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Abstract

Identifying causes of an event, also termed as
causal attribution, is a commonly encountered task
in many applications. Existing methods, mostly in
the Bayesian or causal inference literature, suffer
from two main drawbacks: 1) they cannot attribute
for individuals, and 2) only attribute one single
cause at a time and cannot deal with the interaction
effect among multiple causes. In this paper, we pro-
pose an individual causal attribution method, called
conditional counterfactual causal effect (CCCE),
which utilizes the individual observation as the ev-
idence and is able to handle the common influence
and interaction effects of multiple causes simulta-
neously. We discuss the identifiability of CCCE
and then provide the identification formulas under
certain proper assumptions. Finally, we conduct
experiments on simulated and real data to illustrate
the effectiveness of CCCE, compared with many
state-of-the-art attribution methods.

1 INTRODUCTION

In many scenarios, we are interested in finding out the under-
lying causes of occurred events for individuals. For instance,
in recommendation systems, when a user makes a purchase,
the advertiser would like to know whether the purchase is
caused by a particular advertising. This knowledge can be
used to evaluate the effect of recommendation and further to
guide advertisers to make reasonable payments and sched-
ule future strategies. As another example, one may want
to know the reasons why users give a low rating to a prod-
uct, in order to develop better products. Addressing these
questions, however, is not easy, as they require answering
causal questions related to counterfactuals [Dawid, 2000].
Concretely, the advertisers want to know “Would the user
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have bought the item if there were no advertising?”, while
the latter is about “How would users have rated the product
if some attributes of the product were different?”. There-
fore, we need a measure to quantify the change of the result
when the cause changes, that is, how possibly the result is
attributed to the cause.

For bivariate case (a cause and an effect), Pearl [2009] de-
fined probability of necessity (PN) and probability of suf-
ficiency (PS) to measure respectively how necessary or
sufficient a cause is for the occurrence of the effect, and
extended them to probability of necessary and sufficient
causation (PNS), that is, how likely the event is affected
in both ways. Dawid et al. [2014] defined probability of
causation (PC) and related it to the causal relative risk (RR).
These methods can only solve the attribution problem of two
variables, but in practice, an effect can be affected by more
than one causes. For the situation of multiple causes, Dawid
et al. [2016] defined conditional probability of causation
based on some background variables that are pre-treatment
covariates. Jin [2012] discussed the identification of condi-
tional causal effect. Lu et al. [2022] proposed the posterior
total and direct causal effects (POSTTCE and POSTDCE)
and extended the evidence (observational data of individu-
als) to the case of post-treatment variables. However, both
conditional causal effect and POSTTCE can only measure
the contribution of one cause to the outcome variable at a
time, ignoring the joint influence or interaction effect of mul-
tiple causes. In practice, interaction effect can be important
in many applications [Belch and Michael, 1998, Voorveld
and Valkenburg, 2015, Jensen and Ruback, 1983, Ayres and
Walter, 1991]. For example, in recommendation, the impact
of using only television advertisement on users’ purchase
may be extremely limited, while using television and print
advertisements at the same time may significantly improve
the purchases [Naik and Raman, 2003, Lin et al., 2013]. In
addition, the evidences used by conditional causal effect
and POSTTCE are also limited. The former only focuses
on the pre-treatment covariate, while the latter focuses on
the outcome variable and the variables preceding the out-

Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:2519–2528.

mailto:<zhaorq@pku.edu.cn>?Subject=Your UAI 2023 paper


come variable, omitting variables that may be affected by
the outcome variable.

In this paper, for the case of multiple variables which may
affect each other, we propose conditional counterfactual
causal effect (CCCE). Different from POSTTCE, CCCE
can be used to measure the contribution of both a single
cause and the combination of a set of causes simultaneously,
and hence is able to characterize the interaction effect of
two or more causes. Besides, the evidence on which CCCE
is based can be any subset of all variables, including the
pre-treatment variables, post-treatment variables, the out-
come variable, and the variables that are affected by the
outcome variable. We further discuss the relationship be-
tween CCCE and existing attribution measures. Notably,
CCCE can be regarded as a generalization of the former, and
also a generalization of PN and PC. Indeed, CCCE degen-
erates into POSTTCE when considering a single cause on
the outcome variable. Different from correlation and causal
effect quantities, which can be identified by observational or
interventional data, the measures of counterfactual inference
are generally non-identifiable, even when randomized con-
trolled experiments can be used. Therefore, we finally show
the identifiability result and provide identification equations
for CCCE under proper assumptions.

The rest of this paper is organized as follows. In Section 2,
we present the notations used in this paper and review exist-
ing attribution methods. In Section 3, we propose CCCE
and discuss their connections to existing methods. Section 4
discusses the idenfiability of CCCE and give the identifica-
tion formulas. In Section 5, we use simulation experiments
and real-data experiments to illustrate the effectiveness of
CCCE. Finally, Section 6 concludes the paper.

2 PRELIMINARY

This section introduces useful notations, followed by a re-
view of related attribution methods.

2.1 NOTATION

Unless otherwise stated, we use capital letters such as X to
denote random variables, and use boldface letters like X to
denote random variable sets or vectors. An instantiation of
a variable or a vector is denoted by a lowercase letter, e.g.,
x and x.

