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ABSTRACT

Large-scale datasets have produced impressive advances in machine learning.
However, storing datasets and training neural network models on large datasets
have become increasingly expensive. In this paper, we present an effective dataset
compression approach based on the matrix product states (MPS) from quantum
many-body physics. It can decompose an original image into a sequential product
of tensors which effectively retain short-range correlation information in the data
for training deep neural networks from scratch. Based on the MPS structure, we
propose a new dataset compression method that compresses datasets by filtering
long-range correlation information in task-agnostic scenarios and uses dataset
distillation to supplement the information in task-specific scenarios. Our approach
boosts the model performance by information supplementation, and meanwhile
maximizes useful information for the downstream task. Extensive experiments have
demonstrated the effectiveness of the proposed approach in dataset compression,
especially obtained better model performance (3.19% on average) than state-of-the-
art methods for the same compression rate.

1 INTRODUCTION

Large-scale datasets consisting of millions of samples are becoming the norm to obtain state-of-the-art
machine learning models in several fields including speech enhancement and recognition (Sun et al.,
2020; SainathTN et al., 2013), computer vision (Russakovsky et al., 2015) and natural language
processing (Devlin et al., 2019). At such a scale, the resources needed to store datasets and train
neural networks become very large, and training machine learning models on it requires the use of
specialized equipment and infrastructure. Therefore, it is the critical problems in machine learning
that effectively reduce the size of the dataset as well as maintaining the model performance.

An intuitive way is data selection, also known as core-set construction method, i.e., identifying
the most representative training samples, which aims to improve the data efficiency of machine
learning techniques. (Agarwal et al., 2004; Chen, 2009; Feldman et al., 2020), mainly focusing on
clustering problems. Another dataset compression method is dataset distillation (Wang et al., 2018;
Zhao et al., 2021), which can learn a small set of informative images from large training data and
improve the weakness of data selection methods. However, these studies mainly adopt the existing
sample reduction techniques to dataset compression, which may not be intrinsically appropriate for
architecture of the image dataset. For example, most dataset compression methods need to adopt the
whole image information, although only a small proportion of information (i.e., locality information)
will significantly influence the performance during training. Meanwhile, the performance of models
trained the offline compressed datasets on downstream tasks would be restricted.

In this paper, we introduce a novel matrix product states (MPS) technique (Fannes et al., 1992) from
quantum many-body physics for compressing image dataset. The MPS is an algorithm that factorizes
a matrix into a sequential product of local tensors (i.e., a multi-way array). Here, we call the "locality
of pixel dependencies" in image with short-range correlation and the "global dependencies" in image
with long-range correlation. An important merit of the MPS decomposition is that it establishes the
structural of classical pixel correlation with quantum entanglement entropy (Srednicki, 1993) in the
dataset: the larger the entanglement entropy is, the less short-range correlation is, and vice versa.
The information that has larger classical correlation is mainly short-range correlation in the image
dataset (Krizhevsky et al., 2017). The dataset distillation can Such a property motivates us to think
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about whether such an MPS can be applied to derive a better dataset compression approach. We can
compress the dataset by filtering long-range correlation information in task-agnostic scenarios and
use the dataset distillation to supplement the information in task-specific scenarios.

To this end, we propose a MPS-based Dataset compression approach, called MPSD, to compress the
image dataset, which not only enables deep neural networks to obtain similar performance as on the
original dataset but also can be used for different models as well as different types of tasks. We have
made two import technical contributions for image dataset compression based on MPS. First, we
introduce a new task-agnostic dataset compression procedure that efficiently extracting short-range
correlation among pixels. We formulate this goal as the problem of minimizing the difference
between multiple low-rank tensors with constraints and the original data samples. We present both
theoretical discussion and experimental verification for the effectiveness of this dataset compression
strategy. Second, we propose a new task-specific module for information supplementation, tailored
for machine learning model. Since different downstream tasks have different information for image
datasets, the offline dataset compression does not contain task-specific information. We propose a
module based on dataset distillation to make the compressed datasets adaptable to different tasks.

To our knowledge, it is the first time that MPS is applied to the image dataset compression, which
is well suited for model training and dataset storage. We construct experiments to evaluate the
effectiveness of the proposed compression approach for CIFAR, FashinMNSIT, and ImageNet,
respectively. Extensive experiments have demonstrated the effectiveness of the proposed approach in
dataset compression, especially obtained better model performance (3.19% on average) than similar
methods for the same compression rate.

