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ABSTRACT
Session search is a widely adopted technique in search engines
that seeks to leverage the complete interaction history of a search
session to better understand the information needs of users and
provide more relevant ranking results. The vast majority of existing
methods model a search session as a sequence of queries and previ-
ously clicked documents. However, if we simply represent a search
session as a sequence we will lose the topological information in the
original search session. It is non-trivial to model the intra-session
intractions and complicated structural patterns among the previ-
ously issued queries, clicked documents, as well as the terms or
entities that appeared in them. To solve this problem, in this paper,
we propose a novel Session Search with Graph Classification Model
(SSGC), which regards session search as a graph classification task
on a heterogeneous graph that represent the search history in each
session. To improve the performance of the graph classification, we
design a specific pre-training strategy for our proposed GNN-based
classification model. Extensive experiments on two public session
search datasets demonstrate the effectiveness of our model in the
session search task.

CCS CONCEPTS
• Information systems→ Users and interactive retrieval.

KEYWORDS
session search, heterogeneous information network, heterogeneous
graph neural networks, graph classification

ACM Reference Format:
Shengjie Ma, Chong Chen, Jiaxin Mao, Qi Tian, and Xuhui Jiang. 2023.
Session Search with Pre-trained Graph Classification Model. In Proceedings
of the 46th International ACM SIGIR Conference on Research and Development

∗Corresponding authors.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR ’23, July 23–27, 2023, Taipei, Taiwan.
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9408-6/23/07.
https://doi.org/10.1145/3539618.3591766

in Information Retrieval (SIGIR ’23), July 23–27, 2023, Taipei, Taiwan. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3539618.3591766

1 INTRODUCTION
As users increasingly rely on search engines to access needed in-
formation, the search tasks tend to be more diverse and complex.
In many cases, a single query is insufficient to meet a user’s infor-
mation needs, leading them to submit additional queries until they
are satisfied or cease their search efforts. This process, known as
session search [10, 15, 35], typically involves a series of queries,
top candidates returned per query, and the user clicks within a
short time frame. These interactions between the user and the
search engine in a session are known to be valuable for multiple
purposes [2, 4, 13], such as intent understanding [7], query sugges-
tion [1], and personalized ranking [4, 13]. In this paper, we focus
on how to take full advantage of the session history to optimize
the ranking result for users’ current query.

Previous research[1, 3, 32, 42] has sought to leverage session data
to enhance document ranking. However, most existing methods
model search sessions as sequences of queries and clicked docu-
ments, which may be sub-optimal in two ways.

First, modeling a search session as a sequence of interactions
ignores the topological interactions among queries, documents,
and the related entities and topics existing in the data. For example,
as shown in Fig.1, a user typed in two queries and clicked sev-
eral candidate documents per query. The text colored blue, orange,
and purple represent the topics that possibly meet the user’s inter-
est. Obviously, objects covering the blue topic are relevant in the
context. While the second query is more related to the first two
clicked documents of the first query, which suggests that the user
could be concerned about the energy market but not other markets
during the Russia-Ukraine war. The last query and the correspond-
ing clicks further confirmed this. It is worth noting that the blue
topic appearing in the clicked documents under the last query was
not explicitly mentioned in the last query, but could be inferred
from the former query-document interaction. Besides, although
the purple and the orange topic are not directly related, they are
semantically related to the blue topic. Intermediaries like the blue
topic could establish the semantic structural patterns or semantic
topological relatedness existing among session data. As the figure
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Figure 1: An example to illustrate the intra-session data associations and structural patterns in a session: Objects covering
the blue topic share common context relation. The second query has more relatedness to the first two clicked documents of
the first query, which suggests that the user could be concerned about the energy market but not other markets during the
Russia-Ukraine war. The blue topic appearing in the clicked documents under the last query was not mentioned in the last
query, which is inferred from the former query-document interaction. The purple and the orange topic are not context-related,
but they are semantically linked by an intermediary — the blue topic, which shows the semantic structural patterns in session
data.

shows, instead of a one-dimensional sequence, the natural form of
a search log is a graph that contains comprehensive intra-session
data associations as well as more complicated structural patterns,
which helps reflect how user intents evolve and change.

Second, from a fine-grained perspective, different data types
have different characteristics, which may have different influences
on user behaviors. For instance, even the URL can provide auxiliary
information for people to judge its relevance. Traditional methods
fail to consider such heterogeneous features. Additionally, due to the
restriction of the maximum input length, such as the 512-token limit
for BERT [12], most sequence-based methods have to compromise
some useful information, such as only retaining the first clicked
document for each query, which can lead to an inevitable loss of
valuable information.