We consider binary variables {Xi}pi=1 =: X as possible
causes of an effect or outcome variable; here Xi = 1 for
true (e.g., advertising) and Xi = 0 for false (e.g., non-
advertising). Let a binary variable Y denote the outcome
variable, and Y = 1 for true (e.g., purchase) and Y = 0
for false (e.g., no purchase). Note that Xi’s are not nec-
essarily independent and may affect each other. We use
Z = {Z1, Z2, · · · , Zq} to denote variables which do not af-

fect any variable of X and Y ; similarly, Zi = 1 for true (e.g.,
purchase of supporting equipment) and Zi = 0 for false
(e.g., no purchase of supporting equipment). We assume
that variables V := {X, Y,Z} are given in a topological
order, so that Wi is not affected by Wj for any Wi,Wj ∈ V
with i < j. We can then divide X into two subsets accord-
ing to the topological order w.r.t. Xk ∈ X. That is, we can
write X = {Ak,Dk}, in which Ak = {X1, · · · , Xk−1}
and Dk = {Xk, · · · , Xp}. Given a topological order, the
data generating mechanism for X and Y can be described
as

Xk = fk(Ak, εk), k = 1, 2, . . . , p, and Y = fY (X, εY ),

where εk’s and εY are independent noise variables [Pearl,
2009]. The data generating mechanisms for variables in Z
can be similarly defined.

For any subset S ⊆ {1, . . . , p}, denote XS = {Xk :
k ∈ S} and |S| as the cardinality of S. Let YXS=xS

de-
note the potential outcome of Y under XS = xS, ab-
breviated as YxS

, and (Xk)ak
is defined similarly. Let

X−k = X\{Xk} denote the set of variables Xi’s without
Xk, and x = {x1, . . . , xp} � x′ = {x′1, . . . , x′p} denote
that xi ≤ x′i for all i. In this paper, we assume the consis-
tency holds [Pearl, 2009], that is, for any variable sets U
and V, we have Uv = U if V = v is observed. We also
assume the composition holds [Pearl, 2009], that is, for any
variable sets U, V and W, we have that Uv = u implies
Wuv = Wv.

2.2 RELATED ATTRIBUTION METHODS

As discussed in [Dawid, 2000], assessing whether one event
is the cause of another is different from measuring the effect
of a cause. The latter commonly uses Bayesian methods
or causal effect, which cannot answer attribution questions.
Assume binary valued variables with 1 standing for true or
that the event happens. The posterior probability approach
is about association and cannot explain causation, since we
can write P(X = 1 | Y = 1) = P(Y = 1 | X = 1)P(X =
1)/P(Y = 1), which relies on the prior probability of X .
The causal effect measures the effect of a cause, which is
about the effect when a cause is turned on and is not suit-
able for finding the causes given an observed evidence. For
example, poison can have a larger average causal effect than
unhealthy food on the death. However, when we observe a
person dies, it is not proper to always attribute the reason
to poison, because he/she may not have taken poison at all.
As such, finding the causes of an effect requires involving
counterfactuals.

Consider causeX and effect Y , and YX=0 and YX=1 denote
the potential outcomes of Y under X = 0 and X = 1,
respectively. To measure how necessary X is a cause of an
observed effect Y = 1, [Pearl, 2009] defined the probability
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of necessity as

PN(X ⇒ Y ) = P(YX=0 = 0 | X = 1, Y = 1), (1)

which gives the probability that the event Y would not have
occurred in the absence of the eventX given that both events
Y andX did in fact occur. PN closely matches the reasoning
used in lawsuits, where legal responsibility is understood
counterfactually, that is, in the sense of necessary causation.
In such a context, PN equals the probability that the damage
Y suffered by the plaintiff would not have occurred were
it not for the defendant’s action X Pearl [1995]. The prob-
ability of sufficiency and the probability of necessity and
sufficiency are defined as

PS(X ⇒ Y ) = P(YX=1 = 1 | X = 0, Y = 0), (2)
PNS(X ⇒ Y ) = P(YX=0 = 0, YX=1 = 1). (3)

Pearl [2009] provided their identification equations under
the assumption of monotonicity YX=0 ≤ YX=1 and the
assumption of no confounding X ⊥ Yx. Besides, Dawid
et al. [2014] defined the probability of causation to measure
how possible X is as a cause of an effect Y as

PC(X ⇒ Y ) = P(YX=0 = 0 | YX=1 = 1). (4)

Note that PC(X ⇒ Y ) = PN(X ⇒ Y ) if the assump-
tion of no confounding holds. Therefore, PC and PN are
simultaneously interventional and conditional probabilities.
A limitation of PN, PS, PNS and PC is that they only con-
sider the case of bivarate variables, that is, a cause and an
effect. In practice, we can usually observe multiple other
cause variables. Hence, Dawid et al. [2016] extended PC to
the multivariate case, and defined the conditional probability
of causation as PC(X ⇒ Y |W = w) = P(YX=0 = 0 |
YX=1 = 1,W = w), in which W are pre-treatment co-
variates. Similarly, Lu et al. [2022] defined the conditional
probability of necessity, and both of them can be identified
under the assumption of monotonicity and the assumption
of no confounding conditioned on W , that is, X ⊥ Yx |W .
In order to make full use of the observed evidence and solve
the disadvantages of the causal effect methods, Lu et al.
[2022] defined the posterior total causal effects based on the
evidence about the known pre-treatment and post-treatment
variables as follows

POSTTCE(Xk ⇒ Y | X = x, Y = 1)

= E(YXk=1 − YXk=0 | X = x, Y = 1),
(5)

which measures the attribution of Xk on the effect for indi-
viduals of cases, that is, Y = 1, with the evidence X = x.
Note that POSTTCE(X1 ⇒ Y | X1 = x1, Y = 1) =
PN(X1 ⇒ Y ) if there is only one cause, that is, X = {X1}.
Hence, POSTTCE can be considered as a generalization of
PN in the case of multiple variables.

