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ABSTRACT
Alleviating the examination and trust bias in ranking systems is an

important research line in unbiased learning-to-rank (ULTR). Cur-

rent methods typically use the propensity to correct the biased user

clicks and then learn ranking models based on the corrected clicks.

Though successes have been achieved, directly modifying the clicks

suffers from the inherent high variance because the propensities

are usually involved in the denominators of corrected clicks. The

problem gets even worse in the situation of mixed examination

and trust bias. To address the issue, this paper proposes a novel

ULTR method called Decomposed Ranking Debiasing (DRD). DRD is

tailored for learning unbiased relevance models with low variance

in the existence of examination and trust bias. Unlike existing meth-

ods that directly modify the original user clicks, DRD proposes to

decompose each click prediction as the combination of a relevance
term outputted by the ranking model and other bias terms. The unbi-
ased relevance model, therefore, can be learned by fitting the overall

click predictions to the biased user clicks. A joint learning algorithm

is developed to learn the relevance and bias models’ parameters

alternatively. Theoretical analysis showed that, compared with ex-

isting methods, DRD has lower variance while retains unbiasedness.

Empirical studies indicated that DRD can effectively reduce the

variance and outperform the state-of-the-art ULTR baselines.

CCS CONCEPTS
• Information systems→ Learning to rank.
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1 INTRODUCTION
User click log has been used as a source of supervision to learn the

ranking models in modern search engines. However, the clicks are

affected by user behaviors and thus suffer from various data biases.

Among them, the examination bias [15, 16] and trust bias [2, 31] are

two typical biases. Examination bias is caused by users’ different

examination probabilities on different ranking positions [17]. That

is, a user may be less likely to examine the lower ranked results

and then click it, resulting in the click signals no longer being

indicators of true relevance; Trust bias is caused by users’ trust in

the effectiveness of the search engine to rank relevant documents

higher [2]. With trust bias, a non-relevant result may be clicked by

users as long as it is ranked at a higher position. It is worth noting

that these two biases do not occur separately. They are mixed and

collectively influence the user clicks.

In recent years, unbiased learning-to-rank (ULTR) models [4, 5]

have been developed to address the examination bias and trust bias,

including TrustPBM [2], Affine Correction (AC) [31] and Mixture-

Based Correction (MBC) [30] etc. These methods focus on estimat-

ing the unbiased relevance labels, i.e., directly correcting the biased

user clicks using the click propensities. Then, the unbiased rele-

vance ranking models are learned by treating the corrected user

clicks as the ground-truth relevance labels.

However, reducing bias inevitably comes at the cost of increasing

variance for those methods that directly correcting the biased user

clicks [18, 26–29, 32], especially when the examination bias and

trust bias are mixed.
1
Hence, controlling the variance will reduce

the generalization error of unbiased learning and improve the per-

formance of the learned model. Furthermore, recent studies [25, 28]

proved that reducing variance can also lead to a tighter error tail

bound, thus improving the stability of the learned unbiased model.

1
MBC [30] is an exception as it does not rely on propensity scores.
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In this paper, we proposed a ULTR method called Decomposed
Ranking Debiasing (DRD). Unlike existing methods that directly

correct the biased user clicks, DRD proposes to learn the unbiased

relevance ranking model by decomposing each click probability

prediction. That is, decompose each click probability prediction

as a combination of a relevance term (outputted by the unbiased

relevance model) and other bias terms (outputted by the bias mod-

els). Then, DRD can learn the unbiased relevance model by fitting

this decomposed prediction to the biased user clicks. In this way,

DRD avoids involving the propensities in the denominators and

can learn the models with lower variance. Theoretical analysis also

shows that, compared to existing approaches, the proposed DRD

has lower variance while still retaining unbiasedness, ensuring its

superiority in the existence of both examination bias and trust bias.

To learn the model parameters, a joint learning algorithm is de-

signed in which the bias estimation and relevance model learning

are conducted alternatively and can be regularized by each other.

Compared to current debiasing methods that separate bias estima-

tion and model learning as two stages, our joint learning algorithm

can avoid the problem of bias estimation error accumulating and

amplifying into relevance model learning.

In summary, DRD provides an elegant and theoretical sound

approach to alleviating the examination and trust bias in relevance

ranking. It offers several advantages, including unbiased and low

variance learning, joint bias estimation and relevance model learn-

ing, and high accuracy in relevance ranking. The major contribu-

tions of this study are:

(1) We proposed an ULTR model for addressing the high-variance

problem in the existence of examination bias and trust bias.

(2) We designed an effective learning algorithm that benefits from

the joint bias estimation and relevance model learning.

(3) We conducted groups of experiments on two public LTR datasets,

and the experimental results verified the effectiveness of the

proposed model and the theoretical conclusions.

2 RELATEDWORK
Trust bias and examination bias are two typical data biases in learn-

ing to rank. To address the examination bias, [17] proposed propen-

sity SVM-rank, which using IPS to address examination bias firstly.

Besides this, there are more extensive methods. Agarwal et al. [1] ex-

tended the propensity SVM-rank and made it applicable to neural

network ranker, and can optimize DCG directly. Fang et al. [9] and

Wu et al. [36] extended traditional IPS method to the case where

the examination is context dependent. Guo et al. [11] extend ex-

amination bias into grid-based web search. Chen et al. [7] further

assumed that the examination bias in different ranking position is

not isolated but will affect each other. For trust bias, it was first de-

fined by Agarwal et al. [2], they considered trust bias as a click noise

and proposed TrustPBM based on Bayesian rules. Vardasbi et al.

[31] analyzed the error of TrustPBM, and further proposed Affine

Correction to allievate the trust bias. However, above two methods

for addressing trust bias rely on relEM [33] to estimate bias param-

eters. To overcome the estimated error brought by relEM, Vardasbi

et al. [30] proposed Mixture-Based Correction, which employs a

standard EM procedure to estimate relevance directly.

