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Abstract
In online advertising markets, an increasing num-
ber of advertisers are adopting auto-bidders to buy
advertising slots. This tool simplifies the process
of optimizing bids based on various financial con-
straints.
In our study, we focus on second-price auctions
where bidders have both private budget and pri-
vate ROI (return on investment) constraints. We
formulate the auto-bidding system design problem
as a mathematical program and analyze the auto-
bidders’ bidding strategy under such constraints.
We demonstrate that our design ensures truthful-
ness, i.e., among all pure and mixed strategies, al-
ways reporting the truthful budget and ROI is an
optimal strategy for the bidders. Although the pro-
gram is non-convex, we provide a fast algorithm to
compute the optimal bidding strategy for the bid-
ders based on our analysis. We also study the wel-
fare and provide a lower bound for the PoA (price
of anarchy). Moreover, we prove that if all bidders
utilize our auto-bidding system, a Bayesian Nash
equilibrium exists. We provide a sufficient condi-
tion under which the iterated best response process
converges to such an equilibrium. Finally, we con-
duct extensive experiments to empirically evaluate
the effectiveness of our design.

1 Introduction
Ever since the seminal works of the Vickrey-Clarke-Groves
(VCG) auction [Vickrey, 1961; Clarke, 1971; Groves, 1973]
and Myerson’s optimal auction [Myerson, 1981], the auc-
tion design problem has been one of the central topics at
the intersection of economics and computer science, leading
to the development and implementation of various auction
mechanisms across numerous fields [Cramton et al., 2004;
Aggarwal et al., 2006; Varian, 2007; Edelman et al., 2007].

One of the most successful applications of auction theory is
online advertising, which is a large and still growing business.
Online advertising has become the main source of revenue for
many Internet companies, such as Meta, Google, and TikTok.
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According to the statistics by Statista [2022], 521 billion dol-
lars have been spent on digital advertisements in 2021. Most
online ad platforms adopt the second-price auction or its vari-
ants. The appeal of the second-price auction lies in its truth-
fulness, where buyers are incentivized to report their true val-
ues as bids. Additionally, the second-price auction is known
for maximizing social welfare, ensuring that the buyer with
the highest value ultimately secures the item or ad slot.

Although the second-price auction is truthful, many bid-
ders are still constantly changing their bids on these plat-
forms. This behavior can be attributed to the presence of
various financial constraints faced by advertisers, including
budget limitations and profitability considerations. Conse-
quently, advertisers often find it challenging to bid their true
values, as doing so may conflict with their constraints, such
as exceeding their allocated budget. However, setting fine-
grained bids for different auctions is a notoriously difficult
task for advertisers, and only those large advertisers have the
ability to fine-tune the bidding strategy. Conversely, smaller
advertisers, who may be more constrained by financial limita-
tions, often lack the capacity to optimize their bids effectively.

Auto-bidding systems have gained significant popularity
among advertisers as they aim to simplify the bidding pro-
cess in online advertising. These systems only require ad-
vertisers to provide high-level financial targets, such as their
budget and target CPA (cost per acquisition), instead of set-
ting separate bids for each auction. The auto-bidding system
then leverages these targets to compute optimized bids and
participate in auctions on behalf of the advertisers. Such auto-
bidding systems optimize the advertisers’ bids for them and
allow them to focus more on high-level goals. Thus more and
more advertisers are adopting auto-bidding systems.

The simplest auto-bidding strategy only considers the bud-
get constraint for the bidders [Borgs et al., 2007; Pai and
Vohra, 2014; Conitzer et al., 2018; Balseiro et al., 2017].
They ensure that the buyers’ actual payment does not exceed
their budget. Another set of strategies considers the bidder’s
return on investment (ROI) constraints, which is also called
the return on spend (ROS) constraint in some research [Gol-
rezaei et al., 2021; Balseiro et al., 2021b]. Aggarwal et al.
[2019] assume that the bidders’ budget and ROI constraints
are publicly known, and Balseiro et al. [2022] consider both
constraints but assume that the buyers’ budget is publicly
known, while the buyers’ ROI constraint is privately known.



To the best of our knowledge, there is no existing work that
considers both private budget and private ROI constraints. In
our paper, we focus on this setting and assume the underly-
ing auction mechanism is the second-price auction with no
reserve prices.

1.1 Our Contributions
In this paper, we formulate the problem as a mathematical
program and analyze the properties of the optimal solution.
We then propose an efficient algorithm based on theoretical
analysis to compute the optimal strategy. We also show that
under our mechanism, reporting the truthful budget and ROI
targets is the optimal strategy even if the buyers can adopt
mixed strategies. Furthermore, we show that an equilibrium
always exists if all bidders adopt our auto-bidding algorithm.
We then give a sufficient condition under which the iterated
best response process converges to such an equilibrium. We
also analyze the social welfare of the auto-bidding strategy
and provide a lower bound for the PoA (price of anarchy). In
the end, we conduct extensive experiments based on both syn-
thetic and realistic data sets to demonstrate the performance
of our bidding strategy.

1.2 Related Works
Budget Constraint: In the online advertising literature, Bal-
seiro and Gur [2019] propose adaptive pacing algorithms to
control the buyer’s payment within the budget. Balseiro et al.
[2017] provide a detailed comparison of budget management
strategies commonly used in practice. Conitzer et al. [2022]
and Chen et al. [2021] study the computational complexity
in the pacing equilibrium.

ROI Constraint: Aggarwal et al. [2019] study the set-
ting where the bidders are value maximizers with ROI con-
straint. Golrezaei et al. [2021] analyze the setting where the
bidders are utility maximizers with ROI constraint in second-
price auctions with reserve prices. They show that the buyer’s
optimal strategy is to shade his bid, i.e., bid lower than his val-
uation. Such shading strategies can also be found in [Balseiro
et al., 2015; Balseiro and Gur, 2019; Conitzer et al., 2017;
Gummadi et al., 2012].

Social Welfare: Aggarwal et al. [2019] show that the
truthful mechanism can achieve at least half of the optimal so-
cial welfare when bidders have financial constraints. Balseiro
et al. [2021a] and Deng et al. [2021] study how to use boost
and reserve price to improve the social welfare when auto-
bidders are value maximizers under ROI constraints. Mehta
[2022] studies how to use randomized mechanism to improve
social welfare under the auto-bidding setting. Balseiro et al.
[2021b] and Balseiro et al. [2022] analyze the setting where
the buyer’s ROI target is private and the budget constraint is
public. Their settings are all different from ours as we con-
sider both private budget constraints and private ROI targets.