3 DEFINITION OF CONDITIONAL
COUNTERFACTUAL CAUSAL EFFECT

Notice that POSTTCE measures the impact of only one
cause on the outcome. When there exist common effects
or interaction effects between two or more causes, it fails
to attribute multiple causes simultaneously. Besides, in the
problem of individual attribution, we often take some known
observational information of individuals as the evidence.
POSTTCE only takes the variables preceding the outcome
as the evidence, and cannot use the information provided
by the variables succeeding the outcome. To deal with these
problems, we propose the conditional counterfactual causal
effect, which measures the causal effect of XS on Y for
individuals with the evidence W = w.

Definition 1 (Conditional Counterfactual Causal Effect).
Given the variable set V = (X, Y,Z), the evidence W = w
and a set of causes XS ⊆ X, the conditional counterfactual
causal effect of XS on Y is defined as

CCCE(XS ⇒ Y |W = w) = E
(
Yx1

S
− Yx0

S
|W = w

)
,

(6)
in which W ⊆ V and x1

S � x0
S.

In many applications such as those mentioned in Section 1,
we would set x1

S and x0
S as 1|S| and 0|S|, which are vectors

with all entries being 1 and 0, respectively. By this definition,
CCCE can measure the joint influence of all causes in XS

on the outcome Y . We remark that x1
S and x0

S can be set
to other values given other cases of interest; in this paper
we will focus on the case with x1

S and x0
S being 1|S| and

0|S|, respectively. In addition, the evidence W = w always
contains the observation of Y . For example, in order to
evaluate the effect of advertising, we are more concerned
about the conversion rate of recommendations among people
with buying behavior (Y = 1). Hence, CCCE measures
the causation for causes in XS. The larger the CCCE of
XS on Y is, the larger the attribution of the effect to the
causes XS is. Note that the evidence W = w can contain
the observation of XS. Therefore, CCCE is different from
the conditional causal effect in Jin [2012]. The former is a
counterfactual variable, while the latter only conditions on
covariates except XS, that is, the conditional causal effect
only involves intervention variables and can be identified
with observational and interventional data under suitable
assumptions.

CCCE can be regarded as a generalization of POSTTCE.
Specifically, in the case of Z = ∅ and XS = {X1}, if
the evidence W = w is in the form of {U = u, Y = 1 :
U ⊆ X}, then CCCE is reduced to E(YX1=1 − YX1=0 |
U = u, Y = 1), which is exactly PostTCE(X1 ⇒ Y |
U = u, Y = 1) [Lu et al., 2022]. The details will be
given in next section. Further, in the case of Z = ∅ and
XS = {X1}, if the evidence is given by {X1 = 1, Y = 1},
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then CCCE is reduced to E(YX1=1−YX1=0 | X1 = 1, Y =
1) = P(YX1=0 = 0 | X1 = 1, Y = 1), which is exactly
PN(X1 ⇒ Y ) [Pearl, 2009]. What’s more, if the evidence
is given by {X1 = 0, Y = 0}, then CCCE is reduced to
E(YX1=1 − YX1=0 | X1 = 0, Y = 0) = P(YX1=1 = 1 |
X1 = 0, Y = 0), which is exactly PS(X1 ⇒ Y ) [Pearl,
2009]. Thus, CCCE can be considered as a generalization
of PN, PS and POSTTCE. It should be noted that this gener-
alization is not trivial, because CCCE calculates the impact
of random multiple causes on the result simultaneously, and
also adds Z into the evidence set, which makes the identifia-
bility of CCCE more complex than POSTTCE.

4 IDENTIFIABILITY FOR
CONDITIONAL COUNTERFACTUAL
CAUSAL EFFECT

Similar to PN, PC and POSTTCE, CCCE also requires to
calculate the probability of counterfactual variables. In this
section, we provide the assumptions required for identifia-
bility (Section 4.1) and discuss the identifiability of CCCE
under different evidences. In Section 4.2, we present the
identification formula of CCCE given the evidence about
a subset of X. In Section 4.3, we discuss the idenfiability
of CCCE given the evidence about the outcome variable Y
and a subset of X. In Section 4.4, we extend the evidence
set to the general case, that is, an arbitrary subset W ⊆ V,
and give a general result on the identifiability of CCCE.

4.1 ASSUMPTIONS

To give the identification formula of CCCE, the following
assumptions are required.

Assumption 1 (No confounding).

(a) There is no confounding among the variables in X,
that is, (Xk)ak

⊥ Ak for all ak and k = 2, . . . , p;

(b) There is no confounding between Y and X, that is,
Yx ⊥ X for all x;

(c) Given X and Y , there is no confounding between
(X, Y ) and Z, that is, (Yx,XxS

) ⊥ Z | X, Y for
all x,xS and XS ⊂ X.

The assumption of no confounding is also known as the
assumption of ignorability [Paul and Donald, 1983] or exo-
geneity [Pearl, 2009], implying that there is no unobserved
confounders. The Assumptions 1(a) and 1(b) are satisfied
if ε1, . . . , εp are mutually independent and (ε1, . . . , εp) and
εY are independent, respectively, while the Assumption 1(c)
is satisfied when (ε1, . . . , εp, εY ) and the noise variables of
Z are independent.

Assumption 2 (Monotonicity).

(a) The variables in X satisfy the monotonicity, that is,
(Xk)ak

≤ (Xk)a′k for all k = 1, . . . , p whenever ak �
a′k;

(b) The outcome variable Y satisfies the monotonicity, that
is, Yx ≤ Yx′ whenever x � x′.