In the rest of the paper, we first review the related work in Section 2. Then we present MPS
decomposition and theoretical analysis about quantum entanglement with classical correlation in
Section 3. Section 4 introduce our proposed MPS-based dataset compression approach. We report
experimental results in Section 5 and conclude the paper in Section 6. We will release code and
pre-processed data to reproduce our experiments.

2 RELATED WORK

We review the related works in three aspects.

Core-set Construction The core-set construction technique of selecting the valid knowledge
through an illuminating or a priori approach (Toneva et al., 2019; Castro et al., 2018; Aljundi
et al., 2019; Sener & Savarese, 2018), either by giving illuminating knowledge about the task or
by finding representative samples. The core-set construction define representative criterion in the
first (e.g., compactness (Rebuffi et al., 2017; Castro et al., 2018), forgetfulness (Toneva et al., 2019),
diversity (Sener & Savarese, 2018; Aljundi et al., 2019)), then select representative samples from
original dataset based on the criterion, finally use the selected small dataset to train the machine
learning model for a downstream task. In contrast, our approach does not require the presence of a
representative sample and is a more general approach.

Knowledge Distillation Knowledge distillation is a technique of transferring knowledge from a
collection of models into a single model (Hinton et al., 2015; Buciluǎ et al., 2006; Ba & Caruana,
2014; Romero et al., 2015). While network distillation aims to distill the knowledge of multiple
networks into a single model, dataset distillation models network parameters as a function of synthetic
training data and learn their synthetic data by minimizing the training loss on the original training
data and the synthetic training data (Wang et al., 2018). We use the idea of knowledge distillation to
complement the learning of task-relevant information under different tasks. In other words, our goal
is to capture the portion of information in the dataset sample that is valid for training deep neural
networks, and to perform a "selection" of information in the dataset sample.

Tensor-based Matrix Representation. Tensor-based method of matrices is a technique that allows
representing dataset samples in the tensor form such that quantum entanglement corresponds to
classical correlations between different coarse-grained textures (Latorre, 2005). Another application
is the compression of neural networks. Matrix product operators have been used to compress linear
layers of deep neural networks (Gao et al., 2020). The idea of reshaping weights of fully connected
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layers into high-dimensional tensors and encoding them in Tensor Train format was introduced
by Novikov et al. (2015). In contrast, we represent a dataset sample jointly with multiple low-rank
tensors, each low-rank tensor describing the difference in information between the previous other
tensors and the original graph (i.e., residual information).

Our work is highly built on these studies, while we have a new perspective by designing the dataset
compression algorithm which enables extracted short-range correlation in the image. It is the first
time that MPS is applied to image dataset compression, and we make contributions for a novel
approach to dataset compression.

3 PRELIMINARY

In this paper, scalars are denoted by lowercase letters (e.g., a), matrices are denoted by boldface
capital letters (e.g., M), and high-order (order three or higher) tensors are denoted by boldface Euler
script letters (e.g., T ). A 3-order tensor Ti1,i2,i3 can be considered as a (potentially multi-dimensional)
array with 3 indices {i1, i2, i3}.

3.1 MATRIX PRODUCT STATE

Originating from quantum many-body physics, matrix product states (MPS) is a standard algorithm to
factorize a matrix into a sequential product of multiple local tensors (i.e., a multi-way array) (Latorre,
2005; Perez-Garcia et al., 2007). This MPS decomposition establishes the structure of classical pixel
correlation with quantum entanglement entropy. Formally, given a matrix M ∈ RI×J , its MPS
decomposition into a product of n local tensors can be represented as:

MPS (M) =

n∏
k=1

T(k)[dk−1, jk,dk], dk = min

( k∏
m=1

jm,

n∏
m=k+1

jm

)
, (1)

where the T(k)[dk−1, jk, dk] is a 3-order tensor with size dk−1 × jk × dk in which
∏n

k=1 jk = I × J
and d0 = dn = 1. We use the concept of bond to connect two adjacent tensors (Fannes et al., 1992).
The bond dimension dk is defined by: we can see from Equation (1) that the dk is large in the middle
and small on both sides. We present a detailed algorithm for MPS decomposition in Algorithm 1. It
is usually take an odd number of local tensors with MPS.