Bayesian Nash Equilibrium: Both Aggarwal et al.
[2019] and our paper consider the existence of a Bayesian
Nash equilibrium. However, Aggarwal et al. [2019] assume
there is only one particular impression and the queries and
slots form a continuum, while we make assumptions about
bidders’ value distributions.

2 Preliminaries
We consider the online advertising setting where there is
a seller with an item for sale to n buyers. Let [n] =
{1, 2, · · · , n} denote the set of buyers. Each buyer i ∈ [n] has
a value vi for the item, drawn independently from a publicly
known cumulative distribution function Fi(vi) : [0, v̄] 7→
[0, 1] for some 0 < v̄ < +∞. Assume Fi(vi) is dif-
ferentiable and fi(vi) is the corresponding probability den-
sity function. Let v = (v1, v2, · · · , vn) be the value pro-
file, which contains the values of all buyers. Similarly, let
v−i = (v1, · · · , vi−1, vi+1, · · · , vn) denote the value profile
of all buyers except buyer i. Though the value distribution
Fi(vi), i ∈ [n] is publicly known, the realized value vi is
only known to buyer i. Let bi be the bid of buyer i. Similarly,
we define b = (b1, b2, · · · , bn) as the bid profile of all buyers
and b−i = (b1, · · · , bi−1, bi+1, · · · , bn) as the bid profile of
all buyers except buyer i.

Assume that the seller uses the second-price auction as the
base auction mechanism, which is widely used in the on-
line advertising industry, especially in ad exchanges. In a
second-price auction, the bidder with the highest bid wins
the item and pays the second highest bid. Let x(b) =
(x1(b), . . . , xn(b)) be the allocation rule and p(b) =
(p1(b), . . . , pn(b)) the payment rule:

xi(b) =

{
1 if bi ≥ bj ,∀j
0 otherwise

, (1)

pi(b) =

{
maxj ̸=i bj if bi ≥ bj ,∀j
0 otherwise

. (2)

If there are more than one highest bids, we can break ties
arbitrarily. Assume that buyer i’s utility functions ui are
quasi-linear, i.e., ui(vi) = vix(bi,b−i)− p(bi,b−i).

For a buyer i, let Di = maxj ̸=i bj be the highest bid of all
other buyers, which is a random variable. Denote by Gi(Di)
and gi(Di) the cumulative distribution function and the prob-
ability density function of Di, respectively. Since Fi(vi) is
differentiable for all i, Di also has a density function, which
implies that the probability of bi = Di is simply 0. Thus the
tie-breaking rule does not affect the auction outcome.

We consider the setting where all buyers have both budget
and ROI constraints. Let Bi and γi be the budget and ROI
constraints of buyer i. Formally, buyer i’s bids bi satisfies the
budget constraint if:

E[DiI{bi ≥ Di}] ≤ Bi,

where the function I(·) is the indicator function, and the ex-
pectation is taken over both bi and Di. Since the seller
uses a second-price auction, buyer i wins the auction only
if bi ≥ Di. And when buyer i wins, their payment is Di.
Thus the left-hand side of the above equation is simply their
expected payment in the auction.

The ROI can be defined as follows.
Definition 1 (Return on Investment). Buyer i’s return on
investment is the ratio between his expected gain from the
auction and his expected payment. Formally, assuming
E[DiI(bi ≥ Di)] > 0, we define the buyer i’s ROI as

E[(vi −Di)I{bi ≥ Di}]
E[DiI{bi ≥ Di}]

.



Buyer i’s bid satisfies the ROI constraint if:

E[(vi −Di)I{bi ≥ Di}]
E[DiI{bi ≥ Di}]

≥ γi.

A major reason for the buyer’s ROI constraint is that the buyer
has outside options. Suppose that the buyer can have a profit
margin of 5% if they invest the money elsewhere. Then they
will only participate in the auction if they can secure an ROI
of at least 5% in the advertising platform. We assume that
both Bi and γi are the private information of buyer i, and
thus need to be reported to the platform.

Throughout the paper, we assume that the budget Bi has a
lower bound B > 0, as a 0 budget simply indicates that the
buyer does not want to participate in the auctions. Also, we
assume that the ROI γi has an upper bound γ̄ with γ̄ > 0,
since no platform cannot guarantee an arbitrarily high ROI.

Note that in both two constraints, we consider the expected
utility and payment. This is because buyers participate in
large volumes of online ad auctions each day, and focusing
on the expected quantities makes more sense than consider-
ing only a single auction.

We follow literature convention (see, e.g., [Golrezaei et al.,
2021; Mehta, 2022]) and focus on shading strategies1 for the
bidders: bi = βivi. We restrict βi to be a positive number
(i.e., βi > 0) for obvious reasons. We call βi the shading
parameter.

Since we assume

E[DiI(bi ≥ Di)] > 0,

the ROI constraint becomes:

E[(vi −Di)I{bi ≥ Di}] ≥ γi E[DiI{bi ≥ Di}].

Plugging in the bidding strategy bi = βivi, we obtain the
following inequality for the ROI constraint:

E{[(1 + γi)Di − vi]I{βivi ≥ Di} ≤ 0.

In this paper, we first consider how to design an auto-
bidding strategy (which is fully characterized by the param-
eter βi) for each buyer given their reported budget and ROI.
We assume that the buyers’ utility is −∞ if either constraint
is violated, i.e., the constraints are hard constraints. With the
above discussion, we can formulate the problem as a mathe-
matical program based on Bi and γi:

maximize: E[(vi −Di)I{βivi ≥ Di}]
subject to: E[DiI{βivi ≥ Di}] ≤ Bi

E[((1 + γi)Di − vi)I{βivi ≥ Di}] ≤ 0

(3)

3 The Optimal Shading Parameter
If the buyer i does not have financial constraints, their opti-
mal strategy is to use their valuations as the bids (βi = 1)
in a second-price auction. However, when the bidders have
financial constraints, they may try to shade their bids and use

1Although the strategy is called a shading strategy in our paper,
we actually allow βi to be larger than 1. However, later analyses
show that the optimal βi never exceeds 1, and hence a “shading”
strategy.

a different parameter βi. In this section, we first analyze the
properties of Program (3) when buyer i has both budget and
ROI constraints. Then we propose an efficient algorithm to
solve this program based on the properties, although Program
(3) is non-convex.

3.1 Properties of the Optimal Parameter
In this section, we derive important properties of Program (3)
that will be useful for designing our algorithm. Due to space
limit, we defer all the proofs to the Appendix.

We first analyze the feasible region of Program 3. For sim-
plicity, define the bidder i’s expected payment as

Pi(βi) = E[DiI{βivi ≥ Di}]

=

∫ v̄

0

∫ βivi

0

Digi(Di) dDifi(vi) dvi.
(4)

Lemma 1. The buyer’s expected payment Pi(βi) is monotone
increasing with respect to βi.