The assumption of monotonicity is often assumed in prac-
tice, implying that the causes cannot prevent the effect. For
example, in the field of recommendation, the effect of using
television and print advertisements at the same time is no
worse than using only one of them. In this sense, the effect of
n+1 causes is definitely not worse than n causes. However,
it should be noted that there are many redundant causes.
For example, given all parents of the outcome, the other
ancestor variables become independent of the outcome. In
reality, there indeed exists some situations that the mono-
tonicity cannot be satisfied. For example, moderate exercise
is beneficial for physical health, but excessive exercise can
actually be harmful. But in general, monotonicity is a com-
mon assumption in attribution problems and can be satisfied
in most cases in practical applications.

4.2 IDENTIFIABILITY OF THE CCCE
CONDITIONED ON A SUBSET OF X

Under Assumptions 1 and 2, we discuss the identifiability
and provide the identification equation of CCCE given the
evidence about a subset of X, that is, CCCE(XS ⇒ Y |
X′ = x′), where X′ ⊆ X. According to the definition of
CCCE, we first discuss the identifiability of the conditional
probabilities P(Yx1

S
= 1 | X = x) and P(Yx0

S
= 1 | X =

x) for any x1
S � xS � x0

S, where xS ⊆ x, as shown in
Lemma 1 and Lemma 2 in the following.

Lemma 1. Given a causal ordering (X, Y,Z) =
(X1, . . . , Xp, Y,Z), let S ⊆ {1, . . . , p} and x0

S � xS. Un-
der Assumptions 1(a), 1(b) and Assumption 2(a), the condi-
tional probability P (Yx0

S
= 1 | X = x) is identifiable, and

its identification formula is

P(Yx0
S
= 1 | X = x)

=P(Yx0
S
= 1 | Ak = ak,Dk = dk)

=
∑

ck:p�dk

{
P(Y = 1 | Ak = ak,Dk = ck:p)

×
∏

i∈{k,...,p}\S

[
1− xici + xi(−1)1−ci

× P(Xi = 1 | Ak = ak,Xk:i−1 = ck:i−1)

P(Xi = xi | Ai = ai)

]}
,

(7)

where xs ⊆ x, k = minS,Xk:i−1 = {Xk, . . . , Xi−1} and
ck:p = (ck, . . . , cp) satisfying ci = x0i if i ∈ S.

Proof (sketch). By topological order, starting from the vari-
able with the smallest index in XS, iteratively simplify the
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counterfactual terms into the observational terms by using
the no confounding assumption, monotonicity assumption,
consistency and composition. More details are given in the
supplementary material.

Lemma 2. Given a causal ordering (X, Y,Z) =
(X1, . . . , Xp, Y,Z), let S ⊆ {1, . . . , p} and x1

S � xS. Un-
der Assumptions 1(a), 1(b) and Assumption 2(a), the condi-
tional probability P (Yx1

S
= 1 | X = x) is identifiable, and

its identification formula is

P(Yx1
S
= 1 | X = x)

=P(Yx1
S
= 1 | Ak = ak,Dk = dk)

=
∑

ck:p�dk

{
P(Y = 1 | Ak = ak,Dk = ck:p)

×
∏

i∈{k,...,p}\S

[
xi + ci − xici + (1− xi)(−1)ci

× P(Xi = 0 | Ak = ak,Xk:i−1 = ck:i−1)

P(Xi = xi | Ai = ai)

]}
,

(8)

where xs ⊆ x, k = minS,Xk:i−1 = {Xk, . . . , Xi−1} and
ck:p = (ck, . . . , cp) satisfying ci = x1i if i ∈ S.

A proof (and also proofs of the remaining lemmas and the-
orems) can be found in the supplementary material. Tak-
ing Lemma 1 as an example, the conditional probability
P(Y = 1 | Ak = ak,Dk = ck:p) in Equation (7) con-
tains Dk in the condition part, which may be affected by
XS. Especially, if the observed sample xS = x0

S appears
in the evidence W = w, then the conditional probability
P(Yx0

S
= 1 | X = x) = P(Y = 1 | X = x) by consis-

tency. If Z = ∅ and |S| = 1, that is, XS = {X1}, then
Lemma 1 degenerates to Lemma 1 in Lu et al. [2022]. A
similar observation holds for Lemma 2.

Based on the above lemmas, we next present the identifia-
bility result of CCCE given the evidence about X.

Theorem 1. Given a causal ordering (X1, . . . , Xp, Y,Z),
let S ⊆ {1, . . . , p}. Under Assumptions 1(a), 1(b) and As-
sumption 2(a), CCCE(XS ⇒ Y | X = x) is identifiable,
and its identification formula can be obtained by substituting
the equations in Lemma 1 and Lemma 2 into its definition,
that is,

CCCE(XS ⇒ Y | X = x)

=P(Yx1
S
= 1 | X = x)− P(Yx0

S
= 1 | X = x),

(9)

where x1
S � xS � x0

S and xS ⊆ x.

Notice that the identification formulas in Lemma 1 and
Lemma 2 only have the probability of observed variables,
implying that CCCE in Theorem 1 can be estimated from
the observational data only. However, sometimes we can
only get a part of evidence of X, say, X′ ⊆ X. Hence, we

show below the identifiability of the CCCE based on the
evidence about a subset of X.

Corollary 1. Given a causal ordering (X1, . . . , Xp, Y,Z),
let S ⊆ {1, . . . , p},X′ ⊆ X and X′ = x′, then the follow-
ing equation holds:

CCCE(XS ⇒ Y | X′ = x′)

=
∑

x:x⊇x′
CCCE(XS ⇒ Y | X = x)

× P(X = x | X′ = x′).

(10)

Further, if Assumptions 1(a), 1(b) and 2(a) are satisfied,
CCCE(XS ⇒ Y | X′ = x′) is identifiable according to
Theorem 1.