Algorithm 1 MPS decomposition for a matrix.

Require: matrix M, the number of local tensors n
Ensure: : MPS tensor list {T(k)}nk=1

1: for k = 1→ n− 1 do
2: M[I, J ] −→M[dk−1 × jk,−1]
3: UλV> = SVD (M)
4: U[dk−1 × jk, dk] −→ U [dk−1, jk, dk]
5: T (k) := U
6: M := λV>

7: end for
8: T (n) := M
9: Normalization

10: return {T(k)}nk=1
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Figure 1: MPS decomposition with five tensors.
Dash line denotes bond of MPS tensors.

3.2 MPS-BASED LOW-RANK APPROXIMATION.

With the MPS decomposition describe in Equation (1), we can exactly decompose a matrix by MPS
into the form of a series of products of local tensors and multiply these tensors together to completely
reconstruct the original matrix M. We can truncate the k-th bond dimension dk (see Equation (1)) of
local tensors to d

′

k for low-rank approximation (dk > d
′

k). Different values for {dk}nk=1 can be set to
control the filtering ability of long-range correlation.
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Definition 1. (Local truncation error). Let {λj}dk
j=1 are the singular values of

M [j1, . . . , jk, jk+1, . . . , jn]. We define the truncation error induced by the k-th bond dimension dk
local truncation error εk, which can be efficiently computed as εk =

∑dk

j=dk−d
′
k

λj .

After defining the local truncation error in Definition 1, we can derive the upper exact bound of the
truncation error of the MPS decomposition by iteration.
Theorem 1. (Truncation error for MPS-based approximation). Let εk denoted the local truncation
error of k-th bond dimension. The upper exact bound of the truncation error with MPS decomposition
can be caclulated by:

||M−MPS(M)||F ≤

√√√√n−1∑
k=1

ε2k. (2)

The proof can be found in the supplementary materials. Suppose that we have truncated the di-
mensions of local tensors from {dk}nk=1 to {d′k}nk=1, the compression ratio can be computed by

ρ =
∑n

k=1 d
′
k−1jkd

′
k∏n

k=1 jk
. The smaller is the compression ratio, the fewer parameters are kept in MPS

representation.

3.3 QUANTUM ENTANGLEMENT AND CLASSICAL CORRELATIONS

Since the MPS representation can be constructed by operating a series of successive Schmidt
decompositions (Vidal, 2004). The entanglement entropy is suitable as a metric to measure correlation
information contained in bonds of MPS, which is analogous to entropy in information theory but
replaces probabilities with normalized singular values created by SVD. Following (Calabrese &
Cardy, 2004), the entanglement entropy with the k-th bond can be calculated by:

Ek = −
dk∑
j=1

vj lnvj , k = 1, 2, . . . , n− 1 (3)

where {vj}dk
j=1 denote the normalized SVD eigenvalues of orignal matrix M[j1 . . . jk, jk+1 . . . jn].

From Equation (3), we note that the larger the entanglement entropy is, the less short-range correlation
is, and vice versa.

4 APPROACH

The short-range correlation information of image datasets is very important for training step. MPS
decomposition can effectively filter the short-range correlation information from the image dataset.
Hence, it would be natural to apply an MPS-based approximation to compress the image matrices
in the dataset by truncating the bond dimensions of MPS. In particular, we propose two main
improvements for MPS-based dataset compression, which can efficiently compress the image dataset
and effectively complementary task-specific information.

4.1 TASK-AGNOSTIC DATASET COMPRESSION

Suppose we are given a large dataset consisting of |S| training samples S = {(Si)}|S|i=1 where
Si ∈ S ⊂ Rd, S is a d-dimensional input space. We denotes the MPS(Si) as the truncated tensor
set with MPS decomposition on Si. Similar with Image Compression with Entanglement (ICE),
which was proposed to use MPS for truncated compression after performing a discrete cosine Fourier
transform of Si (Latorre, 2005). We use the MPS decomposition of images to filter long-range
correlation information to achieve dataset compression. However, the dataset after this method for
compression has a significant information loss since the truncated dimension {d′k}nk=1 decreases (this
is discussed in Section 3.2.).