Current variance reduction techniques for ULTR usually directly

control the variability of the propensity weights. For example,

Swaminathan and Joachims [29] analyzed the problem of variability

brought by propensity weighting and proposed to handle it via a

self-normalized estimator. Schnabel et al. [28] employed the self-

normalizing technique to achieve better performance in addressing

selection bias. Propensity clipping is another method to reduce the

variance, which limits the range of propensity weight by manually

setting thresholds. This technique was widely used in many debi-

asing methods [12, 20, 27, 32]. Doubly robust estimator [8, 37] can

also reduce the variance by integrating IPS with a direct method.

However, current studies don’t specifically address the variance in

the existence of examination and trust bias.

Recent studies on recommender systems also mentioned a sim-

ilar decomposition idea for alleviating bias. For example, Zheng

et al. [39] proposed to decompose user interactions as interest and

conformity and then model them respectively. Moreover, Zhang

et al. [38] proposed to decompose click as the effect from user-

item and item-popularity. Similarly, Wei et al. [34] proposed to

decompose click as user effect, item effect, and matching effect,

then model them as multi-task learning. However, the variance of

the decompose-based methods has been less discussed.

3 PROBLEM FORMULATION AND ANALYSIS
3.1 Unbiased Learning to Rank
The problem of unbiased learning-to-rank can be described as fol-

lows. Given a user query 𝑞 and 𝐾 retrieved documents, each query-

document pair (𝑞, 𝑑) is described by an𝑛-dimensional feature vector

x = 𝜙 (𝑞, 𝑑) ∈ R𝑛 . The relevance of 𝑑 to 𝑞 can be represented by

an unobserved variable 𝑅. Without loss of generality, we assume

that 𝑅 ∈ {0, 1} is a binary variable. The retrieved documents are

ranked by an existing ranking model 𝜋0 : R𝑛 → {1, 2, · · · , 𝐾}
where each document will be ranked at a position 𝑃 ∈ {1, 2, · · · , 𝐾}
by 𝜋0. Following the practices in [1, 17, 31], suppose that random

variable 𝐸 ∈ {0, 1} denotes whether a user has examined the pre-

sented document, and 𝐶 ∈ {0, 1} denotes whether a user clicks

the document. Both 𝐸 and 𝐶 obey the Bernoulli distributions. The

user clicks on a search engine can be recorded as the click log

D = {(x𝑖 , 𝑐𝑖 , 𝑘𝑖 )}𝑁𝑖=1, where x𝑖 , 𝑐𝑖 , 𝑘𝑖 respectively denote the 𝑖-th

query-document pair’s feature vector, whether the document being

clicked, and the ranking position of the document by 𝜋0.

Ideally, we hope an unbiased relevance model 𝑓 (x) : R𝑛 → R
could be learned by maximizing the following ideal point-wise loss:

L
ideal

=
1

|D|
∑︁
D
−𝑟 log [𝜎 (𝑓 (x))]−(1−𝑟 ) log [1 − 𝜎 (𝑓 (x))] , (1)

where 𝑟 is the unobserved true relevance of a query-document

pair, 𝜎 is the sigmoid function. Equation (1) cannot be maximized

because 𝑟 cannot be observed directly. An alternative way is naively

fitting the prediction to the observed clicks 𝑐 in D:

Lnaive =
1

|D|
∑︁
D
−𝑐 log [𝜎 (𝑓 (x))]−(1−𝑐) log [1 − 𝜎 (𝑓 (x))] . (2)

As has been discussed, there exists a gap between the optimal

solution of Lnaive and that of L
ideal

, because the user clicks are

biased. That is, the click 𝑐 is no longer an indicator of unobserved

true relevance 𝑟 if bias exists, e.g., the examination bias and trust



Separating Examination and Trust Bias from Click Predictions for Unbiased Relevance Ranking WSDM ’23, February 27-March 3, 2023, Singapore, Singapore

X

P

E C

R

X— feature of (q, d) 

R— Relevance of (q, d) 

P— Ranking Position

E— Examination 

C— Click

Figure 1: Causal graph of users’ clicks in search ranking. Gray
nodes denote unobserved variables. The red arrow indicates
the effect that an unbiased relevancemodel needs to estimate.

bias. The goal of unbiased learning-to-rank is to alleviate the biases

in user clicks and obtain an unbiased relevance model 𝑓 (x).

3.2 Examination Bias and Trust Bias
Next, we analyze how the examination and trust bias affect the

user clicks based on the causal graph [10, 22, 35] shown in Figure 1.

Given a query-document pair (𝑞, 𝑑), its feature x affects the position
𝑃 that 𝑑 is placed through 𝜋0. The position 𝑃 affects 𝐸, which means

whether the user can examine the document 𝑑 . Also, x determines

the relevance 𝑅 between (𝑞, 𝑑) trough the unbiased relevance model

𝑓 (x). Since relevance label 𝑅 cannot be directly observed in D, we

have to leverage click signal𝐶 as a substitution of 𝑅. Unfortunately,

besides the relevance 𝑅,𝐶 is also affected by the ranking position 𝑃

and user examination 𝐸. Therefore, directly fitting clicks will result

in a biased relevance model. According to Figure 1, the probability

that a user clicks a document can be written as:

Pr(𝐶 = 1|x) =
∑︁

𝐸∈{0,1}

∑︁
𝑅

Pr(𝐶 = 1|𝐸, 𝑅, 𝑃) Pr(𝑅 |x)
∑︁
𝑃

Pr(𝐸 |𝑃) Pr(𝑃 |x)

=
∑︁

𝐸∈{0,1}

∑︁
𝑅

Pr(𝐶 = 1|𝐸, 𝑅, 𝑃 = 𝑘) Pr(𝑅 |x) Pr(𝐸 |𝑃 = 𝑘)

= Pr(𝐸 = 1|𝑃 = 𝑘)︸              ︷︷              ︸
exam. bias

∑︁
𝑅

Pr(𝐶 = 1|𝐸 = 1, 𝑅, 𝑃 = 𝑘)︸                          ︷︷                          ︸
trust bias

Pr(𝑅 |x)︸  ︷︷  ︸
unbiased rel.