Observing these two limitations of existing session search mod-
els, we argue that a better solution is to model a session as a graph
(called session graph), where rich information can be modeled in
a more comprehensive yet flexible way. However, leveraging the
information of session graphs for document ranking is challeng-
ing. A carefully-designed framework is required to model various
types of semantic information and estimate the context-dependent
relevance of candidate documents.

For a more reasonable representation of session information
and better encoding of the context in the search history, we pro-
pose a Session Search with Graph Classification Model (SSGC).
With SSGC, we first represent a session as a heterogeneous graph
with four node types (query, document, keyword, and the current
query), and formulate the session search task as a graph classifica-
tion task. Specifically, rather than respectively encoding the session
history and candidate documents into representational vectors and
computing their similarities, we include each candidate document
of the current query with corresponding session history together

in a session graph and build a graph classification model to pre-
dict whether the user will like or click this candidate document.
As mentioned above, the session graph contains different types
of nodes, we apply a heterogeneous graph pooling method [36],
which can hierarchically condense the session information while
considering the characteristics of different types of data, in building
the graph classification model. Additionally, we develop a specific
pre-training approach for our proposed session-based graph classifi-
cation model. Through optimizing a local-global objective, the Deep
Graph Infomax (DGI) [34] pre-training enables each node to view
an arbitrarily large region of the graph, which further helps the
graph classification model better leverage the global and structural
information in session graphs.

Extensive experiments conducted on two public large-scale web
search session datasets TianGong-ST [8] and AOL [24] demonstrate
the effectiveness of our model in the session search task.

In summary, the main contributions of this paper are as follows:
• We propose a new session modeling method, which repre-
sents each candidate document and its corresponding search
session as a heterogeneous graph to better utilize the com-
prehensive data association and complex structural patterns
within the session for session search.

• We propose a novel re-ranking method for the session search
task in a graph classification fashion, which to the best of
our knowledge has not been proposed in previous literature.

• We design a contrastive pre-training strategy to improve the
ranking performance of our proposed model SSGC.

• We conduct extensive experiments on two large-scale web
search session datasets TianGong-ST [8] and AOL [24] to
evaluate the proposed method. The results demonstrate the
advantages of modeling session search as a graph classifica-
tion task and the effectiveness of the graph pooling technol-
ogy.



2 RELATEDWORK
2.1 Neural Ranking with Modeling Search

History
User search history is known to contain rich contextual informa-
tion. Especially, it is well-known that the short-term history in
a session contributes a lot to the inference of users’ information
needs and personalization[2, 4, 13]. Researchers have tried various
attempts to exploit the user search history [1, 3, 32, 42]. Early stud-
ies tend to manually extract click-based and rule-based features
from search history [3, 28, 32]. However, most of them are limited
by data sparsity and manually-designed rules. With the prevalence
of deep learning, researchers start to model users’ search history
with various solutions. Next query suggestion is an important and
effective additional task in neural information retrieval, which aims
to enhance the context feature modeling capacity by predicting
the next query in a context-aware search scenario[21, 30]. Sordoni
et al. [30] propose a hierarchical RNN encoder-decoder architecture
that encodes history queries and supports query suggestions. Based
on the earlier hierarchical RNN model, Chen et al. [11] apply an
attention mechanism to better capture user preferences. Later, Ah-
mad et al. [1] propose CARS, a multi-task neural framework that
can jointly learn document re-ranking and next query prediction
to infer a user’s hidden intent from both the history queries and
clicked documents. As mentioned before, CARS is a representation-
based neural model. Recently, as the incredible power of BERT [12]
shines in the NLP field, many BERT-based methods are published.
A common approach is to concatenate the document and query
text together and feed them into the downstream tasks, where the
‘[CLS]’ token embeds the representation of the sequence. Qu et al.
[26] proposed Hierarchical Behavior Aware Transformers (HBA-
Transformers), which use a BERT encoder to capture the word-level
interactions between queries. Chen et al. [5] integrate the latent
representation of a session and the word-level interaction between
queries and documents. Zuo et al. [43] focused on extracting user
intent by modeling the behavior of the user to re-formulate the
query a session. Furthermore, researchers are trying to improve ses-
sion search tasks from a wider perspective. Chen et al. [9] combines
the click model with session search tasks. Zhu et al. [42] further
improves the ability to represent history sequences by contrastive
learning.