According to Lemma 1, we must have βi ≤ P−1
i (Bi) in

order to satisfy the bidder’s budget constraint Pi(βi) ≤ Bi.
Therefore, the budget constraint actually restricts βi to the
interval (0, P−1

i (Bi)].
Then we analyze the ROI constraint. Define

hi(βi) = E[((1 + γi)Di − vi)I{βivi ≥ Di}]

=

∫ v̄

0

∫ βivi

0

[(1 + γi)Di − vi]gi(Di) dDifi(vi) dvi.

(5)

The following lemma analyzes how hi(βi) changes with re-
spect to βi.
Lemma 2. Function hi(βi) is monotone decreasing in
(0, 1

1+γi
], and monotone increasing in ( 1

1+γi
,+∞).

It is easy to see that hi(0) = 0. Then Lemma 2 implies that
there is at most one β̂ > 0 such that hi(β̂) = 0.

Lemma 3. If there exists β̂ > 0 with hi(β̂) = 0, then the
ROI constraint is equivalent to βi ≤ β̂. Otherwise, we have
hi(βi) < 0,∀βi ∈ (0,+∞).

Lemma 3 says that the ROI constraint either requires βi to
be in the interval (0, β̂] or imposes no restrictions on βi (i.e.,
βi should be in the interval (0,+∞)).

Combining Lemma 1 and 3, we can immediately get the
following corollary:
Corollary 1. The feasible region of Program (3) is an in-
terval (0, β̄]. If there exists β̂ > 0 with hi(β̂) = 0, β̄ =

min{P−1
i (Bi), β̂}. Otherwise, β̄ = P−1

i (Bi).
Now we analyze the objective function. Write buyer i’s

expected utility as a function of βi:

Ui(βi) =E[(vi −Di)I{βivi ≥ Di}]

=

∫ v̄

0

∫ βivi

0

(vi −Di)gi(Di) dDifi(vi) dvi (6)

Lemma 4. The buyer’s utility is monotone increasing with
respect to βi when βi ≤ 1, and monotone decreasing with
respect to βi when βi > 1.



Lemma 4 shows that the utility function is maximized
when βi = 1 if there is no restriction on β. However, we
already know from Corollary 1 that the feasible region of Pro-
gram (3) is an interval. The following result is straightforward
from Lemma 4 and Corollary 1.
Corollary 2. The optimal solution βi to program (3) satisfies
0 < βi ≤ 1.

Since βi ≤ 1 and the expected payment of the buyer is
monotone in βi, the maximum possible payment is obtained
when βi = 1. Define the maximum possible payment as

BH = Pi(1) = E[DiI{vi ≥ Di}]. (7)
Therefore, we have the following corollary:
Corollary 3. If the buyer’s budget Bi satisfies Bi ≥ BH , the
buyer’s budget constraint will have no effect on the value of
βi, i.e., The budget constraint will always be satisfied.

In this paper, we only consider the case B ≤ BH , since
otherwise, the budget constraint will always be satisfied.

Now we show that choosing a larger βi yields a lower ROI.
Lemma 5. The actual ROI of buyer i is monotone decreas-
ing with respect to βi. And as βi approaches 0, the ROI ap-
proaches infinity.

Define

γL =
E[(vi −Di)I{vi ≥ Di}]

E[DiI{vi ≥ Di}]
(8)

to be the ROI if buyer i bids their values, i.e., βi = 1.
Similarly, we have the following corollary:

Corollary 4. When buyer i’s ROI γi satisfies γi ≤ γL, the
buyer’s ROI constraint can always be satisfied for all βi ∈
(0, 1].

Let Pi denote the buyer’s expected payment and Γi denote
the buyer i’s actual ROI after using the bidding strategy βi

obtained by solving the above program. Combining the above
properties, we can get the theorem below.
Theorem 1. Let Bi and γi be the reported budget constraint
and the ROI constraint of buyer i. Define BH = E[DiI{vi ≥
Di}] and γL = E[viI{vi≥Di}]

E[DiI{vi≥Di}]−1. The relation between point
(Bi, γi) and the expected payment and ROI point (Pi,Γi) is
shown in Figure 1, where the solid curve are the set of all
points that satisfy both the budget constraints and ROI con-
straints simultaneously, and

• if (Bi, γi) lies in area 1, the realized point (Pi,Γi) is the
point right above (Bi, γi) in the solid curve and satisfies
Pi = Bi;

• if (Bi, γi) lies in area 2, the realized point (Pi,Γi) is
the point to the left of (Bi, γi) in the curve and satisfies
Γi = γi;

• if (Bi, γi) lies in area 3, the realized point (Pi,Γi) is
(BH , γL).

3.2 Algorithm
Since Program (3) is non-convex, it is not easy to directly find
it solution. In this section, we present an indirect algorithm
based on the theoretical analyses so far.
Theorem 2. Algorithm 1 can correctly solve the Program (3).

Figure 1: The relationship between (Bi, γi) and (Pi,Γi).

Algorithm 1: Finding the optimal βi

Input: The buyer’s budget constraint Bi and ROI
target γi.

Output: The buyer’s best bidding strategy βi

1 Compute BH and γL according to Equation (7) and
(8);

2 if Bi ≥ BH then
3 β1

i ← 1;
4 else
5 Use binary search to solve equation Pi(β

1
i ) = Bi,

where Pi(βi) is defined in Function (4);

6 if γi ≤ γL then
7 β2

i ← 1;
8 else
9 Use binary search to solve equation hi(β

2
i ) = 0,

where hi(βi) is defined in Function (5);

10 return βi = min{β1
i , β

2
i }

4 Strategic Issues
In the above analyses, we only study how to optimize bidder
i’s utility given their reported Bi and γi, but have not consid-
ered their strategic behaviors. The following results show that
if the auto-bidding system optimizes the buyer’s bids by solv-
ing Program (3), the buyer’s best response is to report Bi and
γi truthfully. We omit all the proofs due to the space limit.
Lemma 6. Buyer i’s optimal pure strategy is to report
(Bi, γi) truthfully.

Lemma 6 only considers deterministic strategies. Now we
show that reporting the true Bi and γi is also the optimal strat-
egy even if we consider mixed strategies.

Suppose buyer i uses a mixed strategy that leads to a distri-
bution of possible βi’s. Thus the expected payment and util-
ity becomes Eβi [Pi(βi)] and Eβi [Ui(βi)]. Note that the ex-
pected ROI is Eβi

[Ui(βi)]

Eβi
[Pi(βi)]

rather than Eβi
[Γi(βi)]. Therefore,

we cannot directly analyze how the expected ROI changes,
but focus on Eβi [Pi(βi)] and Eβi [Ui(βi)] instead.
Lemma 7. View Ui(βi) and Pi(βi) as a parametric equa-
tion, which induces an implicit function Ui(Pi). The function



Ui(Pi) is concave.