,

(3)

where 𝑘 = 𝜋0 (x) is the ranking position. The first equation is de-

composition based on the Figure 1; the second equation is based on

the fact that the ranking policy 𝜋0 is deterministic, which means

one (𝑞, 𝑑) pair has only one ranking position in the ranking result;

the last equation is based on the examination hypothesis [24]. That

is, only the examined documents can be clicked by users, while

users can never click those un-examined documents. Equation (3)

indicates that the click probability can be decomposed as a combi-

nation of examination bias term Pr(𝐸 = 1|𝑃 = 𝑘), trust bias term
Pr(𝐶 = 1|𝐸 = 1, 𝑅, 𝑃 = 𝑘), and unbiased relevance term Pr(𝑅 |x).

To transform the biased clicks to the unbiased relevance labels,

one popular approach is using the affine transformation. For exam-

ple, the propensity weighting method of Affine Correction (AC) [31]

defines its relevance label 𝑟AC as:

𝑟AC = (𝑐 − \𝑝−)
/
\ (𝑝+ − 𝑝−),

where the 𝑐 ∈ {0, 1} is the observed user click, \ = Pr(𝐸 = 1|𝑃 = 𝑘)
is the examination bias, 𝑝+ = Pr(𝐶 = 1|𝐸 = 1, 𝑅 = 1, 𝑃 = 𝑘) and
𝑝− = Pr(𝐶 = 1|𝐸 = 1, 𝑅 = 0, 𝑃 = 𝑘) are the trust bias on examined

relevant and irrelevant documents ranked at 𝑘 , respectively.

3.3 Variance of Propensity Weighting Methods
Although existing propensityweightingmethods (e.g., AC) achieved

good performance in mitigating both examination bias and trust

bias, they face high variance challenges due to re-weighting propen-

sities in the denominators of the estimated label. Moreover, the

variance gets even larger in the existence of both examination and

trust bias, as shown in the following Lemma 1 and Theorem 1.

Lemma 1. LetLAC = 1

|D |
∑
D (−𝑟AC log (𝑝x) − (1 − 𝑟AC) log (1 − 𝑝x)) .

be a binary cross entropy loss function that uses the AC estimator. If
Δ𝑝 = 𝑝+ − 𝑝− > 0, the variance of LAC is

VAC =
1

|D|2
∑︁
D
V [−𝑟AC log (𝑝x) − (1 − 𝑟AC) log (1 − 𝑝x)]

=
1

|D|2
∑︁
D
V

[
− log( 𝑝x

1 − 𝑝x
)𝑟AC − log(1 − 𝑝x)

]
=

1

|D|2
∑︁
D

log
2 ( 𝑝x
1 − 𝑝x

)V
[
𝑐 − \𝑝−
\Δ𝑝

]
,

where 𝑝x = 𝜎 (𝑓 (x)) is the predicted relevance probability and 𝑝𝑟 =

Pr(𝑅 = 1|x) is the true relevance probability.

Note that the condition Δ𝑝 > 0 is natural and generally holds

because users trust the relevant documents more than the irrelevant

ones. It is easy to know that if the user clicks are only affected by

the examination bias, L𝐴𝐶 naturally degenerates to:

Lexam =
1

|D|
∑︁
D
− 𝑐
\
log (𝑝x) −

(
1 − 𝑐

\

)
log (1 − 𝑝x) .

We can prove that LAC has larger variance than Lexam.

Theorem 1 (Variance Comparison). VAC ≥ Vexam . where
Vexam is the variance of Lexam.

Proof of Theorem 1 can be found in Appendix A.1. Theorem 1

indicates that mixing the trust bias with the user clicks already

affected by the examination bias will further increase the variance.

4 OUR APPROACH: DRD
This section proposes the Decomposed Ranking Debiasing (DRD)

which simultaneously alleviates the examination and trust bias.

4.1 Decomposed Ranking Debiasing Method
Inspired by the decomposition in Equation (3), we propose to decom-

pose the predicted click probability as a combination of a relevance

term and other bias terms. Based on the decomposition, D4D can

learn the unbiased relevance model by fitting the click predictions

to the biased user clicks.

4.1.1 Decomposed Click Probability and Loss Function. Specifically,
given a x = 𝜙 (𝑞, 𝑑), the overall predicted click probability, denoted

as 𝑝𝑐 , can be decomposed as

𝑝𝑐 = \𝑝+𝑝x + \𝑝− (1 − 𝑝x) = \Δ𝑝𝑝x + \𝑝−, (4)

where 𝑝x = 𝜎 (𝑓 (x)) is the predicted relevance probability, the

first term \𝑝+𝑝x is the probability that 𝑑 is relevant to 𝑞 and it is

examined and clicked, the second term \𝑝− (1−𝑝x) is the probability
that 𝑑 is irrelevant and it is examined and clicked.
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Figure 2: Curves of 𝛿 (𝑝x). 𝑘 denotes the ranking position.

Based on a set of click log D, a new cross-entropy loss function

LDRD can be constructed:

LDRD =
1

|D|
∑︁
D
−𝑐 log𝑝𝑐 − (1 − 𝑐) log (1 − 𝑝𝑐 ) . (5)

We can prove that, through optimizing LDRD, the learned rele-

vance model 𝑝x = 𝜎 (𝑓 (x)) converges to predict the unbiased true

relevance probability 𝑝𝑟 :

Theorem 2. Let 𝑝∗x = argmin𝑝x LDRD, we have

∀x, 𝑝∗x = 𝑝𝑟 ,

where 𝑝𝑟 = Pr(𝑅 = 1|x) is the true relevance probability of x.