In the corollary above, we show that the CCCE with the
evidence of a subset X′ = x′ is the expectation of that with
the evidence of the full set X = x that are taken over the
unknown causes X\X′ conditionally on X′ = x′. In other
words, the CCCE with the evidence of a subset X′ = x′ is
identifiable whenever that with the evidence of the full set
X = x is identifiable.

4.3 IDENTIFIABILITY OF THE CCCE
CONDITIONED ON (X, Y )

In the practical application of the attribution problem, we
often pay more attention to the group of cases (Y = 1). For
example, among all the people who buy an item, advertisers
want to know whether their buying behavior is due to rec-
ommendation. Below we give the identifiability of CCCE
given the evidence about X and Y .

Theorem 2. Under Assumption 2(b), the following equa-
tions hold:

CCCE(XS ⇒ Y | X = x, Y = 1)

=1−
P(Yx0

S
= 1 | X = x)

P(Y = 1 | X = x)
;

(11)

CCCE(XS ⇒ Y | X = x, Y = 0)

=1−
P(Yx1

S
= 0 | X = x)

P(Y = 0 | X = x)
,

(12)

where S ⊆ {1, . . . , p},x1
S � xS � x0

S and xS ⊆ x.
Further, if Assumptions 1(a), 1(b) and 2(a) are satisfied,
CCCE(XS ⇒ Y | X = x, Y = y) for y = 0, 1 is iden-
tifiable and its identification formulas can be obtained by
substituting the equations 7 and 8 into equations above,
respectively.

Similar to Corollary 1, we also present the identifiability of
CCCE based on the evidence about the outcome variable Y
and a subset of X.
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Corollary 2. Given a causal ordering (X1, . . . , Xp, Y,Z),
let S ⊆ {1, . . . , p},X′ ⊆ X and X′ = x′, then the follow-
ing equation holds:

CCCE(XS ⇒ Y | X′ = x′, Y = y)

=
∑

x:x⊇x′
CCCE(XS ⇒ Y | X = x, Y = y)

× P(X = x | X′ = x′, Y = y),

(13)

for y = 0, 1. Further, if Assumptions 1(a), 1(b) and 2
are satisfied, CCCE(XS ⇒ Y | X′ = x′, Y = y) is
identifiable according to Theorem 2.

4.4 A GENERAL IDENTIFIABILITY RESULT FOR
CCCE

Given the previous identifiability results, we now consider
a more general setting and discuss the identifiability of
CCCE given the evidence about an arbitrary subset. Before
describing the main result in Theorem 3, we start with two
useful results.

Lemma 3. Under Assumption 1(c), we have

P
(
Yx∗S = 1 | X = x, Y = y,Z = z

)
=P

(
Yx∗S = 1 | X = x, Y = y

)
,

where S ⊆ {1, . . . , p} and x∗S denotes an arbitrary value
of xS.

Using Lemma 3, we can give the identifiability of CCCE
based on the evidence about the complete set (X, Y,Z), as
shown in the following.

Corollary 3. Given a causal ordering (X1, . . . , Xp, Y,Z),
let S ⊆ {1, . . . , p}, CCCE based on the evidence about the
complete set has the following equation:

CCCE(XS ⇒ Y | X = x, Y = y,Z = z)

=CCCE(XS ⇒ Y | X = x, Y = y).
(14)

Based on all conclusions in this section, now we can give a
general result for the identifiability of CCCE based on the
evidence about an arbitrary subset of V, as shown below.

Theorem 3. Given a causal ordering (X1, . . . , Xp, Y,Z),
let S ⊆ {1, . . . , p}, and W is an arbitrary subset of
(X, Y,Z). Under Assumption 1 and Assumption 2, CCCE of
XS on Y based on the evidence W = w has the following
equation:

CCCE(XS ⇒ Y |W = w)

=
∑

(x,y,z):(x,y,z)⊇w

CCCE(XS ⇒ Y | X = x, Y = y)

× P(X = x, Y = y,Z = z |W = w),

(15)

which is identifiable according to Theorem 2.

According to the results in this section, CCCE only uses the
topological ordering of the variables for the attribution, but
a causal graph may has several different valid topological
orderings. In fact, for a given graph, the value of CCCE is
invariant for different valid topological orderings, as long
as the evidence set W = w contains the variable Y and its
all ancestors. Note that, for any topological ordering of a
given graph, the order of ancestors of Y always precedes
the order of Y . Therefore, for any given valid topological
ordering, we only need to make the evidence set W = w
contain Y and the variables before Y in this ordering.

5 EXPERIMENTS

In this section, we conduct experiments to illustrate the
effectiveness of CCCE and compare it with other attribu-
tion methods. We run the experiments on a desktop com-
puter with Intel(R) Core(TM) i5-8250U CPU and 8GB
RAM. The codes are available at https://github.
com/LLily0703/CCCE.

5.1 SIMULATION

Setup Consider a real world scenario in which we aim to
find out why a family purchases eye-protection lamps. The
causal graph describing the relations of related factors is
given in Figure 1, where Children (X1), Kid Tablets (X2),
Education (X3), Books (X4), Children’s Watch (X5) and
Stationery (X6) are some possible causes of Eye-protection
Lamps (Y ) and the direct arrows indicate direct effects be-
tween variables. All the variables are binary-valued, and
X1 = 1 denotes that there are children in the family,
X3 = 1 denotes the family attaches importance to edu-
cation, Xj = 1, j = 2, 4, 5, 6 denotes that the family has
purchased the corresponding items and Y = 1 denotes the
family has purchased the eye-protection lamps. According
to the causal graph, a topological order of variables is given
by (X1, X3, X2, X4, X5, Y,X6). Note that while the true
causal graph is used for generating data in our experiments,
only this topological order is available for attribution. Be-
sides, we assume that these variables satisfy the assumption
of no confounding and the assumption of monotonicity.