Nevertheless, in the majority of session search methods, such
as RNN-based and BERT-based methods mentioned above, simply
compressing a session into a linear sequence inevitably limits the
model capacity. To tackle this problem, we propose Session Search
with Graph Classification Model for a more reasonable representa-
tion of session information and better encoding of the context in
the search history.

2.2 Graph Pooling
Pooling operations are wildly used in developing graph neural net-
works, which aim to hierarchically aggregate node information and
extract spatial-locality information. In general, the pooling meth-
ods on graph data are classified into two categories: node sampling
and node clustering. Node sampling methods[38] mainly rank all
nodes by importance, then keep the top-ranked nodes and discard

the others. However, as this selection process is based on a global
ranking for all nodes, these methods fail to take into account the
topology information within the graph. Node clustering methods
mainly cluster nodes into super-nodes. For example, Diffpool [37]
learns to summarize a graph by learning some assignment matrices
that assign nodes to clusters (i.e. super-nodes) according to their
similarity and connectivity. Based on these assignment matrices,
Diffpool can hierarchically aggregate the graph information. One
of the most significant advantages of this method is that the topo-
logical structures are taken into account from hierarchical views.
Since the session graphs contain rich semantic structural features,
node clustering pooling methods are more suitable for building
our model. We will use the graph-pooling technique to build a
heterogeneous graph classifier for the session search task.

2.3 Graph in Information Retrieval
Graphic structure is a very intuitive way to represent relation-
ships. In the field of IR, it is common to use graphs to represent
query-document relationships at the entire corpus level[14, 18, 19].
For example,Zhang et al. [40] build a corpus-level graph of docu-
ments by the co-click connections on click intention level, instead
of document level. Zhang et al. [41] build document-level word
relationships on graphs through the graph-of-word text format.

Although previous works provide a better understanding of how
to model graph information effectively for IR, they cannot be ap-
plied to the session search task compatibly. There are two major
unsatisfactory of these methods for the session search task: (1) Ses-
sion is a short time interval user interaction process, sensitive to the
serving time. However if constructing a corpus-level graph, when
new data arrives, the model has to be retrained from scratch, which
is time-consuming. Meanwhile, it consumes immense memory to
learn on the corpus-level graph. (2) There are few designs specif-
ically considering the characteristics of the session data, which
hinders fully utilizing the rich information in the session.

Furthermore, although there are several graph methods[23, 29]
for session-based recommendation system, they are also not suitable
for session search due to a major gap: search is an active behavior
based on queries, while the recommendation is a passive message
pushing based on user profiles.

2.4 Self-surpervised Graph Neural Networks
Despite the significant achievements of graph neural networks
in recent years, like most supervised or semi-supervised machine
learning models, they require a substantial amount of labeled data
to optimize learning objectives in order to acquire powerful expres-
sive capabilities. Self-supervised learning methods can be broadly
classified into two main categories: generation-based learning and
contrast-based learning. Generative self-supervised learning meth-
ods learn the inherent characteristics of the data by making the
model generate and reconstruct the input data. Contrastive self-
supervised methods construct positive and negative samples from
the input data, enabling the model to discriminate between pos-
itive and negative samples in the implicit representation space.
These two approaches construct pre-training tasks from unlabeled
input data in different ways, serving as supervisory signals. In re-
cent years, pre-training methods have also been applied in session



search, such as the contrastive learning task designed to pre-train
the language model BERT in COCA [42] and a generative pre-
training strategy proposed to enhance the expressive ability of the
downstream model in [6]. However, the application of pre-training
strategies in session search remains an area for further exploration.
In this work, we design a specialized graph pre-training task that
facilitates the extraction of relatedness between type-specific local
features and the entire session context.

3 METHODOLOGY
Our main objective in this study is to enhance the utilization of
session history for document ranking. To achieve this, besides
the context of the previous queries and clicked documents, we
aim to exploit the semantic topological relations and type-specific
characteristics between them to improve the ranking performance
in session search. In this section, we will briefly introduce the
problem definition in Section 3.1 and explain how we construct the
session graph to represent the search session in Section 3.2. We
will then describe how we formulate the session search task as a
graph classification problem and howwe employ the graph-pooling
technique to develop a GNN-based graph classifier for this problem
in Section 3.3. Lastly, we will introduce how to pre-train the GNN
to further improve the ranking performance.