Proof of Theorem 2 can be found in Appendix A.2.

4.1.2 Variance Analysis ofLDRD. We analyze the variance ofLDRD

from Equation (5), denoted as VDRD, in the following Theorem 3.

Theorem 3 (Variance of LDRD). The variance of LDRD is

VDRD =
1

|D|2
∑︁
D

log
2

(
\Δ𝑝𝑝x + \𝑝−

1 − \Δ𝑝𝑝x − \𝑝−

)
V𝑐 .

Proof of this theorem can be found in Appendix A.3.

One advantage of the new loss LDRD is its low variance in learn-

ing. Specifically, we compare LDRD with AC’s variance VAC (de-

fined in Lemma 1) in the following Remark 1:

Remark 1 (Lower Variance of LDRD). Based on Lemma 1 and
Theorem 3, the variances of LDRD and LAC can be compared:

VAC−VDRD =
1

|D|2
∑︁
D

©«
log

2 ( 𝑝x
1−𝑝x )

\2Δ2

𝑝

− log2
(

\Δ𝑝𝑝x + \𝑝−

1 − \Δ𝑝𝑝x − \𝑝−

)ª®®¬V𝑐 .
Let 𝛿 (𝑝x) = log

2

(
𝑝x

1−𝑝x

)
− \2Δ2

𝑝 log
2

(
\Δ𝑝𝑝x+\𝑝−

1−\Δ𝑝𝑝x−\𝑝−
)
. It is obvious

that VAC ≥ VDRD if 𝛿 (𝑝x) ≥ 0 holds for most 𝑝x ranges.

We empirically show that the condition 𝛿 (𝑝x) ≥ 0 holds in real-

world unbiased learning-to-rank applications with examination

bias and trust bias. Specifically, based on the bias terms calculated

according to the equations in Section 5, we illustrate the curves

of 𝛿 (𝑝x) in Figure 2. The 5 curves respectively correspond to the

ranking positions 𝑘 = {1, 2, 3, 4, 5}. From the curves, we found that:

(1) DRD reduced the variance in most cases: We observed

that 𝛿 (𝑝x) > 0 for most of the 𝑝x’s values, indicating VAC ≥ VDRD
holds in most cases. We empirically observed that the condition is

violated only near the point 𝑝x = 0.5, e.g., around 𝑝x ∈ (0.4, 0.6).
(2) DRD can dramatically reduces the variance for confi-

dent query-document pairs:We also observed that 𝛿 (𝑝x) ≫ 0

Algorithm 1: Joint Learning Algorithm for DRD

Input: User interactions D = {(x𝑖 , 𝑐𝑖 , 𝑘𝑖 )}𝑁𝑖=1, learning rates
[1, [2, number of iters 𝑇 , number of batches 𝐵1, 𝐵2

1 Θ𝑟 ,Θ+,Θ− ← random values

2 for 1 ≤ 𝑡 ≤ 𝑇 do
3 for 1 ≤ 𝑏 ≤ 𝐵1 do
4 Randomly sample a batch of sessions D𝑏

from D;

5 Calculate Lrel

DRD
on a batch D𝑏 ⊆ D {Eq. (6)};

6 Θ𝑟 ← Θ𝑟 − [1
𝜕Lrel

DRD

𝜕Θ𝑟 ;

7 end
8 for 1 ≤ 𝑏 ≤ 𝐵2 do
9 Randomly sample a batch of sessions D𝑏

from D;

10 Calculate Lbias

DRD
on a batch D𝑏 ⊆ D {Eq. (7)};

11 Θ+ ← Θ+ − [2
𝜕Lbias

DRD

𝜕Θ+ ; Θ− ← Θ− − [2
𝜕Lbias

DRD

𝜕Θ− ;

12 end
13 end
14 return Θ𝑟

when 𝑝x is near to 0 or 1. Note that 𝑝x is near 0 or 1 means that the

relevance model is confident about the relevance of x (either rele-

vant or irrelevant). The phenomenon indicates that VAC > VDRD
with a large margin if the relevance prediction is confident. It also

means that DRD’s learning variance can be steadily reduced as

the training goes on because the relevance model usually becomes

more confident with more training iterations.

(3)DRDcan reduce the estimation variance onhigh-ranked
documents: Comparing the 5 curves with 𝑘 values, we found

that the curves correspond to the high-ranked documents (e.g.,

𝑘 = 1) has much smaller 𝑝x’s value ranges in which VDRD > VAC.
Note that the higher ranked documents have more impact on the

ranking accuracy. The phenomenon indicates that DRD has more

advantages in alleviating the biases for high-ranked documents.

4.2 Optimizing with Joint Learning
In practice, the true examination and trust bias parameters are

unknown. Hence, we propose to parameterize the bias terms in

Eq. (4) and employ a joint learning algorithm to learn the parameters

in the relevance and bias models alternatively.

4.2.1 Estimating bias parameters with bias models. First, we esti-
mate the bias terms \𝑝+ and \𝑝− in the predicted click probability

𝑝𝑐 in Eq. (4), denote as
ˆ\𝑝+ and ˆ\𝑝− :

ˆ\𝑝+ := 𝜎 (𝑔+ (x′)) and
ˆ\𝑝− := 𝜎 (𝑔− (x′)),

where x′ is a one-hot representation of the position outputted by

𝜋0, 𝑔
− (·) and 𝑔+ (·) are two bias models with scalar outputs for es-

timating the bias parameters on relevant and irrelevant documents,

respectively
2
. Therefore, the click probability 𝑝𝑐 in Eq. (4) becomes:

𝑝𝑐 =
(
𝜎 (𝑔+ (x′)) − 𝜎 (𝑔− (x′))

)
𝜎 (𝑓 (x)) + 𝜎 (𝑔− (x′)).