Figure 1: A causal graph of eye-protection lamps

Data Generating Process The do-calculus [Pearl, 1995]
and the Markov property of P(V) w.r.t. causal graph G
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Table 1: Change rate of methods for attribution without interaction effect.

RAND POST PN PS PNS ACE POSTTCE CCCE

CR1 0.2390 0.4502 0.4598 0.4437 0.4602 0.4515 0.6636 0.6713
std. (0.0143) (0.0278) (0.0247) (0.0419) (0.0276) (0.0284) (0.0290) (0.0303)

CR2 0.3842 0.6706 0.6434 0.6420 0.6394 0.6712 0.7026 0.7398
std. (0.0141) (0.0360) (0.0257) (0.0268) (0.0267) (0.0350) (0.0277) (0.0200)

in Figure 1 allow the following factorization of the joint
distribution [Lauritzen, 1996]:

P(V)

= P(X1)P(X3)P(X2 | X1, X3)P(X4 | X3)P(X5 | X1)

× P(X6 | X3)P(Y | X1, X2, X3)

= P(X1)P(X3)P((X2)X1,X3
)P((X4)X3

)P((X5)X1
)

× P((X6)X3
)P(YX1,X2,X3

).

Let PA(X,G) denote the parents of X in the causal graph
G, which can be abbreviated as PA(X). Then the condi-
tional distribution of each variable Xi is transformed into
the marginal distribution of 2|PA(Xi,G)| binary counterfac-
tual variables, except for the root nodes. Hence, according
to the topological order, we can generate observation data by
using these counterfactual probabilities. First, we generate
samples (x1, x3) of root variables (X1, X3) according to the
distributions P(X1),P(X3). Then, according to the topolog-
ical ordering, generate the sample xj ofXj by their marginal
counterfactual distributions P((Xj)PA(Xj)=pa(Xj) in order,
where pa(Xj) is the sample of the parent set of Xj we have
already generated. For example, we first generate the sam-
ples (X1, X3) = (x1, x3) = (1, 0), then we can generate
the sample x2 of X2 by its marginal counterfactual distri-
bution P((X2)x1,x3

) = P((X2)1,0). In fact, the sample we
generate here is the sample (x2)x1,x3

= (x2)1,0 of the coun-
terfactual variable (X2)x1,x3

= (X2)1,0, but according to
the consistency assumption, when we observe (X1, X3) =
(x1, x3) = (1, 0), we have (X2)x1,x3 = (X2)1,0 = X2.
Hence, we can get (x2)x1,x3 = (x2)1,0 = x2 here. By it-
erating this step, we can generate samples of all variables
in order. In our simulation, the probabilities are either (i)
randomly generated, or (ii) generated by logistic functions:

P((Xj)pa(Xj) = 1) = logistic(γj + αT
j · pa(Xj));

P(Yx1,x2,x3
= 1) = logistic(γY + αY 1x1 + αY 2x2

+ αY 3x3 + βx2x3),

(16)

where j = 1, . . . , 6, pa(Xj) denotes the value of PA(Xj),
γ1, · · · , γ6, γY are intercept terms, α1, · · · , α6, αY are vec-
tors of weights, and β characterizes the interaction effect
between X2 and X3.

According to the above data generating process, we gener-
ate ten different causal graphs with the same structure but

different causal mechanisms (edge weights). Afterwards,
we conducte ten experiments on each causal graph, that is,
generate ten different datasets with a sample size of 1000.
We first randomly select the probabilities. For each indi-
vidual sample, we use RAND (randomly select in variables
preceding Y ), POST (P(Xk = 1 | Y = 1)), PN, PS, PNS,
ACE, POSTTCE and CCCE for attribution and take the
observational sample (x1, x2, x3, x4, y, x6) as the evidence.
When looking for only one reason, we regard the variable
with the largest value as the true cause of the outcome. For
two causes, CCCE can measure the impact of two variables
simultaneously, while other methods measure one cause at
a time and find the two with the first two largest values as
true causes.

Evaluation and Result After finding the causes, we use
the Change Rate (CR, higher is better) to measure the effec-
tiveness and accuracy of attribution. To define the Change
Rate, let N be the size of observational data set D. Let A =
{v = (x1, x3, x2, x4, x5, y, x6) ∈ D | y = 1 occurs in v}.
Then for any vector in A, set the value of cause variables
XS in these vectors to 0 and generate the sample of the
counterfactual variable YXS=0|S| to replace y in them. Then,
let B = {v = (xS,xV\XS

, yXS=0|S|) ∈ A | yXS=0|S| =
0 occurs in v}, where V is the set of all variables except Y .
Hence, the Change Rate can be calculated by |B|/N . In fact,
the set B pick up a group of people that given XS = xS

and Y = 1, when we change the value of XS to zero, then
the value of Y changes to 0 from 1. Therefore, the Change
Rate calculates the proportion of people in set B to the total
population, which is an estimate of the counterfactual prob-
ability P(YXS=0|S| = 0 | V = v, Y = 1). The higher the
proportion of this kind of people, the greater the impact of
XS on Y . We repeat the above experiment ten times with
different seeds and take the average as the result, as shown
in Table 1.