3.1 Problem Definition
Prior to presenting our methodology, we will first establish the
definitions and necessary notations pertaining to the task of session
search. In the context of a search session, a user will engage in a
continuous iteration of query submission and examination of the
documents returned by the search system, until satisfaction or
cessation of the search is attained. Assuming 𝑛 submitted queries,
the search behavior history H is denoted as:

H = {(𝑞1,𝐶1) , (𝑞2,𝐶2) , . . . , (𝑞𝑛−1,𝐶𝑛−1)} , (1)

where 𝑞𝑖 is the 𝑖-th query, 𝐶𝑖 =
{
𝑑𝑖,1, . . . , 𝑑𝑖,𝑚

}
is the list of 𝑚

clicked documents of 𝑞𝑖 and 1 ≤ 𝑖 < 𝑛. The goal of session search
is to re-rank the candidates in 𝐶𝑛 for the current query 𝑞𝑛 , where
𝐶𝑛 =

{
𝑑𝑛,1, . . . , 𝑑𝑛,𝑘

}
represents the list of 𝑘 candidates of 𝑞𝑛 .

3.2 Session Graph
As demonstrated in Figure 1, the search history of a session pos-
sesses abundant intra-data associations and structural patterns,
which can potentially aid in the inference of user intent and context-
aware document ranking. To represent session data, we propose
a graph-based session modeling approach referred to as Session
Graph (SG), as depicted on the left side of Figure 2.

Graph Construction. As shown in the figure, a session graph
consists of four types of nodes, namely the query nodes, document
nodes, keyword nodes, and a special node for the current query.
Given a search history H , we represent each history query 𝑞𝑖
(1 ≤ 𝑖 < 𝑛) and corresponding clicked documents 𝑑𝑖, 𝑗 ∈ 𝐶𝑖 (1 ≤ 𝑖 <

𝑛) as query and document nodes, respectively. We then establish
connections between each clicked document 𝑑𝑖, 𝑗 (1 ≤ 𝑗 ≤ 𝑚)
and the corresponding query 𝑞𝑖 , as well as between every two
queries that are adjacent in time. Additionally, we utilize a TF-IDF-
based method[39] to extract all keywords present in the queries and

documents inH . Each unique keyword is represented as a keyword
node and linked to the nodes where it appears. Furthermore, we
observe that many documents are clicked on in different sessions
under different queries and that similar or identical queries with
the same search intentions also have common clicks in different
sessions. This inter-session level of common click information can
provide valuable auxiliary clues for the current search task. As such,
we establish connections between each document in the current
session with an external query (if available), as well as between
each query and an external document that was clicked on by similar
or identical queries (if available). We follow the equation suggested
by Chen et al. [5] to find similar (supplemental) queries:

sup (𝑞𝑎 | 𝑞𝑏 ) = spe (𝑞𝑎 | 𝑞𝑏 ) + sim (𝑞𝑎 | 𝑞𝑏 ) , (2)

where 𝑞𝑎 and 𝑞𝑏 are two queries, sup (𝑞𝑎 | 𝑞𝑏 ) is the supplemental
rate of 𝑞𝑎 , spe (𝑞𝑎 | 𝑞𝑏 ) =

len(𝑞𝑎 )−len(𝑞𝑏 )
len(𝑞𝑏 ) when every word of 𝑞𝑎

is in 𝑞𝑏 otherwise spe (𝑞𝑎 | 𝑞𝑏 ) = 0, sim (𝑞𝑎 | 𝑞𝑏 ) is the similarity
that computed by the python class SequenceMatcher 1. If there is
no identical query, we attempt to find a supplemental query with
the highest supplemental rate.

Our primary goal in this research is to construct a session graph
for each candidate document, 𝑑𝑥 ∈ 𝐶𝑛 , of the current query, 𝑞𝑛 , and
to estimate the relevance between 𝑑𝑥 and the session context using
graph classification method. To emphasize the role of the current
query and model its relation with the whole session context, we
regard the current query 𝑞𝑛 as a special type of node and link it
with all the other query nodes in the history {𝑞1, . . . , 𝑞𝑛−1}. For
the candidate document, we do not connect it with the current
query initially, as we cannot predict whether the user will click
on the candidate document under the current query. Nevertheless,
the candidate document node will be indirectly connected to the
session graph if it shares some keywords with the session history
H , which benefits the representation of the candidate document
to some extent. It is worth noting that ℎ𝑑𝑐 the embedding of the
candidate document before the pooling layer will be retained for
the MLP layer, similar to a residual network:

𝑦 = 𝑀𝐿𝑃

(
ℎ𝑑𝑐 , ℎ𝑞, ℎ𝑑 , ℎ𝑘 , ℎ𝑠𝑞

)
, (3)

where ℎ𝑞 , ℎ𝑑 , ℎ𝑘 , ℎ𝑠𝑞 are summarized representation of query type,
document type, keyword type and special query type respectively,
and 𝑦 is the ranking score of the current candidate document.