Theorem 3. Buyer i’s optimal strategy is to report (Bi, γi)
truthfully, even if mixed strategies are considered.

Now we give an example here to illustrate our results.

Example 1. Suppose there is a bidder i with vi drawn from
the uniform distribution U [0, 10]. Assume that Di also fol-
lows the uniform distribution U [0, 10].

We first compute BH and γL.

BH = E[DiI{vi ≥ Di}] =
∫ 10

0

∫ v

0

D
1

10
dDi

1

10
dv =

5

3
,

γL =
E[viI{vi ≥ Di}]
E[DiI{vi ≥ Di}]

− 1 =

∫ 10

0
v
∫ v

0
dDi dv∫ 10

0

∫ v

0
Di dDi dv

− 1 = 1.

Now we compute the two thresholds β1
i and β2

i . If Bi ≥ 5
3 ,

we have β1
i = 1. Otherwise, if Bi < 5

3 , we can obtain β1
i

by solving the equation E[DiI{β1vi ≥ Di}] = Bi. In this

example, we can get the closed-form solution β1
i =

√
3
5Bi.

As for β2
i , if γi ≤ 1, we have β2

i = 1 and if γi > 1, the
threshold is β2

i = 2
1+γi

, which is the solution to equation

E{[(1 + γi)Di − vi]I(βvi ≥ Di)} = 0.

The optimal solution is βi = min{β1
i , β

2
i }. We compute

the payments and utilities for different βi’s. The results are
shown in Figure 2, which confirms Lemma 5 and 7.

(a) ROI vs payment (b) Utility vs payment

Figure 2: The buyer’s ROI and utility as a function the the payment.

5 Equilibrium Analysis
Until now, we have analyzed the behavior of a single bidder.
The bidder will shade their bids to satisfy the budget and ROI
constraints. In this section, we analyze the Bayesian game
induced by the auto-bidding system. We show the existence
of a Bayesian Nash equilibrium and provide a sufficient con-
dition for the iterated best response process to converge to
such an equilibrium. We also analyze the social welfare of
the auto-bidding system. We make the following additional
assumptions about fi(vi) that hold for a wide range of value
distributions:

1. For any i, fi(vi) is bounded by m ≤ fi(vi) ≤M ;

2. There exits ξ > 0, such that fi(vi) is ξ-Lipschitz for all
i, i.e., |fi(vi)− fi(v

′
i)|≤ ξ|vi − v′i|.

Since for any i and value vi ∈ [0, v̄], fi(vi) ≤ M , it follows
that the function Fi(v) is M -Lipschitz. Formally, for any
value vi, v

′
i ∈ [0, v̄], we have

|Fi(vi)− Fi(v
′
i)|≤M |vi − v′i|, ∀i ∈ [n].

The shading parameters βi depend on the bidders’ budget
and ROI constraints. Since both the budget and ROI con-
straints are bounded, we can provide a lower bound for βi.

Let β = [β1, β2, . . . , βn] denote a shading profile, and
β−i = [β1, β2, . . . , βi−1, βi+1, . . . , βn] the shading profile
of all buyers except for bidder i. For each bidder i, β−i
will induce a probability density function gi(Di,β−i) over
Di = maxj ̸=i bj , as the other bidders’ bids depend on β−i.

We first prove the following lemmas, which will be useful
for later arguments.
Lemma 8. Given any β−i, gi(Di,β−i) satisfies the follow-
ing:

(n− 1)mn−1Dn−1
i ≤ Digi(Di,β−i) ≤ (n− 1)Mv̄.

With the above lemma, we can bound βi from below. The
intuition is that although a small enough βi may satisfy both
the budget and the ROI constraints, it also lowers the bidder’s
utility according to Lemma 4.
Lemma 9. Define

β = max

{
2B

(n− 1)M2v̄3
,

1

1 + γ̄

}
.

If each bidder i’s financial constraints satisfy Bi ≥ B and
γi ≤ γ̄, then for all bidders, we have βi ≥ β,∀i ∈ [n].

5.1 Existence of Bayesian Nash Equilibrium
In this section, we prove that if all the bidders use our auto-
bidding system, then there exists a Bayesian Nash equilib-
rium in the Bayesian game induced by our mechanism. We
also show that the iterated best response process converges to
such an equilibrium under certain technical conditions.

Given any shading profile β, for each bidder i, β−i will
induce a probability distribution gi(Di,β−i) over Di =
maxj ̸=i bj , Let β′

i be the optimal solution to Program (3) by
using gi(Di,β−i), i.e., β′

i can be viewed as a “best response”
to β−i. Define function X : [β, 1]n 7→ [β, 1]n such that
Xi(β) = β′

i. Note that we assume that the bidders only can
report Bi ∈ [B,+∞) and γi ∈ (0, γ̄], the program (3) always
has solutions and its solution always lies in [β, 1]. Therefore,
the function X is well-defined. It is clear that an equilibrium
exists if the function X has a fixed point. To show this, we
first prove that a small change in βk with k ̸= i will not af-
fect gi(Di,β−i) too much for any i (Lemma 10). Then we
show that a slight perturbation in gi(Di,β−i) does not result
in a sudden change in bidder i’s response (Lemma 11). In the
end, we show that even if all bidders change their strategies
simultaneously, the change of function X can still be bounded
(Lemma 12), which indicates that X is continuous. And with
Brouwer’s fixed point theorem, we know that X has a fixed
point (Theorem 4).

Starting from any initial β(0), we define an iteration pro-
cess as follows:

β(t+1) = X(β(t)), t = 0, 1, 2, . . .



We perform convergence analysis of the above process. We
show that under certain conditions, X becomes a contraction,
and the convergence immediately follows (Theorem 5).

Lemma 10. Given any β, if the parameter βk is changed to
βk + ϵk, then for any i ̸= k, the probability density function

gi(Di,β−i) changes at most
(M2+βξ)Di

β3 |ϵk|.

Lemma 11. Given any β, if the parameter βk for bidder k
is changed to βk + ϵk, then for any i, Xi(β) changes at most
(M3+Mβξ)(n+1)|ϵk|
12(n−1)βn+2mnv̄n−3 .

Lemma 12. Let ϵ = (ϵ1, ϵ2, . . . , ϵn). For any β, function
X(β) satisfies the following:

∥X(β)−X(β + ϵ)∥1≤
(M3 +Mβξ)(n+ 1)∥ϵ∥1
12(n− 1)βn+2mnv̄n−3

,

where ∥·∥1 is the 1-norm operator.