CR1 shows the average change rate of different methods
for attributing one cause, while numbers in parentheses in
the second line are their standard deviations. Recall that
when only one cause is attributed, CCCE degenerates into
POSTTCE. It can be seen that POSTTCE and CCCE per-
form much better than other methods and have similar
change rates, 0.6636 and 0.6713, respectively. In addition,
CR2 in Table 1 shows the average change rate for attributing
two causes. Due to monotonicity, all methods perform better
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Table 2: Change rate of methods for attribution with interaction effect.

RAND POST PN PS PNS ACE POSTTCE CCCE

CR2 0.3976 0.5863 0.5300 0.5263 0.5340 0.5471 0.6088 0.6597
std. (0.0206) (0.0266) (0.0263) (0.0257) (0.0320) (0.0310) (0.0238) (0.0196)

Table 3: Change rate of methods for attribution under different level of monotonicity.

p RAND POST PN PS PNS ACE POSTTCE CCCE

CR1 0.1795 0.5375 0.5342 0.5337 0.5352 0.5348 0.6517 0.6623
0 std. (0.0098) (0.0126) (0.0163) (0.0140) (0.0165) (0.0124) (0.0171) (0.0172)

CR2 0.3080 0.6475 0.5363 0.5375 0.5446 0.6438 0.6643 0.6748
std. (0.0110) (0.0743) (0.0096) (0.0127) (0.0105) (0.0690) (0.0170) (0.0119)

CR1 0.1772 0.5154 0.5119 0.5210 0.5116 0.5100 0.6345 0.6413
0.2 std. (0.0096) (0.0107) (0.0060) (0.0164) (0.0076) (0.0121) (0.0170) (0.0187)

CR2 0.3032 0.6293 0.5098 0.5110 0.5126 0.6214 0.6437 0.6541
std. (0.0089) (0.0722) (0.0081) (0.0155) (0.0169) (0.0748) (0.0192) (0.0169)

CR1 0.1755 0.4942 0.4902 0.4920 0.4915 0.4871 0.6177 0.6203
0.4 std. (0.0096) (0.0183) (0.0150) (0.0098) (0.0112) (0.0146) (0.0200) (0.0126)

CR2 0.2852 0.6047 0.4893 0.4908 0.4888 0.6068 0.6173 0.6348
std. (0.0089) (0.0722) (0.0081) (0.0155) (0.0169) (0.0748) (0.0192) (0.0169)

CR1 0.1651 0.4698 0.4758 0.4688 0.4675 0.4668 0.5977 0.5946
0.6 std. (0.0090) (0.0122) (0.0152) (0.0113) (0.0149) (0.0131) (0.0208) (0.0111)

CR2 0.2786 0.5821 0.4681 0.4716 0.4667 0.5841 0.5941 0.6101
std. (0.0134) (0.0701) (0.0143) (0.0136) (0.0161) (0.0719) (0.0198) (0.0103)

than attributing one cause, and POSTTCE and CCCE are
still much better than others. Besides, CR2 of CCCE is only
about 3.72% higher than that of POSTTCE, as counterfacual
probabilities of all causes are generated independently and
randomly, and there is no interaction effect in this case.
Therefore, there is little difference between attributing two
variables simultaneously and attributing one variable twice.

Next, we use the method of Equation (16) to generate
the probabilities of counterfactuals with explicit interac-
tion effect. In particular, γ1 ∼ Uniform(1, 3); γY , γj ∼
Uniform(−2, 2), j = 2, . . . , 6; αij ∼ Uniform(0, 0.5);
αY 1 ∼ Uniform(0.6, 1); αY j ∼ Uniform(0, 0.5), j =
2, 3; and β = 2. We use the same way to calculate the
change rate for attributing two causes. The results are shown
in Table 2.

In this case, there is an interaction effect between X2 and
X3. It can be seen that the change rate of CCCE (0.6597)
is the highest, at least 5% higher than other methods. This
is because when there is the interaction effect, only CCCE
can attribute multiple causes simultaneously while other
methods can only calculate one cause at a time.

As mentioned before, the monotonicity assumption may not
be true in practice. Hence, we next test the performance of
CCCE and the baselines when that monotonicity assump-

tion does not hold. In this experiment, we randomly select
several causal graphs for simulation experiments. The ex-
perimental setup is exactly the same as that in Table 1 in our
paper, except that when we generate counterfactual samples,
a proportion p = (0, 0.2, 0.4, 0.6) of random samples will
not meet the monotonicity assumption. We present the result
of one of the causal graphs here, as shown in Table 3, while
the other causal graphs have similar results.

It can be seen that with the decline of the level of mono-
tonicity, the effects of all methods have declined to a certain
extent. However, even so, under different levels of mono-
tonicity, the performance of each method is similar to that in
Table 1, that is, the performance of POSTTCE and CCCE
is much better than that of other methods, while the perfor-
mance of CCCE is slightly better than that of POSTTCE,
but the difference is not significant. This is because this
experiment is the same as the setup of Table 1, which is con-
ducted without interaction effect. This also shows that even
if monotonicity is not satisfied, our method can still achieve
very good results. In addition, when the monotonicity as-
sumption is destroyed, the CR2 values of some methods are
less than their CR1 values. In other words, the effect of at-
tributing two causes is not as good as that of attributing one
cause, which also shows that the monotonicity assumption
is indeed destroyed.
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Table 4: Change rate of methods for attributing the expression of Mek in Figure 2.