The goal of the learning is to determine the parameters of the

2
Both the examination bias and trust bias depend on the ranking position (see Eq. (3)).

We use the one-hot ranking position representations as the inputs of the bias models.
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Figure 3: Curves ofL
ideal

,LDRD andLrel

DRD
w.r.t.𝜎 (𝑓 (x)). Other

parameters: 𝑝𝑟 = 0.5, 𝜎 (𝑔+ (x′)) = 0.46, and 𝜎 (𝑔− (x′)) = 0.10.
The red dashed line indicates when 𝜎 (𝑓 (x)) = 𝑝𝑟

three neural networks: Θ+ and Θ− respectively from the two bias

models 𝑔+ (x′) and 𝑔− (x′), and Θ𝑟
from the relevance model 𝑓 (x).

4.2.2 The joint learning algorithm. Algorithm 1 shows the joint

learning procedure. After initializing the parameters, the algorithm

runs 𝑇 iterations. Each iteration consists of two parts: the first part

updates the relevance model parameters Θ𝑟
, and the second part

optimizes the bias models’ parameters Θ+ and Θ− .
In the first part (lines 3-7) and at each of the batch 𝑏, a batch of

data D𝑏
is randomly sampled. Based on D𝑏

, the loss for training

relevance model is constructed and optimized:

Lrel

DRD
= b · LDRD (D𝑏 ), (6)

where LDRD (D𝑏 ) calculates the loss LDRD defined in Equation (5)

based on the sampled batch of click logD𝑏
, b is an adjustment term

b = exp

(
𝛼

(
𝑝∗𝑟 − 𝜎 (𝑓 (x))

) sgn (
𝑝∗𝑟 − 𝜎 (𝑓 (x))

)
+ 1

2

)
,

where𝛼 ∈ (0, 1) controls the adjustment degree,𝑝∗𝑟 =
𝑝𝑐−𝜎 (𝑔− (x′ ) )

𝜎 (𝑔+ (x′ ) )−𝜎 (𝑔− (x′ ) )
is the global optima of LDRD, sgn(·) = 1 if the input is positive

otherwise -1. Intuitively, the adjustment loss avoids the gradient

vanishing problem in directly optimizing LDRD while still achiev-

ing the unbiased relevance model. More discussions on b are given

in Section 4.2.3.

In the second part (lines 8-12) and at each of the batch 𝑏, a batch

of data D𝑏
is randomly sampled, and the loss for updating bias

models based on D𝑏
is constructed:

Lbias

DRD
= LDRD (D𝑏 ) − 𝜖, (7)

where LDRD (D𝑏 ) calculates the loss LDRD based on the sampled

batch of data D𝑏
, and the regularizer term

𝜖 = 𝛽 · log𝜎 (𝑔+ (x′) − 𝑔− (x′)),
where 𝛽 ∈ (0, 1) controls the regularization degree. Intuitively,

𝜖 introduces the prior knowledge that users trust the examined

relevant documents more than the examined irrelevant ones.

Next, we explain the adjustment term b and regularizer 𝜖 .

4.2.3 Discussion on the joint learning algorithm. Instead of using

the original loss LDRD in Equation (5), Algorithm 1 resorts to the

adjusted losses Lrel

DRD
and Lbias

DRD
. We explain the reasons as follows.

First, the adjustment inLrel

DRD
avoids the problem of gradient van-

ishing while still achieving the unbiased relevance model. Figure 3

illustrates the curves of L
ideal

, LDRD, and Lrel

DRD
(with different

𝛼 values) w.r.t. 𝜎 (𝑓 (x)). We can find that compared to L
ideal

, the

curve of LDRD is more flattened, resulting in gradient vanishing

and further hurting the learning of the relevance model. Empirical

studies also showed that it tends to collapse at the points when 𝑝x

is close to 0 or 1. The adjusted loss Lrel

DRD
, however, increased the

losses (and also the gradients) when 𝑝x is close to 0 or 1. Also, the

adjustment is based on the global optima of LDRD and does not

change the optimal point. Optimizing Lrel

DRD
can still achieve the

same unbiased relevance model as that of optimizing LDRD.

Second, the regularizer in Lbias

DRD
introduces the prior knowledge

that an examined relevant document has higher click probability

than an examined irrelevant one when they are ranked at the same

position, i.e., 𝜎 (𝑔+ (x′)) > 𝜎 (𝑔− (x′)). The prior knowledge is imple-

mented as the regularizer term log𝜎 (𝑔+ (x′) − 𝑔− (x′)) that forces
the logit 𝑔+ (x′) greater than 𝑔− (x′). The regularizer helps the al-
gorithm to learn more reasonable bias models 𝑔+ (x′) and 𝑔− (x′).
Also, forcing 𝜎 (𝑔+ (x′)) − 𝜎 (𝑔− (x′)) > 0 during the bias model

learning is beneficial to the learning of the relevance models.

5 EXPERIMENT SETUP
We conducted experiments to evaluate the proposed DRD and the

baselines. The source code is available at the anonymous site https://

anonymous.4open.science/r/DecomposedRankingDebiasing-DC82/.

Datasets: Two widely used public datasets, YahooC14B [6] and

WEB30K [23] were used in the experiments. YaHooC14B contains

around 30,000 queries, each associated with about 24 documents

on average. Each query-document pair is depicted with a 700-

dimension feature vector and five-grade relevance labels. WEB10K

contains 30,000 queries and each associated with about 125 docu-

ments. Each query-document pair is depicted with a 136-dimension

feature vector and a five-grade relevance label.