To address this problem, inspired by He et al. (2016), we propose to insert residual information (i.e.,
the difference between Si and MPS(Si)) to the MPS representation, which is defined by:

R(Si) = Si −MPS(Si). (4)
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Figure 2: Illustration of the proposed MPSD strategy. Si denotes the original image dataset sample.
MPS(Si) denotes the MPS decomposed tensor set. R(Si) denotes the difference between Si and
MPS(Si). S̃i denotes the trainable matrix for distillation. CE loss and KD loss denote the cross-
entropy loss function and the knowledge distillation loss function, respectively.

Then, we explicitly let R(Si) approximate the residual information. The original image dataset
sample Si can be computed as follows:

MPSTotal(Si) = MPS(Si) +MPS(R(Si)). (5)

In particular, when dk = d
′

k in MPS(Si), the value of R(Si) is 0 and MPS(Si) is strictly equal to
the original matrix Si (the upper bound of the error is 0 according to Equation (2)). Algorithm 2
presents a complete procedure for our approach.

Algorithm 2 Task-agnostic Dataset Compression Procedure.

Require: Image training dataset with N samples (S).
Ensure: : Compressed training dataset.

1: for i = 1→ N do
2: Perform MPS decomposition: MPS(Si) =

∏n
k=1 T(k)[dk−1, jk,dk]

3: Compress MPS tensors by trucating {dk}nk=1 −→ {d
′

k}nk=1
4: Computing residual information: R(Si) = Si −MPS(Si)

5: Perform MPS decomposition: MPS(R(Si)) =
∏n

k=1R(k)[d
(r)
k−1, jk,d

(r)
k ]

6: Compress MPS tensors by trucating {d(r)k }nk=1 −→ {d
′(r)
k }nk=1

7: Computing Compressed sample: MPSTotal(Si) = MPS(Si) +MPS(R(Si))
8: end for
9: return Compressed dataset

As a result, we estimate Si with multiple MPS. Because each MPS has limited parameters, the sum of
their parameters is still considerably smaller than the original Si, allowing for the dataset compression
effect. This idea of using multiple MPS to approximate the original data is inspired by the idea of
residuals, and the new MPS state is a description of the discrepancy information between the original
data sample Si and the truncated representation MPS(Si). We show empirically (Table 1) that our
proposed approach can improve the model performance significantly than ICE (Latorre, 2005) for the
same compression rate.
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4.2 TASK-SPECIFIC INFORMATION SUPPLEMENTATION

Task-independent dataset compression is the extraction of short-range correlation information from
the dataset. Considering the different network structures and task types, it is necessary to add further
information from the learning procedure. Hence we initialize trainable matrix S̃i as implicit bias
between MPSTotal(Si) and real dataset sample Si. Then we introduce the knowledge distillation
loss function to learn S̃i.

Knowledge distillation is used to distill the knowledge from a large training dataset into a small
one (Wang et al., 2018). They synthesize data matrix as training data to approximate models trained
on the original data. Inspired by data distillation, we initialize trainable matrix S̃i with zeros as
implicit bias so that adding S̃i would not hurt the model performance at the first step of training.
Similarly, in the context of information supplementation, the synthetic dataset is calculated by
Si
∗ = MPSTotal(S̃i) + S̃i. Then the synthetic dataset Si

∗ is trained to mimic the behaviors of the
real dataset Si with the model fixed. Formally, This training process can be modeled as minimizing
the following objective function:

LKD =
∑
S∈S
L(f(MPS(Si) +MPS(R(Si)) + S̃i), f(Si)), (6)

where L(·) is a loss function that evaluates the difference between outputs of real and synthetic
datasets. Finally, our approach provides a more principle way of information supplementation. By
updating implicit bias S̃i, the synthetic dataset sample Si

∗ can better adapt to a specific task or
network architecture, and thus achieve better performance.

4.3 THE OVERALL PROCEDURE

Our approach can compress is general. In other words, it can work with existing dataset compres-
sion methods to further obtain better compression performance. Here, we choose CIFAR 1 and
FashionMNIST 2 as representative image datasets and use our algorithm for these datasets.