Node initialization. For each node in the session graph, we
need to determine its initial node feature. For the encoder of queries
and documents, we apply Transformer [33] to learn contextualized
word embeddings and then apply attention pooling networks to
learn the node features. The encoders of queries and documents are
independent and trainable. For the keywords, we extract them from
queries and documents and keep several high-ranking keywords by
TF-IDF score. We use pre-trained word embeddings of keywords as
their initial node features.

Formally, the session graph is denoted as 𝐺 (0) = (𝐴(0) , 𝑋 (0) ),
where 𝐴(0) is the adjacent matrix of the session graph and 𝑋 (0) is
the matrix for the initial features.

1https://docs.python.org/3/library/dilib.html
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Figure 2: The architecture of Session Search with Graph Classification Model (SSGC).

3.3 Session Search as Graph Classification
To leverage rich intra-session data associations and data structural
patterns in SG, We propose Session Search with Graph Classifica-
tion Model (SSGC). The overall framework is shown in Fig.2. After
initializing the representation of 𝑇 types of nodes in the graph,
we apply multiple Graph Neural Network (GNN) Layers to aggre-
gate neighbor information. The output of the 𝑙-th GNN layer is
𝐺 (𝑙 ) = (𝐴(𝑙 ) , 𝑋 (𝑙 ) ), where 𝐴(𝑙 ) ∈ R𝑁 (𝑙 )×𝑁 (𝑙 )

, 𝑋 (𝑙 ) ∈ R𝑁 (𝑙 )×F ,
𝑁 (𝑙 ) =

∑𝑇
𝑖=1 𝑁

(𝑙 )
𝑖

is the summation of the number of each kind
of nodes and F is the node feature dimension. We keep the node
feature of the candidate document for later graph classification.

After several GNN layers, all nodes are encoded with their local
structural patterns and neighbor semantic information. Due to the
varying number of nodes across different session graphs, we utilize
the graph pooling technique to obtain a fixed-length representation
of the entire session graph. As there are four distinct types of nodes
in the session graph, we apply a heterogeneous graph pooling
method HG-Pool [36] to encode the characteristic of each node
type.

Here we briefly introduce details of HG-pool [36]. Motivated
by Diffpool [37], HG-Pool assigns a pooling assignment matrix for
each type of node, which allows for encoding various type features
in heterogeneous graphs. Specifically, given 𝑇 types of nodes in
session graphs, 𝐴(𝑙 ) is divided into 𝑇 2 sub-matrices and 𝑋 (𝑙 ) is
divided into𝑇 sub-matrices.𝐴(𝑙+1)

𝑖, 𝑗
denotes the adjacent sub-matrix

of the 𝑖-th and the 𝑗-th node type. The formulation of HG-pool is
as follows:

𝑆
(𝑙 )
𝑖

= PoolGNN
(
𝐴(𝑙 ) , 𝑋 (𝑙 ) ;Θ(𝑙 )

𝑖

)
, (4)

𝑇
(𝑙 )
𝑖

= softmax
(
𝑊

(𝑙 )
𝑖

𝑆
(𝑙 )
𝑖

+ 𝐵
(𝑙 )
𝑖

)
, (5)

𝐴
(𝑙+1)
𝑖, 𝑗

= 𝑃
(𝑙 )⊤
𝑖

𝐴(𝑙 )𝑃 (𝑙 )
𝑗

, (6)