The above 3 lemmas show that the function X is continu-
ous. Now we are ready to apply Brouwer’s fixed point theo-
rem to prove the existence of an equilibrium

Theorem 4. For any problem instance satisfying the 3 as-
sumptions specified at the beginning of this section, there ex-
ists a Bayesian Nash equilibrium β, such that for each i, βi

is the best response to β−i.

Corollary 5. If

(M3 +Mβξ)(n+ 1)

12(n− 1)βn+2mnv̄n−3
< 1,

starting from any β0, the following iteration process con-
verges to an equilibrium:

βt+1 = X(βt),∀t = 0, 1, 2, . . .

5.2 Welfare Analysis
In this section, we analyze the social welfare of the auto-
bidding system. We show that our mechanism always
achieves a certain fraction of the optimal welfare.

Definition 2. (Social Welfare) Given any shading parameter
profile β, the social welfare is defined as

SW (β) = Ev∼F (v)

[
n∑

i=1

vixi(b)

]
,

where F (v) =
∏

i Fi(vi) is the joint value distribution and
bi = βivi.

Definition 3 (Price of Anarchy). Given any instance de-
scribed by F (v), Let EQ(F ) be the set of all the equilibria
of the instance. The price of anarchy is defined as the worst
ratio between the optimal social welfare and the social wel-
fare in the worst equilibrium among all instances satisfying
assumptions described in Section 5:

PoA = min
F

minβ∈EQ(F ) SW (β)

maxβ SW (β)
.

The optimal welfare is simply the welfare of the second-
price auction, which can be achieved by setting βi = 1 for all
i. The following result shows that the price of anarchy of our
mechanism is at least β, i.e., our mechanism always achieves
at least β fraction of the optimal welfare.

Theorem 5. The price of anarchy of our mechanism is at
least β, i.e., PoA ≥ β.

6 Experiments
In this section, we conduct experiments based on an open data
set and report the experiment results.

We first consider a relatively simple case. Suppose that
there are only five i.i.d. buyers. The value of each buyer is
drawn from the uniform distribution U [0, 10]. Assuming that
only one buyer has financial constraints and other four buyers
simply bid their true values. The buyer’s budget constraint
is drawn randomly from a uniform distribution U [0, 3] and
the ROI target is drawn randomly from a uniform distribution
U [0, 5]. We randomly sample 10000 budget constraint and
ROI target pairs. For each pair, we simulate 1,000,000 auc-
tions and compute the average payment and the utility. The
results are shown in Figure 3 and Figure 4.

(a) ROI vs payment (b) Utility vs payment

Figure 3: The buyer’s expected ROI, utility and payment for differ-
ent budget and ROI constraints.

(a) Payment vs budget constraint (b) Actual ROI vs target ROI

Figure 4: Comparison between the buyer’s actual payment and ROI
and the corresponding constraints.

In Figure 3(a), the blue curve show how the actual ROI and
payment changes. Note that although we have shown that the
ROI approaches infinity as the payment goes to 0, the actual
ROI can never reach infinity in the experiments.

Figure 3(b) shows that the buyer’s utility function is indeed
concave with respect to the payment. A mixed strategy leads
to a point in the figure that is a convex combination of differ-
ent points in the curve. Since the curve is convex, a mixed



strategy cannot benefit the buyer. The curve also means that
the effect of investing more money eventually diminishes.

Figure 4(a) shows that the buyer’s actual payment is always
lower than the buyer’s budget satisfying the buyer’s budget
constraint. Similarly, Figure 4(b) shows that for the buyer’s
actual ROI is always higher than the buyer’s ROI target, sat-
isfying the buyer’s ROI constraint.

Then we conduct experiments based on the open data set
iPinYou [Liao et al., 2014]. The iPinYou data set is published
by a major demand-side platform (DSP) and contains auction
logs of 24 days in 3 auction seasons. The data set includes 78
million bid records with 24 million impressions. In our ex-
periment, we select one day’s impression log data in the 2nd
season to estimate the competitor’s highest bid’s distribution.

Our chosen data contains five advertisers. We select one of
them and use the “paying price” column as the competitor’s
highest bid. The advertiser participates in different auction
platforms such as Goolge, Alibaba, and Tencent. We focus
on the data from one platform and plot histogram of the com-
petitor’s highest bids in Figure 5(a). We fit the data to a log-
normal distribution and plot the PDF of the fitted distribution
as the orange curve.

Unfortunately, in the iPinYou dataset, the platform use a
special strategy which always places a very high bid to win
as many auctions as possible to collect data about the com-
petitors’ highest bids. Therefore, there is no data about the
valuation of the advertiser in the DSP. To conduct the experi-
ments, we assume that there are 3 major bidders [Shen et al.,
2020] in the auction platform, and that they have i.i.d. val-
uations and bid their values. Also, we assume that our cho-
sen buyer also follows the same value distribution, which we
show in Figure 5(b).

(a) Competitors’ value distribution. (b) Buyer i’s value distribution.

Figure 5: Value distributions obtained from the iPinYou data set.

Similar to the previous experiment, the budget constraint
is drawn randomly from uniform distribution U [0, 300] and
the ROI target is drawn randomly from distribution U [0, 5].
We randomly sample 10000 budget constraint and ROI target
pairs and simulate 1, 000, 000 auctions for each pair to com-
pute the expected payment and utility. The results are shown
in Figure 6 and Figure 7.

The ROI is quite significant when the buyer’s available
budget is small, meaning that a small investment can lead to a
substantial profit. In Figure 7(b), we can see a flat line when
the target ROI is relatively small. This is because, according
to Lemma 3, there is a lower bound γL for the actual ROI.
These points are also the highest points in Figure 7(a), since
when the ROI reaches the lower bound, the payment also hits
the upper bound BH .

(a) ROI vs payment (b) Utility vs payment

Figure 6: The buyer’s ROI and utility with payment.

(a) Payment vs budget constraint. (b) Actual ROI vs target ROI.

Figure 7: The buyer’s actual payment and ROI, and the correspond-
ing constraints.

Figure 8 shows how the welfare changes with respect to β
in both experiments. Since there is only one buyer with fi-
nancial constraints in our experiments, Figure 8 shows how
much it can affect the welfare by changing β for only one
buyer. Note that the optimal welfare is simply the point with
β = 1. Even when β = 0, our auto-bidding strategy achieves
about 96% and 84% of the optimal welfare, In the experi-
ments with the synthetic data set and the iPinYou data set,
respectively. Interestingly, in Figure 8(a), the welfare drops
quickly when β decreases, while in Figure 8(b), the welfare
ratio is still above 90% for β = 0.2.