The procedure can be simply summarized as follows. First, we perform MPS decomposition separately
for the samples in the image dataset. Each sample matrix will be decomposed into a series of local
tensors as decrypt in Equation (1). Next, we truncate the connection bond to filtering long-range
correlation in the image according to the compression requirements. Then, task-agnostic dataset
compression is performed to supplement the difference information between the original image and
the truncated MPS image. Finally, a task-specific information supplementation strategy based on
knowledge distillation is executed on the task-specific model training. In this way, we expect the
dataset to be effectively compressed. In particular, this task-agnostic compressed dataset can be easily
generalized to different models as well as to different tasks.

4.4 DISCUSSION

Inspired by Latorre (2005), the image can be represented in the form of matrix product states such
that quantum entanglement corresponds to the classical correlation between different coarse-grained
textures. The truncation of MPS corresponds to the compression of the original image. In the
classification and detection problems, the information that helps the model is mainly short-range
correlation information (Krizhevsky et al., 2017). While long-range correlations are noisy for machine
learning models and they are not helpful for convergence of machine model training (Gao et al.,
2020). With the help of MPS representation of the dataset samples, short-range and long-range
correlation information can be effectively decoupling. Our goal is to achieve compression of the
dataset by filtering long-range correlation in image. We empirically demonstrate the greater ability of
multiple MPS to filter long-range correlation information from images.

In mathematics, MPS-based approximation can be considered as a special low-rank approximation
method. We compare it with other low-rank approximation methods, including SVD (Henry &
Hofrichter, 1992), CP decomposition (Hitchcock, 1927), and Tucker decomposition (Tucker, 1966).
We present the results of these tensor based low-rank approximation methods in Section 5.1 (Table 2).

1Available at https://www.cs.toronto.edu/~kriz/cifar.html
2Available at https://www.worldlink.com.cn/en/osdir/fashion-mnist.html
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Table 1: The performance comparison to core-set methods and tensor-based methods. This table
shows the testing accuracies (%) of different methods on three compression ratios. ResNet18 is used
for training and testing. “Whole” indicates an approximate upper-bound performance that is obtained
by training the models on the whole dataset.

Datasets Ratio ICE Core-set Selection Tensor Based Ours WholeRandom K-Center SVD CP

CIFAR10 40% 89.49 91.67 77.42 87.92 83.94 92.16 94.8170% 91.67 92.27 79.93 90.47 87.21 93.32

CIFAR100 40% 60.89 62.15 47.63 57.30 51.77 64.03 76.4870% 64.06 68.76 54.27 62.14 54.24 70.29

FashionMNIST 40% 91.42 91.42 83.36 91.26 89.01 91.46 93.8370% 92.55 92.78 86.02 91.98 90.11 93.35

In practice, we do not need to strictly follow the original image size. Instead, it is easy to pad additional
zero entries to enlarge matrix rows or columns, so that we can obtain different MPS decomposition
results. Another note is that the MPS-based approach can work with other compression methods: it
can compress matrices condensed by previous methods even more.

5 EXPERIMENTS

In this section, we first set up the experiments, and then report the results and analysis. Furthermore,
the effectiveness of our approach is further demonstrated on other tasks.

Datasets. We first evaluate classification performance with compressed images on four three stan-
dard benchmark datasets: CIFAR10, CIFAR100 and FashionMNIST. In particular, the FashionMNIST
dataset has 60,000 training and 10,000 testing images of 10 classes, while CIFAR10 and CIFAR100
both have 50,000 training and 10,000 testing images from 10 and 100 object categories, respectively.
In all experiments, we use the standard train/test splits of the datasets and finally report the accuracy
of the testing dataset.

Baselines. Our baseline methods include:

• ICE (Latorre, 2005): It first transforms images into MPS representation after performing a discrete
cosine Fourier transform and truncate the dimensions only once for compression.

• Core-set Selection: It reduces the large dataset into a small equally informative portion of data,
including Random and K-Center. In Random, the training samples are randomly selected as the
core-set. K-Center (Wolf, 2011) picks multiple center points such that the largest distance between a
data point and its nearest center is minimized.

• Tensor Based Methods: They compress the dataset by applying low-rank approximation to each
image, including Tucker decomposition and CP decomposition.