𝑋
(𝑙+1)
𝑖

= 𝑃
(𝑙 )⊤
𝑖

𝑋 (𝑙 ) , (7)

where 𝑆 (𝑙 )
𝑖

∈ R𝑁 (𝑙 )×𝑁 (𝑙+1)
𝑖 is the learned pooling matrix for the

𝑖-th node type, Θ(𝑙 )
𝑖

is the parameter set of this pooling GNN,𝑊 (𝑙 )
𝑖

and 𝐵
(𝑙 )
𝑖

are parameters for condensing 𝑆
(𝑙 )
𝑖

to 𝑇 (𝑙 )
𝑖

. And 𝑃
(𝑙 )
𝑖

∈
R𝑁

(𝑙 )×𝑁 (𝑙+1)
𝑖 is the padding of𝑇 (𝑙 )

𝑗
for avoiding indexing operations,

where only rows corresponding to the 𝑖-th kind of nodes are non-
zero. Finally, after concatenation of 𝑋 (𝑙+1)

𝑖
and 𝐴

(𝑙+1)
𝑖, 𝑗

according
to the coordinate of the node type, we get the pooling output at
(𝑙 + 1)-th layer as follows:

HG-Pool
(
𝐴(𝑙 ) , 𝑋 (𝑙 ) ;Θ(𝑙 )

)
= 𝐺 (𝑙+1) , (8)

𝐺 (𝑙+1) = (𝐴(𝑙+1) , 𝑋 (𝑙+1) ), (9)

where 𝐴(𝑙+1) ∈ R𝑁 (𝑙+1)×𝑁 (𝑙+1)
is the pooled adjacent matrix and

𝑋 (𝑙+1) ∈ R𝑁 (𝑙+1)×F is the output node feature matrix. In this work,
the HG-Pool layer clusters every type of node into one represen-
tation as shown in the ’Condensed Graph’ in Fig.2, which is the
globally summarized type-specified feature. Especially, as men-
tioned in 3.2, we use a special node to represent the current query
so that its feature can be retained and avoid being integrated with
other queries in the search history. Because the size of a SG is
moderate (on average SG contains 28 nodes and 47 edges), we ap-
ply only one pooling layer. The final step is to train a classifier
based on the previously learned graph features. The inputs of the
MLP classifier are the features of the condensed graph as well as
the representation of the candidate document node output by the
aggregation GNN. The output of the classifier 𝑦 is an estimate of
the probability that the current candidate document in the session
graph is relevant to the user’s intent.

For model optimization, we use the cross-entropy loss as follows:

𝐿𝐶𝐸 = − 1
𝑁
Σ𝑁𝑛=1

(
𝑦 (𝑛) log𝑦 (𝑛) +

(
1 − 𝑦 (𝑛)

)
log

(
1 − 𝑦 (𝑛)

))
, (10)

where 𝑁 is the number of samples for training and 𝑦 (𝑛) is the real
label of the current candidate in the training data.



3.4 Unsupervised Pre-training for SSGC
To enable each node to consider an arbitrarily large portion of
the graph and discover structural similarities, we have devised a
specialized pre-training strategy for the proposed session-based
graph classification model, as illustrated in Figure 3.

Our approach involves obtaining graph representations through
maximizing the mutual information between graph-level and local-
level type-specific representations. Formally, we denote a batch of
session graphs asG = {𝐺1, · · · ,𝐺𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 }, where 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = |G|.
Note that for unsupervised learning the candidate document note
is excluded. Denote 𝜙 as the set of parameters of our graph neu-
ral networks and 𝜙 ′ as the set of parameters of the pooling layer.
After all the graph neural network layers, representations of all
nodes are aggregated with their local information, denoted as{
ℎ𝑖
𝜙

}𝑁
𝑖=1

, where 𝑁 is the number of nodes of a graph. After the
applying pooling operation, we have four type-specific representa-
tions:

{
ℎ
𝑞

𝜙 ′ , ℎ
𝑑
𝜙 ′ , ℎ

𝑘
𝜙 ′ , ℎ

𝑠𝑞

𝜙 ′

}
), which represent the graph-level query

node type, document node type, keyword node type and special
query node type representation respectively. Note that we slightly
abuse the notation ofℎ. The goal is to train ourmodel bymaximizing
the mutual information (MI) between local-level and global-level
type-specific representations through an estimator over the given
graphs G:

𝜙, 𝜙 ′,𝜓 = argmax
𝜙,𝜙 ′,𝜓

∑︁
𝐺∈G

1
|𝐺 |

∑︁
𝑢∈𝐺

𝐼𝜓

(
ℎ𝑢
𝜙
;ℎ𝑇𝑢

𝜙 ′

)
, (11)

where 𝑇𝑢 ∈ {𝑞, 𝑑, 𝑘, 𝑠𝑞} is the node type of 𝑢. The MI estimator 𝐼𝜓
is modeled by a discriminator 𝐷𝜓 with parameters 𝜓 . Following
the formulation of [22], here we apply the Jensen-Shannon MI
estimator:

𝐼𝜓

(
ℎ𝑖
𝜙
(𝐺);ℎ𝑇𝑖

𝜙 ′ (𝐺)
)
= EP

[
− sp

(
−𝐷𝜓

(
ℎ𝑖
𝜙
(𝑥), ℎ𝑇𝑖

𝜙 ′ (𝑥)
))]

− EP×P̃
[
sp

(
𝐷𝜓

(
ℎ𝑖
𝜙

(
𝑥 ′
)
, ℎ

𝑇𝑖
𝜙 ′ (𝑥)

))]
,

(12)

where sp(𝑧) = log (1 + 𝑒𝑧) is the softplus function, 𝑥 is a positive
sample from P, the empirical probability distribution of the training
set on the input space, and 𝑥 ′ is the negative sample from P̃ =

P, the same distribution as the empirical probability distribution
of the input space. In our process, negative samples are all the
possible combinations of local node representation and the global
representation of the specific type in all other graphs in a batch.
The discriminator consists of several feed-forward neural networks,
residual networks, an activation function, and a dot calculation
unit.

Through optimizing a local-global type-specific objective that
enables each local element to view an arbitrarily large distance of
the graph, the aggregating GNNs and pooling GNNs are capable
of recognizing multi-granularity structural similarities to enhance
their overall ability of representation.

4 EXPERIMENTS
4.1 Dataset and Evaluation matrics
We conduct experiments on two public datasets: Tiangong-ST [8]
and AOL [24] search data. Tiangong-ST [8] is a large-scale Chinese-
centric web search session dataset. It consists of 147,155 refined

Figure 3: A simple demonstration of the pre-training strategy
of SSGC. In this example, we assume the batch size is 2, and
each graph has 8 nodes, containing 4 types of nodes, with 2
nodes for each type.

Table 1: The details of the datasets.

Dataset Tiangong-ST AOL

# Sessions 120,256 137,530
# Queries 256,513 450,796
# Unique Queries 18.125 220,924
Avg. # Query per Session 2.21 3.28
Avg. # Document per Query 10 10
Avg. # Click per Query 0.71 0.39

Web search sessions collected from an 18-day search log of Sogou,
the second-largest search engine in China. A session in this dataset
consists of several search interactions together with a list of clicked
documents. Each interaction represents a search iteration where
a user submits an independent query and receives the top 10 doc-
uments from the search engine. AOL search data [24] is a widely
used dataset, which was collected fromMarch 1st, 2006 to May 31st,
2006, with a span of 11 weeks. In our experiment, the queries within
30 minutes by the same user are regarded as a session. We repro-
cessed the AOL dataset following the protocol in [7]. We discard
sessions that contain only one query or no click for the last query
in a session. We also discard the sessions where there is no clicked
document. There are 10 candidates per query and we use the title as
the document content (much of the documents’ content no longer
exists). The statistics of these two datasets are shown in Table 1. For
both datasets, we split them into the training, validation, and test
sets with a ratio of 8:1:1. We use Mean Average Precision (MAP),
Mean Reciprocal Rank (MRR), and Normalized Discounted Cumu-
lative Gain at position 𝑘 (NDCG@𝑘 , 𝑘 = {1, 3, 5, 10}) as evaluation
matrics. All evaluation results are calculated by TREC’s evaluation
tool [31].



Table 2: The Experimental Results on Tiangong-ST. The best results are bold. The second-best results are underlined. Improv.
indicates the statistical improvement of SSGC over the best baseline. The asterisks denote the significance level(*𝑝 < 0.05, **𝑝 <
0.01).

Models MAP MRR NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25 0.3528** 0.3528** 0.2212** 0.2930** 0.3498** 0.3961**
CARS 0.5856** 0.6016** 0.4388** 0.5536** 0.6145** 0.6920**

HBA-Transformer 0.6710** 0.6886** 0.5392** 0.5392** 0.7047** 0.7539**
RICR 0.6806* 0.6902* 0.5600* 0.6657* 0.7202* 0.7667*
COCA 0.7033* 0.7246* 0.6138* 0.7245* 0.7678* 0.7900*
ASE 0.7213* 0.7426* 0.6305* 0.7441 0.7866* 0.8070*
SSGC 0.7279 0.7490 0.6371 0.7511 0.7898 0.8119
Improv. 0.91% 0.86% 1.05% 0.93% 0.40% 0.61%

Table 3: The Experimental Results on AOL. The best results are bold. The second-best results are underlined. Improv. indicates
the statistical improvement of SSGC over the best baseline. The asterisks denote the significance level(*𝑝 < 0.05, **𝑝 < 0.01).