(a) Welfare of the experiments with
synthetic data set.

(b) Welfare of the experiments with
iPinYou data set.

Figure 8: The relationship between the social welfare with β.

7 Conclusion
In this paper, we consider the auto-bidding problem in
second-price auctions with the buyers having both budget and
ROI constraints. We consider the buyer’s bidding strategy
and show that reporting the truthful budget and ROI targets
is the optimal strategy even if they consider mixed strategies.
We also show that the equilibrium exists under some assump-
tions and give a sufficient condition to find the equilibrium
using iterated best response.
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Appendix
A Omitted Proofs in Section 3
A.1 Proof of Lemma 1
Proof. Taking the derivative of Pi(βi) w.r.t. βi, we get:

P ′
i (βi) =

∫ v̄

0

βiv
2
i gi(βivi)fi(vi) divi, (9)

which is clearly positive.

A.2 Proof of Lemma 2
Proof. Taking the derivative of hi(βi) w.r.t. β yields:

h′
i(βi) =

∫ v̄

0

v2i [(1 + γi)βi − 1]gi(βivi)fi(vi) dvi

Therefore, when βi ∈
(
0, 1

1+γi

]
, we have h′

i(βi) < 0, and

hi(βi) is monotone decreasing. And when βi > 1
1+γi

, we
have h′

i(βi) > 0, and hi(βi) is monotone increasing.

A.3 Proof of Lemma 3
Proof. It is easy to check that hi(0) = 0. According to
Lemma 2, we have hi(

1
1+γi

) < hi(0) = 0. Lemma 2 also
says that hi(βi) is monotone increasing when βi > 1

1+γi
.

This implies that there is at most one point β̂ > 0 such that
hi(β̂) = 0.

If such β̂ exists, then we clearly have that hi(β) ≤ 0,∀β ∈
(0, β̂] and hi(β) > 0,∀β > β̂. In this case, the ROI constraint
is equivalent to β ≤ β̂.

If such β̂ does not exist, then it must be the case that
hi(β) < 0,∀β > 0. In this case, all β > 0 satisfies
hi(β) < 0.

A.4 Proof of Lemma 4

Proof. The derivative of Ui(βi) is:

U ′
i(βi) = (1− βi)

∫ v̄

0

v2i gi(βivi)fi(vi) dvi, (10)

Then we can get that when βi ≤ 1, U ′
i(βi) ≥ 0 and when

βi > 1, U ′
i(βi) < 0.

A.5 Proof of Lemma 5
Proof. The ROI of buyer i is:

E[(vi −Di)I(βivi ≥ Di)]

E[DiI(βivi ≥ Di)]
=

E[viI(βvi ≥ Di)]

E[DiI(βivi ≥ Di)]
− 1.

(11)

Define ηi(βi) = E[viI(βvi≥Di)]
E[DiI(βvi≥Di)]

= Ui(βi)+Pi(βi)
Pi(βi)

. Consider
the derivative of ηi(βi):

η′i(βi) =
[U ′

i(βi) + P ′
i (βi)]Pi(βi)− [Ui(βi) + Pi(βi)]P

′
i (βi)

P 2
i (βi)

.

(12)

The denominator is clearly positive. Plugging in Equation (9)
and (10), the numerator can be written as:[∫ v̄

0

∫ βivi

0

(Di

− vi)gi(Di) dDifi(vi) dvi

] [∫ v̄

0

βiv
2
i gi(βivi)fi(vi) dvi

]
,

(13)
where the second term is clearly positive, while the first term
is non-positive since inside the integral, Di ≤ βivi ≤ vi.

If βi approaches 0, both Ui(βi) and Pi(βi) goes to 0. Thus
the ROI becomes:

lim
βi→0

Γi(βi) = lim
βi→0

U ′
i(βi)

P ′
i (βi)

= lim
βi→0

1− βi

βi
= +∞.

A.6 Proof of Theorem 1
Proof. Clearly, the solid curve can also be defined by C =
{(Pi(βi),Γi(βi)) | βi ∈ (0, 1]}. Since Pi(βi) is an increas-
ing function, while Γi(βi) is decreasing, it follows that Γi is
decreasing with respect to Pi.

Let Σ(Bi, γi) = {(B, γ) | B ≤ Bi, γ ≥ γi} be the area
satisfying the two constraint. Therefore, for any (Bi, γi), we
need to choose a βi such that the actual (Pi(βi),Γi(βi)) lies
in Σ(Bi, γi)∩C. And since Ui(βi) is an increasing function,
we need to choose the maximum βi possible, which must be
the rightmost point in Σ(Bi, γi)∩C, as Pi(βi) is also increas-
ing in βi.

We discuss the point (Bi, γi) case by case as follows:
1. If (Bi, γi) lies in area 3, the rightmost point in

Σ(Bi, γi) ∩ C is clearly (BH , γL);
2. If (Bi, γi) lies in area 2, the rightmost point in

Σ(Bi, γi) ∩ C is at the lower edge of Σ(Bi, γi). Thus
the point satisfies Γi = γi;

3. If (Bi, γi) lies in area 2, the rightmost point in
Σ(Bi, γi) ∩ C is at the right edge of Σ(Bi, γi). Thus
the point satisfies Pi = Bi;

A.7 Proof of Theorem 2
Proof. According to Lemma 1 and 3, both the budget and
ROI constraints set two upper bounds β1

i and β2
i for βi (β2

i
can be +∞ though). Combining Corollary 2, we know
that the optimal solution to Program 3 is min{β1

i , β
2
i , 1} =

min{min{β1
i , 1},min{β2

i , 1}}.
For the budget constraint, we know from Lemma 1 that

Pi(βi) is monotone increasing w.r.t. βi. This implies:
• If Bi ≥ Pi(1) = BH , then β1

i ≥ 1 and min{β1
i , 1} = 1;

• If Bi < Pi(1) = BH , there is exactly one β1
i such that

Pi(β
1
i ) = Bi. In this case, we can use the binary search

algorithm to solve Pi(β
1
i ) = Bi since Pi(βi) is mono-

tone.
As for the ROI constraint, Lemma 5 says that the ROI is

monotone decreasing w.r.t. βi. Similar analysis shows that
min{β2

i , 1} either equals 1 if γi ≤ γL or can be found using
the binary search algorithm.