Implementations. Following Latorre (2005), we first represent the image with MPS format (i.e., a
product of n local tensors) and then apply task-agnostic dataset compression as well as task-specific
information supplementation to reduce total dataset size. To ensure a fair comparison, we adopt
the same architecture, ResNet18 (He et al., 2016), , for different dataset compression methods. For
simplicity and generality, we use default model hyper-parameters of ResNet18 and a consistent
augmentation strategy for all datasets. For example, the learning rate, the minibatch size, and training
epochs are set to 0.1, 128 and 180, respectively. Finally, we report results on testing datasets with the
best model on evaluation datasets.

5.1 EXPERIMENTAL RESULTS

Comparison to Image Compression. As shown in Table 1, our approach is very competitive in
the three image classification benchmark, and it outperforms the image compression method in all
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Table 2: Evaluations on different network architectures. This table shows the testing accuracy (%) of
different methods at a compression ratio of 70%.

Datasets ResNet18 VGG MobileNetV2
ICE Ours ICE Ours ICE Ours

CIFAR10 89.49 92.04 88.07 92.21 85.91 89.56
CIFAR100 64.06 70.29 60.80 67.71 61.05 66.39

FashionMNIST 92.55 93.35 92.37 93.21 92.73 93.93

tasks. Looking at CIFAR100, compared with ICE, our approach improves 6.23% in terms of test
performance at the same compression ratio. By zooming in on a specific dataset, the improvements
over CIFAR100 are larger than the other tasks. Note that compared to CIFAR10 and FashionMNIST,
CIFAR100 is more challenging, as recognizing 10 times more categories with 1

10 fewer images per
class in CIFAR100. The MPS dataset seems to work better with few shot tasks, which enhances the
data efficiency of the training dataset.
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Figure 3: Illustration of low-rank approxima-
tion for MPS to CIFAR10 images. d

′

k and ρ
denotes truncated dimension of MPS(S) and
compression ratio, respectively.

Comparison to Core-set Methods. To demon-
strate the strength of image compression with MPS
over the core-set selection, we do experiments on
CIFAR10 and use Random and K-Center for com-
parison. Table 1 summarizes the results. Overall,
our approach achieves competitive results over core-
set selection methods, especially for the K-Center
method. This is achieved due to the completeness that
the dataset compression method has and its intrinsic
characteristic of effectively preserving short-range
correlation for each image. To compare the quality of
truncated MPS representation for CIFAR10 and un-
derstand them intuitively, we visualize images from
five categories with different dimensions d

′

k in Fig-
ure 3. We observe that it is impossible to see the
difference before and after compression if ρ is larger
than 36%. Compared to losing some images by the core-set selection, filtering long-range correlation
information by our approach can minimize the damage to the dataset.

Comparison to Tensor Based Methods. As discussed in Section 4.4, we use other tensor-based
methods (i.e., SVD (Henry & Hofrichter, 1992), CP (Hitchcock, 1927)) for comparison to demonstrate
the effectiveness of preserving short-range correlations with MPS. From the Tabel 1, we observe that
SVD and CP decomposition failed to preserve useful information for model performance especially
when the compression ratio is less than 40%. While our approach can still have competitive accuracy
over CIFAR10 when very limited information is preserved.

Comparison to Different Models In general, our approach can be applied to any kind of network
architecture. We have evaluated its performance with ResNet18. Now, We continue to test our
approach using another two standard deep network architectures: VGG-16 (Simonyan & Zisserman,
2015) and MobileNetV2 (Sandler et al., 2018). These models are famous pre-trained models
that showed state-of-the-art accuracy for several challenging recognition tasks on ImageNet and
competitions. Table 2 presents the comparison of the testing accuracy with three network architectures.
As we can see, the MPS dataset can cooperate with different kinds of network architectures.

5.2 EVALUATION ON MORE TASKS

As introduced in Section 4, our approach contains task-agnostic dataset compression and task-specific
information supplementation. Due to task-agnostic compression, MPS representation can be applied
in other computer vision tasks (i.e., Pedestrian Detection, Visual Question Answering and Large-scale
Image Classification).
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Pedestrian Detection First, we apply our approach to an pedestrian detection scenario where the
goal is to accurately locate pedestrians in an image. We build our model on Mask R-CNN (He et al.,
2017) method and fine-tune a pre-trained Mask R-CNN model in the Penn-Fudan Database (Wang
et al., 2007) for Pedestrian Detection and Segmentation task. The dataset contains 170 images with
345 instances of pedestrians and we decompose the original images with MPS and use a trainable
matrix to supplement information. The desired outcome is to obtain a high mean of average precision
over all the classes. Finally, we report a COCO-style mAP score after 10 epochs of training, and
the result is shown in Table 3. The result indicates that MPS dataset can achieve competitive model
performance while reducing 25% parameters of the dataset.