Following the practices in [3, 13], we converted the graded rele-

vance label 𝑦 ∈ {0, 1, 2, 3, 4} in both two datasets into probability

Pr(𝑅 = 1 | 𝑦) = 2
𝑦−1

2
𝑦𝑚𝑎𝑥 −1 , where 𝑦𝑚𝑎𝑥 = 4 is the maximum of 𝑦.

Click simulation: Following the practices in [17], the user

clicks on search engines were simulated. First, 1% of the labeled

data were randomly sampled and used to train an SVM
𝑟𝑎𝑛𝑘

[14] as

the production ranker 𝜋0. Then for each click session, a query

was uniformly sampled, and the ranking result was generated

by 𝜋0. To simulate users’ clicks, we set up the parameters of ex-

amination bias and trust bias according to existing studies: for

each (𝑞, 𝑑) pair, the examination probability is based on the dis-

played position: Pr(𝐸 = 1 | 𝑘) = (𝑝𝑘𝑒𝑦𝑒 )[ , where [𝑝𝑘𝑒𝑦𝑒 ]10𝑘=1 =

[0.68, 0.61, 0.48, 0.34, 0.28, 0.20, 0.11, 0.10, 0.08, 0.06] are the exami-

nation probabilities via eye-tracking experiments [15], and [ is the

parameter to control the severity of examination bias. Note that

𝑝𝑘𝑒𝑦𝑒 has values only at the top-10 positions. Therefore, all of our

experiments are based on the top-10 rankings. Although the cut-off

will cause selection bias [19, 21], it doesn’t affect the conclusion of

the examination and trust bias. We follow the setting in [20, 30, 31]

and set the trust bias parameters as follows:

Pr(𝐶 = 1 | 𝑅 = 1, 𝐸 = 1, 𝑃 = 𝑘) = (98 − 𝑘)/100,
Pr(𝐶 = 1 | 𝑅 = 0, 𝐸 = 1, 𝑃 = 𝑘) = 𝜌/(𝑘 + 1),

where 𝜌 is the probability of the user clicking irrelevant results

at the first position. This probability controls the severity of trust

bias. In our experiments, we consider 𝜌 ∈ {0.338, 0.638, 0.938} and
[ ∈ {0.5, 1.0, 1.5}. These bias parameters are utilized to generate

https://anonymous.4open.science/r/DecomposedRankingDebiasing-DC82/
https://anonymous.4open.science/r/DecomposedRankingDebiasing-DC82/
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Table 1: Ranking accuracy of debiasing methods with or without known bias parameters on YaHooC14B and WEB10K. For
each group of methods, boldface means the best performed methods (excluding Oracle), while underline means the second
best performed methods. Superscripts †means the significance compared to second best performed methods with 𝑝 < 0.05.
Experimental settings: [ = 1.0, 𝜌 = 0.638, 106 click sessions.

Method

YahooC14B WEB30K

MAP

nDCG@k

MAP

nDCG@k

k=1 k=3 k=5 k=10 k=1 k=3 k=5 k=10

Naive 0.853 0.589 0.610 0.642 0.702 0.520 0.162 0.182 0.200 0.237

Debiasing methods that need true propensity
IPS-exam [17] 0.867 0.645 0.653 0.677 0.730 0.557 0.261 0.277 0.292 0.327

Bayes-IPS [2] 0.866 0.662 0.666 0.690 0.740 0.569 0.299 0.304 0.318 0.349

AC [31] 0.872 0.673 0.679 0.702 0.750 0.600 0.366 0.364 0.372 0.398

DRD-ideal 0.876 0.680† 0.686† 0.709† 0.755 0.609† 0.380† 0.379† 0.385† 0.406
Debiasing methods that estimate propensity from interaction data

DLA [3] 0.867 0.656 0.662 0.684 0.736 0.581 0.304 0.317 0.332 0.361

relEM-AC [31] 0.871 0.642 0.662 0.690 0.741 0.597 0.346 0.349 0.361 0.387

MBC [30] 0.858 0.647 0.653 0.677 0.730 0.602 0.360 0.359 0.370 0.395

DRD 0.873 0.678† 0.683† 0.704† 0.753† 0.604 0.379† 0.375† 0.383† 0.405†

Oracle 0.876 0.683 0.686 0.710 0.758 0.610 0.382 0.382 0.389 0.406

clicks for training. The annotated labels in the validation set and test

sets were used to select models and evaluate the ranking accuracy.

Baselines: Several state-of-the-art ULTR models were chosen as

the baselines. First, we choose several debiasing methods that need

true propensity to correct biased interactions, including AC [31],

a correction-based method that handles both trust bias and ex-

amination bias; Bayes-IPS [2], another correction-based method

using Bayes rules; IPS-exam [17], a debiasing method adapted

from Propensity SVM. Note that it is designed for only addressing

the examination bias. In the experiments, we used the relevance

estimator in [17] and trained the model with point-wise loss. To

make a fair comparison with this group of methods, we also used

the true bias parameters when learning the relevance model of

DRD, denoted as DRD-ideal.
The baselines also include the debiasing methods that estimate

propensity from the user clicks, including relEM-AC [31], a method

that first estimate examination and trust bias parameters with re-

gression EM, and then apply AC [31]; DLA [3], a joint learning de-

biasing method that only handles the examination bias; MBC [30],

a method that employs a standard EM to estimate the relevance of

(𝑞, 𝑑) at each position. Then, it uses the estimated relevance label

for unbiased learning. For a fair comparison with this group of

methods, the proposed DRD employs its joint-learning algorithm

for training the parameters in the bias models and relevance model.

We also report the results of the Naive method that optimizes

Lnaive in Equation (2), and theOraclemethod that optimizesL
ideal

in Equation (1). They are respectively used as the theoretical lower

and upper bounds in the experiments.