B Omitted Proofs in Section 4

B.1 Proof of Lemma 6

Proof. We prove the result by contradiction. Suppose report-
ing (B′

i, γ
′
i) gives buyer i a strictly higher utility. The auto-

bidding system solves program 3 according to (B′
i, γ

′
i), and

gives an optimal solution β′. If the actual payment P (β′) and
ROI Γ(β′) violate buyer i’s true constraints, their utility be-
comes −∞ as these constraints are hard constraints, which
contradicts to the assumption that reporting (B′

i, γ
′
i) yields a

higher utility. If P (β′) and Γ(β′) do not violate buyer i’s true
constraints, then β′ is also a feasible solution to the program
3 with the true (Bi, γi). Therefore, the optimal solution to
the program 3 with the true (Bi, γi) should give the buyer a
weakly higher utility, also a contradiction.

B.2 Proof of Lemma 7

Proof. The derivative of Ui with respect to Pi is:

dUi

dPi
=

U ′
i(βi)

P ′
i (βi)

=
1

βi
− 1, (14)

where the second equation is obtained by combining Equa-
tion (9) and (10). Therefore,

d2Ui

dP 2
i

= − 1

β2
i

dβi

dPi
= − 1

β2
i P

′
i (βi)

. (15)

Since P ′
i (βi) ≥ 0 according to Lemma 1, we have that

d2Ui

dP 2
i
≤ 0, which implies that the function Ui(Pi) is con-

cave.

B.3 Proof of Theorem 3

Proof. For each possible report (B′
i, γ

′
i), the auto-bidding

system computes a β′
i by solving the corresponding program.

Thus a mixed strategy results in a distribution over all possi-
ble βi ∈ (0, 1], hence also a distribution over possible pay-
ments Pi. Let Bi and γi be the true budget and ROI target of
buyer i, and suppose that buyer i uses a mixed strategy that
satisfies the two constraints. We show that there exists a pure
strategy that give them a high utility. Since the mixed strategy
satisfies the constraints, we have:

Eβi
[Pi(βi)] ≤ Bi and

Eβi
[Ui(βi)]

Eβi
[Pi(βi)]

≥ γi. (16)

Suppose β∗
i satisfies Pi(β

∗
i ) = Eβi

[Pi(β
∗
i )]. We claim that

any strategy that leads to β∗
i is a better strategy than the mixed

strategy. β∗
i clearly satisfies the budget constraint. As for the

ROI constraint, we have:

Eβi [Ui(βi)]

Eβi
[Pi(βi)]

=
EPi [Ui(Pi)]

Pi(β∗
i )

≤ Ui(EPi [Pi])

Pi(β∗
i )

, (17)

which implies that the ROI is higher than γi. Meanwhile,
the utility Ui(EPi

[Pi]) is also higher than that of the mixed
strategy.

B.4 Proof of Lemma 8
Proof. The cumulative distribution of Di is

Gi(Di, β−i) =
∏
j ̸=i

Fj

(
Di

βj

)
.

The derivative of Gi(Di,β−i) with respect to Di is

gi(Di,β−i) =
∑
k ̸=i

 1

βk
fk

(
Di

βk

) ∏
j ̸=k,j ̸=i

Fj

(
Di

βj

) .

For the lower bound, we have:
Digi(Di,β−i)

=Di

∑
k ̸=i

 1

βk
fk

(
Di

βk

) ∏
j ̸=k,j ̸=i

Fj

(
Di

βj

)
≥(n− 1)mn−1Dn−1

i .

Now we prove the upper bound. For each buyer i, vi ≤ v̄.
Then we have the following two cases:

• If Di ≥ βkv̄, we have fk

(
Di

βk

)
= 0;

• If Di < βkv̄, we have fk

(
Di

βk

)
≤M .

In any case, Di

βk
fk

(
Di

βk

)
≤ v̄M holds. Therefore,

Digi(Di,β−i)

=Di

∑
k ̸=i

 1

βk
fk

(
Di

βk

) ∏
j ̸=k,j ̸=i

Fj

(
Di

βj

)
≤
∑
k ̸=i

Di

βk
fk

(
Di

βk

)
≤(n− 1)Mv̄,

B.5 Proof of Lemma 9
Proof. According to Lemma 1, we must have βi ≤ P−1

i (Bi).
Since Pi(βi) is monotone increasing, we have that P−1

i (Bi)
is also increasing. According to Lemma 4, we need to set
βi to be as large as possible in the interval[0, 1]. Therefore,
the optimal strategy for buyer i is βi = min{P−1

i (Bi), 1} =
min{P−1

i (Bi), P
−1
i (BH)} ≥ P−1

i (B). It follows that βi

should always satisfy Pi(βi) ≥ B. Or equivalently,∫ v̄

0

∫ βivi

0

Digi(Di)dDifi(vi)dvi ≥ B.

This means that βi ≥ 2B
(n−1)M2v̄3 , since otherwise, we have:∫ v̄

0

∫ βivi

0

Digi(Di)dDifi(vi)dvi

≤
∫ v̄

0

∫ βivi

0

(n− 1)Mv̄dDiMdvi

=
1

2
(n− 1)M2v̄3βi

<B,



where the first inequality is from Lemma 8.
To satisfy the ROI constraint, according to Lemma 2, we

have that βi ≥ 1
1+γi

≥ 1
1+γ̄ .

Combining the two constraints, we obtain:

βi ≥ max

{
2B

(n− 1)M2v̄3
,

1

1 + γ̄

}
= β.

C Omitted Proofs in Section 5
C.1 Proof of Lemma 10
Proof. Let βk

−i be the strategy where βk is changed to βk+ϵk.
Therefore, we have:∣∣gi(Di, β−i)− gi(Di, β

k
−i)
∣∣

=
∑
l ̸=i,k

 1

βl
fl

(
Di

βl

)
Fk

(
Di

βk + ϵk

) ∏
j ̸=l,i,k

Fj

(
Di

βj

)
+

1

βk + ϵk
fk

(
Di

βk + ϵk

) ∏
j ̸=i,k

Fj

(
Di

βj

)

−
∑
l ̸=i

 1

βl
fl

(
Di

βl

) ∏
j ̸=i,l

Fj

(
Di

βj

)
=
∑
l ̸=i,k

{
1

βl
fl

(
Di

βl

)[
Fk

(
Di

βk + ϵk

)

−Fk

(
Di

βk

)] ∏
j ̸=l,i,k

Fj

(
Di

βj

)}

+

[
1

βk + ϵk
fk

(
Di

βk + ϵk

)
− 1

βk
fk

(
Di

βk

)] ∏
j ̸=i,k

Fj

(
Di

βj

)

≤M 1

β
·M

∣∣∣∣ Di

βk + ϵk
− Di

βk

∣∣∣∣+ ξ

∣∣∣∣ Di

βk + ϵk
− Di

βk

∣∣∣∣
=
(M2 + βξ)Di

ββk(βk + ϵk)
|ϵk|

≤
(M2 + βξ)Di

β3 |ϵk|.