Visual Question Answering The Visual Question Answering task typically uses paired images
and text to bridge vision and language respectively. Current approaches to this heavily rely on image
feature extraction processes. Here we explore the use of our approach on VQAv2. The VQAv2
task asks for answers given pairs of an image and a question in natural language. Test-dev score is
calculated by comparing the inferred answer to the 10 ground-truth answers. Our goal is to verify that
short-range correlation in images can be used to efficiently model the cross-modal interaction between
image-text pairs. To this end, we replace the image with MPS representation in the image-text pairs.
Following Kim et al. (2021), we use a pre-trained ViLT model and fine-tune the model on the MPS
dataset. Finally, from Tabel 3 we observe that our approach achieves comparable testing performance,
and meanwhile significantly decreases the size of the dataset.

Large-scale Image Classification Pre-trained deep learning models (ResNet, VGG) learned on
large-scale datasets have shown their effectiveness over conventional methods. Instead of training a
model from scratch, one can fine-tune a pre-trained model to solve some specific task. To demonstrate
the effectiveness of short-range correlation on transfer learning, we apply our approach to the
ImageNet dataset. To this end, we observe that the total dataset size is significantly reduced due
to the compression on each image in the dataset. Furthermore, we evaluate the performance of the
pre-training ResNet18 model on both the original ImageNet and the MPS compressed dataset. We
observe that the MPS dataset achieves comparable accuracy to the original ImageNet dataset. This
result shows that the MPS dataset with short-range correlation can support large-scale pre-training.

Table 3: The performance comparison with the ICE method, both our proposed approach and the ICE
method have a compression ratio of 75%.

Experiments Object Detection Multimodal Task Large Scale Pre-training
Pedestrian Detection (mAP) VQAv2 (test-dev score) ImageNet (acc)

Origin 79.90 70.33 64.21

ICE 67.32 57.27 47.13
Ours 73.45 63.78 52.10

6 CONCLUSION

We propose a dataset compression approach based on MPS and distillation. With MPS decomposition,
it is able to efficiently reorganize and decouple short-range and long-range correlation information in
local tensors. The MPS can be used to correspond the classical correlations to quantum entanglement,
and the short-range and long-range correlations to small and large magnitude of entanglement
entropy, respectively. We empirically found that the short-range correlation in images is important
for training. Inspired by this, we design a novel dataset compression approach that achieves effective
compression of dataset by filtering long-range correlation features from images in task-agnostic
scenario, while using distillation to complement task-relevant information. Extensive experiments
have demonstrated the effectiveness of our approach, especially in that the compressed dataset using
the MPS decomposition can be directly applied to a variety of different neural network tasks. To the
best of our knowledge, this is the first application of MPS for dataset compression. In future work,
we will consider exploring more decomposition structures for MPS.
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Appendix

We offer some proof and details of experiments to help audience better understand our approach. The
appendix includes 2 pages and is organized into sections:

• Tensor and Matrix Product States
• Theorem
• Experiment

A TENSOR AND MATRIX PRODUCT STATES

As introduced in Cichocki et al. (2009), the concept of tensor is specified as:

Definition1
(Tensor). Let D1, D2..., DN ∈ N denote index upper bounds. A tensor T ∈ RD1,...,Dn of order N
is an N -way array where elements Td1,d2,...,dn are indexed by dn ∈ {1, 2, ..., Dn} for 1 ≤ n ≤ N

Definition2
(Matrix product state). We can reshape a matrix to high order tensor, denote as:

Mx×y = Mi1i2...in . (7)

Here, the one-dimensional coordinate x and y means the input and output signal, respectively. So
that x× y with dimension NxNy is reshaped into a coordinate in a n-dimensional space, labelled by
(i1i2 · · · in). Hence, there is a one-to-one mapping between original matrix and (i1i2 · · · in). If Ik
are the dimensions of ik, then:

n∏
k=1

Ik = NxNy. (8)

The MPS representation of M is obtained by factorizing it into a product of n local tensors.

