) The variables in X satisfy the monotonicity, that is, (Xk)ak ≤ (Xk)a′
k
for all k = 1, . . . , p whenever

ak ⪯ a′
k;

(b) The outcome variable Y satisfies the monotonicity, that is, Yx ≤ Yx′ whenever x ⪯ x′.

The assumption of monotonicity is often assumed in practice, implying that the causes cannot prevent
the effect.

Main Results

Lemma 1. Given a causal ordering π, let XS ⊆ X and x0
S ⪯ xS. The conditional probability P(Yx0

S
= 1 |

X = x) is identifiable, and its identification formula is

P(Yx0
S

= 1 | X = x) =
∑

ck:p⪯dk

{
P(Y = 1 | Ak = ak, Dk = ck:p)

×
∏

i∈{k,...,p}\S

[
1 − xici + xi(−1)1−ci ×

P(Xi = 1 | Ak = ak, Xk:i−1 = ck:i−1)
P(Xi = xi | Ai = ai)

]}
,

(2)

where k = min S, Xk:i−1 = {Xk, . . . , Xi−1} and ck:p = (ck, . . . , cp) satisfying ci = x0
i if i ∈ S.

Lemma 2. Given a causal ordering π, let XS ⊆ X and x1
S ⪰ xS. The conditional probability P(Yx1

S
= 1 |

X = x) is identifiable, and its identification formula is

P(Yx1
S

= 1 | X = x) =
∑

ck:p⪰dk

{
P(Y = 1 | Ak = ak, Dk = ck:p)

×
∏

i∈{k,...,p}\S

[
xi + ci − xici + (1 − xi)(−1)ci ×

P(Xi = 0 | Ak = ak, Xk:i−1 = ck:i−1)
P(Xi = xi | Ai = ai)

]}
,

(3)

where k = min S, Xk:i−1 = {Xk, . . . , Xi−1} and ck:p = (ck, . . . , cp) satisfying ci = x1
i if i ∈ S.

Taking Lemma 1 as an example, the conditional probability P(Y = 1 | Ak = ak, Dk = ck:p) in Equation
(2) contains Dk in the condition part, which may be affected by XS. Especially, if the observed sample
xS = x0

S appears in the evidence W = w, then we have P(Yx0
S

= 1 | X = x) = P(Y = 1 | X = x) by
consistency. If Z = ∅ and |S| = 1, that is, XS = {X1}, then Lemma 1 degenerates to Lemma 1 in Lu et
al. (2022). A similar observation holds for Lemma 2.

Theorem 1. Under Assumption 2(b), the following equation holds:

CCCE(XS ⇒ Y | X = x, Y = y) = 1 −
P(Yx1−y

S
= y | X = x)

P(Y = y | X = x)
; (4)

where XS ⊆ X, x1
S ⪰ xS ⪰ x0

S and xS ⊆ x.

Theorem 2. Given a causal ordering π, let XS ⊆ X, and W is an arbitrary subset of {X, Y, Z}. CCCE
of XS on Y based on the evidence W = w has the following equation:

CCCE(XS ⇒ Y | W = w) =
∑

(x,y,z):(x,y,z)⊇w
CCCE(XS ⇒ Y | X = x, Y = y)

× P(X = x, Y = y, Z = z | W = w),
(5)

which is identifiable according to Theorem 1.

According to the results above, CCCE only uses the topological ordering of the variables for the at‐
tribution, but a causal graph may has several different valid topological ordering. In fact, for a given
graph, the value of CCCE is invariant for different valid topological orderings, as long as the evidence
set W = w contains the variable Y and its all ancestors. Note that, for any topological ordering of a
given graph, the order of ancestors of Y always precede the order of Y . Therefore, for any given valid
topological ordering, we only need to make the evidence set W = w contain Y and the variables before
Y in this ordering.

Experiments

Simulations

We generate ten different causal graphs and conducte ten experiments on each with 1000 samples.
For each individual sample, we use Rand (randomly select in variables preceding Y ), Post, PN, PS, PNS,
ACE, PostTCE and CCCE for attribution and take the observational sample (x1, x2, x3, x4, y, x6) as the
evidence. After finding the causes, we use the Change Rate (CR, higher is better) to measure the
effectiveness and accuracy of attribution, that is, we set the cause variables XS to 0|S|, regenerate the
counterfactual data, and calculate the proportion of samples whose Y changes from 1 to 0 in the whole
sample. The value of CR measures the proportion of samples whose Y will change from 1 to 0 if we set
XS = 0|S| when XS = 1|S| is observed. In other words, CR calculates the proportion of people whose
Y will happen if XS = 0|S| happens and Y will not happen if XS = 0|S| does not happen. The higher
the proportion of this kind of people, the greater the impact of XS on Y . In Table 1, CR1‐o and CR2‐o
are the average change rate of different methods for attributing one and two causes without interaction
effect, while CR2‐w is the change rate of mathods for attributing two causes with interaction effect.

Table 1. Change rate of methods for attribution with simulated data.

Rand Post PN PS PNS ACE PostTCE CCCE

CR1‐o 0.239 0.450 0.460 0.444 0.460 0.452 0.664 0.671
std. (0.014) (0.028) (0.025) (0.042) (0.028) (0.028) (0.029) (0.030)

CR2‐o 0.384 0.671 0.643 0.642 0.639 0.671 0.703 0.740
std. (0.014) (0.036) (0.026) (0.027) (0.027) (0.035) (0.028) (0.020)

CR2‐w 0.396 0.609 0.563 0.570 0.571 0.570 0.629 0.709
std. (0.016) (0.038) (0.034) (0.035) (0.036) (0.039) (0.023) (0.025)

In the case without interaction effect, recall that when only one cause is attributed, CCCE degenerates
into PostTCE. It can be seen that PostTCE and CCCE perform much better than other methods and
have similar change rates. In addition, when two causes need to be attributed, due to monotonicity, all
methods perform better than attributing one cause, and PostTCE and CCCE are still much better than
others. Besides, CR2 of CCCE is about 3.7% higher than that of PostTCE, as counterfacual probabilities
of all causes are generated independently and randomly, and there is no interaction effect in this case.
In the case with interaction effect, it can be seen that the change rate of CCCE (0.709) is the highest, at
least 8% higher than other methods.

Real Data

In this experiment, we apply our method to a real world dataset about the expression levels of proteins
and phospholipids in Sachs (2005). The ground truth causal graph has 11 vertices and 21 edges. We
aim to attribute the expression of the variable Mek. Here we only use the observational data with 853
samples for our attribution. We binarize the data by setting the data greater than the median value to
1, and 0 otherwise. The results are shown in Table 2.

Table 2. Change rate of methods for attributing the expression of Mek with real data.

Rand Post PN PS PNS ACE PostTCE CCCE

CR1 0.183 0.0.534 0.526 0.538 0.532 0.532 0.632 0.648
std. (0.023) (0.018) (0.018) (0.012) (0.022) (0.014) (0.011) (0.019)

CR2 0.325 0.0.537 0.555 0.546 0.552 0.553 0.650 0.703
std. (0.020) (0.011) (0.020) (0.022) (0.026) (0.021) (0.019) (0.021)

Similarly, CR1 in Table 2 is the average change rate for attributing one cause. Again, PostTCE and CCCE
outperform other methods. Note that the change rates of PostTCE and CCCE are close. As for CR2,
the average change rate for attributing two causes, CCCE performs best and its change rate is 5.3%
higher than PostTCE. This implies that there is an interaction effect between the causes of Mek.