C.2 Proof of Lemma 11
Proof. From Theorem 1, we know that if bidder i’s finan-
cial constraints are (Bi, γi), we can translate the bidder’s
ROI constraint to a budget constraint B̂i. Then the bid-
der’s constraints can be represented by a budget constraint
B∗

i = min{Bi, B̂i}. Let βi represent the optimal strategy be-
fore bidder k changes their strategy and β̂i the optimal strat-
egy after bidder k changes. Then we have:

E[DiI{βivi ≥ Di}] = B∗
i

E[DiI{β̂ivi ≥ Di}] = B∗
i

It follows that∫ v̄

0

∫ βivi

0

Digi(Di, β−i)dDifi(vi)dvi

=

∫ v̄

0

∫ β̂ivi

0

Digi(Di, β
k
−i)dDifi(vi)dvi.

(18)

Combining Lemma 8 yields:∫ v̄

0

∫ βivi

0

Digi(Di, β−i)dDifi(vi)dvi

≤
∫ v̄

0

∫ βivi

0

[
Digi(Di, β

k
−i)

+
(M2 + βξ)|ϵ|D2

i

β3

]
dDifi(vi)dvi (19)

∫ v̄

0

∫ βivi

0

Digi(Di, β−i)dDifi(vi)dvi

≥
∫ v̄

0

∫ βivi

0

[
Digi(Di, β

k
−i)

−
(M2 + βξ)|ϵ|D2

i

β3

]
dDifi(vi)dvi (20)

Combine (18), (19) and (20), and we get∥∥∥∥∥
∫ v̄

0

∫ β̂ivi

0

Digi(Di, β
k
−i)dDifi(vi)dvi

−
∫ v̄

0

∫ βivi

0

Digi(Di, β
k
−i)dDifi(vi)dvi

∥∥∥∥∥
=

∥∥∥∥∥
∫ v̄

0

∫ β̂ivi

βivi

Digi(Di, β
k
−i)dDifi(vi)dvi

∥∥∥∥∥
≤
(M2 + βξ)|ϵ|

3β3 E[v3i ]

Also we can get that∥∥∥∥∥
∫ v̄

0

∫ β̂ivi

βivi

Digi(Di, β
k
−i)dDifi(vi)dvi

∥∥∥∥∥
≥
∫ v̄

0

∫ β̂ivi

βivi

(n− 1)mn−1Dn−1
i dDifi(vi)dvi

=
n− 1

n
mn−1 E[vni ]

∥∥∥β̂n
i − βn

i

∥∥∥
=
n− 1

n
mn−1 E[vni ]

∥∥∥∥∥(β̂i − βi)

n−1∑
k=0

β̂n−1−k
i βk

i

∥∥∥∥∥
≥(n− 1)mn−1 E[vni ]β

n−1
∥∥∥β̂i − βi

∥∥∥



Then we can get

∥β̂i − βi∥ ≤
(ML+ βξ)E[v3i ]|ϵ|

3(n− 1)βn+2 E[vni ]m
n−1

≤
(M3 +Mβξ)(n+ 1)|ϵ|
12(n− 1)βn+2mnv̄n−3

C.3 Proof of Lemma 12
Proof. Let ei denote the n-dimensional vector where the i-th
element is 1 and others are 0. Note that

∥X(β)−X(β + ϵ)∥1

=

∥∥∥∥∥
n−1∑
l=0

[
X

(
β +

l∑
i=1

ϵiei

)
−X

(
β +

l+1∑
i=1

ϵiei

)]∥∥∥∥∥
1

≤
n−1∑
l=0

∥∥∥∥∥X
(
β +

l∑
i=1

ϵiei

)
−X

(
β +

l+1∑
i=1

ϵiei

)∥∥∥∥∥
1

.

According to Lemma 11, we have that for each 0 ≤ l ≤ n−1,∥∥∥∥∥X
(
β +

l∑
i=1

ϵiei

)
−X

(
β +

l+1∑
i=1

ϵiei

)∥∥∥∥∥
1

≤
(M3 +Mβξ)(n+ 1)|ϵl+1|
12(n− 1)βn+2mnv̄n−3

.

Therefore,

∥X(β)−X(β + ϵ)∥1

≤
n−1∑
l=0

∥∥∥∥∥X
(
β +

l∑
i=1

ϵiei

)
−X

(
β +

l+1∑
i=1

ϵiei

)∥∥∥∥∥
1

≤
n−1∑
l=0

(M3 +Mβξ)(n+ 1)|ϵl+1|
12(n− 1)βn+2mnv̄n−3

=
(M3 +Mβξ)(n+ 1)∥ϵ∥1
12(n− 1)βn+2mnv̄n−3

.

C.4 Proof of Theorem 4
Proof. Consider function X : [β, 1]n 7→ [β, 1]n. It is clear
that the domain of function X is compact. And according to
Lemma 12, function X is continuous since

lim
ϵ→0
∥X(β)−X(β + ϵ)∥

≤ lim
ϵ→0

(M3 +Mβξ)(n+ 1)∥ϵ∥
12(n− 1)βn+2mnv̄n−3

= 0

It follows from the Brouwer fixed point theorem ([Brouwer,
1911]) that a fixed point β∗ of the function X exists. Such
a fixed point is an equilibrium as for each i, β∗

i is the best
response to β∗

−i by definition of X .

C.5 Proof of Corollary 5

Proof. If
(M3+Mβξ)(n+1)

12(n−1)βn+2mnv̄n−3 < 1,∀i ∈ [n], it is straightfor-
ward that function X becomes a contraction. Thus the pro-
cess βt+1 = X(βt) converges to a fixed point β∗, which is
an equilibrium according to Theorem 4.

C.6 Proof of Theorem 5
Proof. For any realized value profile (v1, v2, . . . , vn), we
can, without loss of generality, assume that v1 ≥ v2 ≥ · · · ≥
vn. In this case, the optimal welfare is simply v1.

Let (β1, β2, . . . , βn) be any equilibrium profile β of all
buyers. From Lemma 9, we can get that for any buyer
i ∈ [n], βi ≥ β.

If buyer 1 is the buyer with the largest βivi, then the wel-
fare of the auto-bidding system is still v1. If buyer j is the
buyer with the largest βivi, then we have:

βjvj ≥ β1v1.

This means:

vj ≥
β1

βj
v1 ≥

β

1
vi = βv1,

which implies that the welfare is at least β times the opti-
mal welfare. Combining the two cases and taking expectation
over all possible value profiles completes the proof.
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