Implementation details: Similar to existing studies [3, 30,

31], we used three 3-layer neural networks with 𝑒𝑙𝑢 activation

function as the ranking model 𝑓 (x) and bias models 𝑔+ (x) and
𝑔− (x). The hidden sizes were set to {256, 128, 64}. We utilized the

dropout probability of 0.1 in the last two layers. The batch size

was set to 128. The learning rates [1 and [2 were tuned among

{2𝑒−4, 5𝑒−4, 1𝑒−3, 2𝑒−3, 5𝑒−3}. The adjust degree 𝛼 in Equation (6)

was tuned between [0.0, 0.6] for known bias parameters, and be-

tween [0.4, 1.4] for joint learning with a strategies that decay with

epochs. The regularize degree 𝛽 in Equation (7) was tuned between

[0.4, 0.6]. Note that in the setting of known bias parameters, we

still use Equation (6) to improve our model learning. In all of the

experiments, the reported values were the averaged results after

training with 5 different random seeds.

6 EXPERIMENTAL RESULTS AND ANALYSIS
6.1 Overall Performance Comparison
Table 1 reports the ranking accuracy of the proposed DRD and the

baselines on YahooC14B andWEB30K. The experimental results are

grouped into methods that need true propensities and methods that

estimate propensity from the click log. Please note that to make

fair comparisons with the baselines that need true propensities,

we degenerate the proposed DRD so that the relevance model is

learned with true bias parameters, denoted as “DRD-ideal” in Ta-

ble 1. The results indicate that the proposed DRD and DRD-ideal

outperformed the corresponding baselines. We conducted signifi-

cant tests, and the results showed significant improvements (t-test

and 𝑝-value <0.05). The DRD-ideal performed slightly better than

DRD because DRD-ideal knows the true propensity. The results

indicate that DRD and DRD-ideal can learn unbiased relevance

models with lower variance.

Among the baselines needing true propensity, AC performed best

because it can address both examination and trust bias. Therefore,

the performance gaps between AC and Oracle are mainly from the

high learning variance. Though AC already achieved relatively high

ranking accuracy (especially on YahooC14B), DRD-ideal can further

outperform AC. The results verified the theoretical conclusion in

Remark 1 that DRD can effectively reduce the variance.

Among the baselines that estimate propensity from the click,

relEM-AC and MBC learn the bias and relevance models in two sep-

arate stages. In addition, DLA uses a joint learning algorithm while
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Table 2: Ranking accuracy of AC equipped with propensity
clip (denoted as ‘+clip_val’ where val is the clip value) and
self normalization (denoted as ‘self norm’).

Method

YahooC14B WEB30K

MAP nDCG@3 MAP nDCG@3

AC 0.872 0.679 0.600 0.364

+ clip_0.05 0.872 0.679 0.600 0.365

+ clip_0.10 0.874 0.683 0.601 0.372

+ clip_0.30 0.875 0.678 0.601 0.366

+ self norm 0.873 0.680 0.603 0.362

DRD-ideal 0.876 0.686 0.609 0.379

only addressing the examination bias. We see that DRD signifi-

cantly outperformed all these baselines, indicating the effectiveness

of DRD’s joint learning algorithm in bias parameters estimation.

6.2 Effectiveness in Reducing Variance
We conducted experiments to test DRD’s ability to reduce the esti-

mation variance. More specifically, we equipped the best-performed

baseline AC with the general variance techniques of propensity

clip [20, 27, 32] and self normalization [28, 29], achieving new strong

baselines of variance reduced AC
3
. From the results reported in

Table 2, we found that DRD-ideal outperformed all the AC varia-

tions. The results are not surprising because propensity clip and

self normalization are general-purpose variance reduction methods

and cannot handle biased user clicks in relevance ranking well: (1)

both propensity clipping and self normalization break the unbiased-

ness; (2) propensity clipping is very sensitive to the clipping value.

The results verified the advantages of DRD in terms of reducing

estimation variance while keeping unbiasedness.

6.3 Effectiveness on Estimating Propensities
Besides estimating the unbiased relevance model, DRD can also

accurately estimate the bias models via the tailored joint learning

algorithm. Based on YahooC14B andWEB30K, we conducted exper-

iments to show the deviations
ˆ\𝑝+−\𝑝+ and ˆ\𝑝− −\𝑝− (calculated

according to the click simulation in Section 5). In the experiment,

DRD was compared with the baseline relEM-AC. Note that MBC

and DLA cannot be used here because MBC directly estimates the

relevance label and has no bias terms, and DLA only addresses

the examination bias. Figure 4(a) and (b) respectively shows the

deviation curves of
ˆ\𝑝+ − \𝑝+ and ˆ\𝑝− − \𝑝− on different ranking

positions. The curves close to the horizontal line mean accurate

bias estimation. From the results, we found that the DRD curves,

including DRD(YahooC14B) and DRD(WEB30K) are much closer

to the true horizontal line than that of relEM-AC(YahooC14B) and

relEM-AC(WEB30K). The phenomenon can be observed for both

ˆ\𝑝+ and ˆ\𝑝− , indicating that DRD estimated the propensities more

accurately than relEM-AC. Moreover, the figure indicate that
ˆ\𝑝+

and
ˆ\𝑝− are more accurately estimated at the ranking positions

of 𝑘 = 1 and 2. Considering that high-ranked documents have

more effects on the overall ranking accuracy, we conclude that

DRD improves the ranking accuracy by accurately estimating the

3
These two methods are applied to the propensities in the denominators in our study.
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Figure 4: Deviation of the estimated bias terms from the
their true values at different ranking positions. The dark
horizontal linemeans the ideal estimation has zero deviation.

propensities for high-ranked documents.

6.4 Effects at Varying Bias Severity Levels
We also conducted experiments to test DRD when facing vary-

ing levels of bias severity. Specifically, based on YahooC14B and

WEB30K, we varied the examination and trust bias severity levels

by changing the parameters [ and 𝜌 during the click simulation (de-

tails described in Section 5), resulting in datasets with different bias

severity levels. Figure 5 shows the ranking accuracy (nDCG@3) of

different methods respectively trained and tested on these datasets.