Mi1···in,j1···jn = T (1)[i1, d1, j1] · · · T (n)[in, dn, jn], (9)

where T (k)[ik, dk, jk] is a 3-order tensor. The Dk is the virtual basis dimension on the bond linking
T (k) and T (k+1) with D0 = Dn = 1.

Dk−1 ×Dk matrix with Dk the virtual basis dimension on the bond linking T (k) and T (k+1) with
D0 = Dn = 1.

B THEOREM

Theorem 1. Suppose that the tensor W(k) of matrix W that is satisfy

W = W(k) +E(k), D(W(k)) = dk,

where ||E(k)||2F = ε2k, k = 1, ..., d− 1. (10)

Then MPS (W) with the k-th bond dimension dk upper bound of truncation error satisfy:

||W −MPS (W)||F ≤

√√√√d−1∑
k=1

ε2k (11)

Proof. The proof is by induction. For n = 2 the statement follows from the properites of the SVD.
Consider an arbitrary n > 2. Then the first unfolding W(1) is decomposed as

W(1) = U1λ1V1 +E(1) = U1B
(1) +E(1) (12)

where U1 is of size r1 × i1 × j1 and ||E(1)||2F = ε21. The matrix B1 is naturally associated with a
(n− 1)-dimensional tensor B(1) with elements B(1)(α, i2, j2, ..., in, jn), which will be decomposed
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further. This means that B1 will be approximated by some other matrix B̂1. From the properties of
the SVD it follows that UT

1 E
(1) = 0, and thus

||W − B(1)||2F
= ||W1 −U1B̂1||2F
= ||W1 −U1(B̂1 +B1 −B1)||2F
= ||W1 −U1B1||2F + ||U1(B̂1 −B1)||2F (13)

and since U1 has orthonormal columns,

||W − B(1)||2F ≤ ε21 + ||B1 − B̂1||2F . (14)

and thus it is not difficult to see from the orthonormality of columns of U1 that the distance of the
k-th unfolding (k = 2, ..., dk − 1) of the (d− 1)-dimensional tensor B(1) to the dk-th rank matrix
cannot be larger then εk. Proceeding by induction, we have

||B1 − B̂1||2F ≤
d−1∑
k=2

ε2k, (15)

combine with Eq. equation 14, this complets the proof.

C EXPERIMENT

C.1 ADDITIONAL DETAILS OF MPS DATASET

In this paper, the MPS is proposed for compressing CIFAR10, CIFAR100 and FashionMNIST,
respectively. In order to show that the process of incorporating several MPS structures into different
dataset. We introduce MPS decomposition in different image shape:

Layers Compression Ratio MPS shape
[dk−1, ik, jk, dk] Compression Ratio MPS shape

[dk−1, ik, jk, dk]

CIFAR10,CIFAR100 71%

T1 : [1, 4, 1, 4]

43%

T1 : [1, 4, 1, 4]
T2 : [4, 4, 1, 6] T2 : [4, 4, 1, 2]
T3 : [6, 4, 1, 6] T3 : [2, 4, 1, 2]
T4 : [6, 4, 1, 4] T4 : [2, 4, 1, 4]
T5 : [4, 4, 1, 1] T5 : [4, 4, 1, 1]

FashionMNIST 66%

T1 : [1, 2, 1, 2]

33%

T1 : [1, 2, 1, 2]
T2 : [2, 4, 1, 6] T2 : [2, 4, 1, 6]
T3 : [6, 7, 1, 5] T3 : [6, 7, 1, 2]
T4 : [5, 7, 1, 2] T4 : [2, 7, 1, 2]
T5 : [2, 2, 1, 1] T5 : [2, 2, 1, 1]

ImageNet 63%

T1 : [1, 7, 1, 7]

38%

T1 : [1, 7, 1, 7]
T2 : [7, 8, 1, 28] T2 : [7, 8, 1, 21]
T3 : [28, 16, 1, 28] T3 : [21, 16, 1, 21]
T4 : [28, 8, 1, 7] T4 : [21, 8, 1, 7]
T5 : [7, 7, 1, 1] T5 : [7, 7, 1, 1]

Table 4: MPS structures of CIFAR10, CIFAR100, FashionMNIST and ImageNet datasets.

We design different MPS structures based on the image size of the dataset. Accordingly, the
compression ratio is calculated by corresponding truncated dimension.
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