RAND POST PN PS PNS ACE POSTTCE CCCE

CR1 0.2276 0.5406 0.5335 0.5344 0.5354 0.5358 0.6219 0.6252
std. (0.0165) (0.0160) (0.0132) (0.0123) (0.0205) (0.0161) (0.0207) (0.0138)

CR2 0.3356 0.5330 0.5330 0.5325 0.5328 0.5380 0.6215 0.6790
std. (0.0182) (0.0145) (0.0211) (0.0147) (0.0083) (0.0203) (0.0244) (0.0196)

5.2 REAL DATA

In this experiment, we apply our method to a real world
dataset about the expression levels of proteins and phospho-
lipids [Sachs et al., 2005]. The ground truth causal graph
has 11 vertices and 19 edges, as shown in Figure 2. We aim
to attribute the expression of the variable Mek in Figure 2.
Here we only use the observational data with 853 samples
for our attribution. We binarize the data by setting the data
greater than the median value to 1, and 0 otherwise.

Figure 2: The ground truth causal graph of 11 proteins and
phospholipids in [Sachs et al., 2005].

We assume that the causal order is known as (PKC, PKA,
Raf, Jnk, P38, Mek, Erk, Akt, Plcg, PIP2, PIP3). We
take the empirical posterior probabilities P(Xj = 1 | Aj =
aj) as the counterfactual probabilities P((Xj)aj

) and calcu-
late the change rates of different methods in the same way
as Section 5.1. The results are shown in Table 4.

Similarly, CR1 in Table 4 is the average change rate for
attributing one cause. Again, POSTTCE and CCCE outper-
form other methods. Note that the change rates of POSTTCE
and CCCE are close, while the latter has a smaller standard
deviation. As for CR2, the average change rate for attribut-
ing two causes, CCCE performs best and its change rate is
5.75% higher and a smaller standard deviation compared
with POSTTCE. This implies that there is an interaction ef-
fect between the causes of Mek. It is worth noting that values
of CR2 obtained by POST, PN, PS, PNS and POSTTCE are
lower than those of CR1, respectively. We conjecture that

this is because the monotonicity assumption may not hold
in this dataset. Nevertheless, CCCE still has an increased
change rate.

6 CONCLUDING REMARKS

In this paper, we propose CCCE to quantify how possibly
the result is attributed to causes. In particular, CCCE allows
us to attribute several causes simultaneously and charac-
terize the interaction effect between two or more causes.
In addition, CCCE can use the observational data of any
variable as evidence, including post-treatment variables and
variables may be affected by the outcome. We discuss the
identifiability of CCCE, and present the assumptions re-
quired and identification equations in different cases. Ac-
cording to these results, we extend the result to the general
case, and finally give a general result on th identifiability
of CCCE. We apply our method to both synthetic and real
world datasets and achieve a significant improvement over
the existing methods.

In the present paper, all variables involved are binary, which
might be a limitation in practice. We plan to extend CCCE
to the case of discrete or categorical variables. Relaxing the
assumption of a known causal order is also a future work
direction.

Acknowledgements

This work is supported in part by the National Key R&D
Program of China (2020YFE0204200) and in part by the
National Natural Science Foundation of China under Grant
11971040. Authors would like to thank reviewers for their
helpful and constructive suggestions.

References

R. U. Ayres and J. Walter. The greenhouse effect: Dam-
ages, costs and abatement. Environmental and Resource
Economics, 1(3):237–270, 1991.

G. E. Belch and A. Michael. Advertising and promotion:An
integrated marketing communications perspective. Irwin-
McGraw Hill, 1998.

2527



A. P. Dawid. Causal inference without counterfactuals.
Publications of the American Statistical Association, 95
(450):407–424, 2000.

A. P. Dawid, D. L. Faigman, and S. E. Fienberg. Fitting
science into legal contexts: Assessing effects of causes or
causes of effects? Sociological Methods & Research, 43:
359–390, 2014.

P. Dawid, M. Musio, and S. E. Fienberg. From statistical
evidence to evidence of causality. Bayesian Analysis, 11:
725–752, 2016.

M. Jensen and R. Ruback. The market for corporate control:
The scientific evidence. Journal of Financial Economics,
11:5–50, 1983.

T. Jin. Identifying conditional causal effects, 2012.

S. L. Lauritzen. Graphical Models. Oxford University Press,
1996.

C. Lin, S. Venkataraman, and S. D. Jap. Media multiplexing
behavior: Implications for targeting and media planning.
Marketing Science, 32(2):310–324, 2013.

Z. T. Lu, Z. Geng, W. Li, S. Y. Zhu, and J. Z. Jia. Eval-
uating causes of effects by posterior effects of causes.
Biometrika, 2022.

P. A. Naik and K. Raman. Understanding the impact of
synergy in multimedia communications. Journal of mar-
keting research, 40(4):375–388, 2003.

R. Rosenbaum Paul and B. Rubin Donald. The central role
of the propensity score in observational studies for causal
effects. Biometrika, 70(1):41–55, 1983.

J. Pearl. Causal diagrams for empirical research. Biometrika,
82:669–688, 1995.

J. Pearl. Causality: Models, reasoning, and inference, sec-
ond edition. Cambridge University Press, 2009.

K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger, and G. P
Nolan. Causal protein-signaling networks derived from
multiparameter single-cell data. Science, 308(5721):523–
529, 2005.

H. A. M. Voorveld and S. M. F. Valkenburg. The fit factor:
The role of fit between ads in understanding cross-media
synergy. Journal of Advertising, 44(3):1–11, 2015.

2528


	Introduction
	Preliminary
	Notation
	Related Attribution Methods

	Definition of conditional counterfactual causal effect
	Identifiability for conditional counterfactual causal effect
	Assumptions
	Identifiability of the CCCE conditioned on a subset of X
	Identifiability of the CCCE conditioned on (X,Y)
	A general identifiability result for CCCE

	Experiments
	Simulation
	Real Data

	Concluding Remarks