For example, Figure 5(a) shows the nDCG@3 of different meth-

ods on three YahooC14B datasets whose clicks are respectively

simulated with [ = 0.5, 1.5, and 1.5 (𝜌 = 0.638 was kept as the

default value). From Figure 5(a) and (b), we can see that increasing

the level of the examination bias severity (i.e., larger [) degrades

the performance of all methods. Compared to the baselines, DRD

achieved the best performance in all levels of examination bias

severity. From Figure 5(c) and (d), we can see that increasing the

level of the trust bias severity (i.e., larger 𝜌 while keeping [ = 1.0)

has different effects for different methods. DRD still performed the

best for all levels of the trust bias severity. We also observed that

the methods that address both examination bias and trust bias (i.e.,

DRD, relEM-AC, and MBC) are not sensitive to the change of trust

bias severity. DLA only addresses the examination bias and is more

sensitive to the trust bias severity. All the results indicate that DRD

deals with the bias at different severity levels better.

6.5 Sensitivity to the Hyper-parameters
Finally, we tested the effects of the hyper-parameters𝛼 and 𝛽 , which

are respectively used to control the adjustment term and regularizer

term during the joint learning. Specifically, we trained and tested

the performance of DRD on YahooC14B andWEB30K, with different

𝛼 and 𝛽 values. The rows and columns in Figure 6 indicate different

combinations of (𝛼, 𝛽) values, and the numbers in the cells are

the corresponding test nDCG@3. From the results, can see best

performed combinations are 𝛼 = 1.2, 𝛽 = 0.45 on YahooC14B, and

𝛼 = 0.6, 𝛽 = 0.5 on WEB30K. Also, the nDCG@3 values near the

best-performed combinations did not change sharply, indicating

that DRD is not very sensitive to the hyper-parameter settings.
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Figure 5: (a) and (b): nDCG@3 w.r.t. different severity levels of examination bias (controlled by [); (c) and (d): nDCG@3 w.r.t.
different severity levels of trust bias (controlled by 𝜌).
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Figure 6: Performance of DRD on different degrees of adjust-
ment 𝛼 and regularization 𝛽 .

7 CONCLUSION
In this paper, we proposed a novel ULTR method called Decom-

posed Ranking Debiasing (DRD) to address the examination bias

and trust bias in relevance ranking. Compared to existing propen-

sity weighted methods, DRD decomposes each click prediction

as a combination of a relevance term and other bias terms, and

thus avoids involving the propensities in the denominator of la-

bels. A joint learning algorithm is proposed to estimate the model

parameters. Theoretical analysis showed DRD has the ability to

learn unbiased relevance models with lower variances than exist-

ing methods. Groups of empirical studies also verified that DRD

improved the baselines through effectively reducing the learning

variances and accurately estimating the bias terms.
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A PROOF OF THEOREMS
This section shows the proofs of the theorems.

A.1 Proof of Theorem 1
Proof. According to Theorem 4.4 in [27], variance of binary

cross entropy loss that only handles examination bias as propensity is:

Vexam =
1

|D|2
∑︁
D

log
2

(
𝑝x

1 − 𝑝x

)
V

[ 𝑐
\

]
=

1

|D|2
∑︁
D

log
2

(
𝑝x

1 − 𝑝x

) (
V𝑐

\2

)
,

where V𝑐 is the variance of clicks. According to Lemma 1

VAC =
1

|D|2
∑︁
D

log
2

(
𝑝x

1 − 𝑝x

) (
V𝑐

\2Δ2

𝑝

)
.

It is easy to know 𝑝+, 𝑝− ∈ (0, 1), then Δ2

𝑝 ∈ (0, 1) and \2Δ2

𝑝 < \2.

Then, we have VAC ≥ Vexam because
V𝑐

\ 2Δ2

𝑝

≥ V𝑐
\ 2

. □

A.2 Proof of Theorem 2
Proof. The expectation of LDRD given a specific x is:

E[LDRD |x] = −𝑝𝑐 log
(
\Δ𝑝𝑝x − \𝑝−

)
+ (1 − 𝑝𝑐 ) log

(
1 − \Δ𝑝𝑝x − \𝑝−

)
.

E[LDRD |x] is a convex function w.r.t. 𝑝x because

𝜕2 E[LDRD |x]
𝜕2 𝑝x

=
𝑝𝑐\

2Δ2

𝑝(
\Δ𝑝𝑝x + \𝑝−

)
2
+

(1 − 𝑝𝑐 )\2Δ2

𝑝(
1 − \Δ𝑝𝑝x − \𝑝−

)
2
≥ 0.

Therefore, optimizing E[LDRD |x] converges to the global optima:

\
(
𝑝+ − 𝑝−

)
𝑝∗x + \𝑝− = 𝑝𝑐 =⇒ 𝑝∗x =

𝑝𝑐 − \𝑝−
\ (𝑝+ − 𝑝−) = 𝑝𝑟 .

We conclude that DRD converges to the unbiased solution. □

A.3 Proof of Theorem 3
Proof.

VDRD =
1

|D|2
∑︁
D
V [−𝑐 log 𝑝𝑐 − (1 − 𝑐) log (1 − 𝑝𝑐 )]

=
1

|D|2
∑︁
D
V

[
− log( 𝑝𝑐

1 − 𝑝𝑐
)𝑐 − log (1 − 𝑝𝑐 )

]
=

1

|D|2
∑︁
D

log
2

(
\Δ𝑝𝑝x + \𝑝−

1 − \Δ𝑝𝑝x − \𝑝−

)
V𝑐 ,

where the last line replaces 𝑝𝑐 with \Δ𝑝𝑝x + \𝑝− (Eq. (4)). □
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