Models MAP MRR NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25 0.2145** 0.2308** 0.1431** 0.2517** 0.2950** 0.3773**
CARS 0.5409** 0.5422** 0.3149** 0.5660** 0.6152** 0.6398**

HBA-Transformer 0.5773** 0.5821** 0.3433** 0.5916** 0.6487** 0.6795**
RICR 0.5866** 0.5919** 0.3512** 0.6031** 0.6555** 0.6930**
COCA 0.5928* 0.5981* 0.3574* 0.6092* 0.6610* 0.6953*
ASE 0.6030* 0.6078* 0.3645* 0.6144 0.6673* 0.6989*
SSGC 0.6092 0.6161 0.3702 0.6219 0.6746 0.7054
Improv. 1.02% 1.35% 1.55% 1.28% 1.08% 0.87%

Table 4: SSGC Variant Methods Evaluated in Ablation Studies on TianGong-ST: (w/o I.) (w/o H.) (w/o H.&P.) indicate no inter-
session context, no node type differentiation and no pre-training & node type differentiation respectively.

Models MAP MRR NDCG@1 NDCG@3 NDCG@5 NDCG@10

SSGC 0.7279 0.7490 0.6371 0.7511 0.7898 0.8119
(w/o I.) 0.7245 0.7429 0.6316 0.7438 0.7859 0.8084
(w/o P.) 0.7232 0.7337 0.6230 0.7395 0.7834 0.8082

(w/o H.&P.) 0.6642 0.6712 0.5047 0.6340 0.6872 0.7418

4.2 Implementation Details
We use PyTorch [25] to implement our model with. We use Nvidia
3090 with 24G memory. The pre-trained Chinese word vectors are
provided by Li et al. [17], which is trained in the Baidu Encyclopedia
corpus. We use the Chinese tokenizer Jieba 2 in data pre-processing.
We use GCN [16] as the GNN model and set the hidden dimension
as 200. For the small number of nodes in a session, we apply one
graph pooling layer. We regard the click as a relevance label in
all the sets and use AdamW [20] optimizer to optimize the loss
function defined in Eqn.8. The batch size is set as 32. The learning
rate is set as 3e-5 and linearly decayed during the training. We train
the model for three epochs. All other hyper-parameters are tuned
based on the performance on the validation set.

2https://github.com/fxsjy/jieba

Efficiency Issue. Session search is an online service that needs
to take into account computation efficiency. Therefore, in order to
complete the graph construction and encoding within a relatively
reasonable amount of time, we have made the following settings:
inter-session context is generated offline beforehand and saved as
a dictionary. The range of variation in session length is relatively
small. To facilitate real-time construction of graphs, we have fixed
the size of the session graph and the number of nodes of each type,
padding where necessary and keeping the later clicks in case of ex-
ceeding. The average running time for processing a single candidate
document is 1.37e-2 seconds, and re-ranking for a single query with
about 80 candidate documents costs about 1.12 seconds (including
graph construction and computing ranking scores), which can be
improved through parallelizing the computation process for each
candidate document. .



4.3 Baseline
To examine the performance of SSGC, we choose baselines in three
categories, including a traditional Ad-hoc model (BM25 [27]), an
RNN-based model (CARS [1]), a Bert-based sequence model HBA-
Transformer [26] and two recently proposed context-aware ranking
models based on pre-train strategies (COCA [42] and ASE[6]). Here
we briefly introduce them as follow:

BM25 [27] is an effective and widely used classical probabilistic
retrieval model.

CARS [1] is a multitask model, which learns query suggestions
and document ranking simultaneously. It models the click docu-
ments in the search history with an RNN. An attention mechanism
is applied to compute representations for each query and document.
The final ranking score is computed based on the representation of
historical queries, clicked documents, current queries, and candi-
date documents.

HBA-Transformer [26] concatenates historical queries, clicked
documents, and unclick documents into a long sequence and ap-
plies BERT [12] to encode them. Then, a higher-level transformer
structure with behavior embedding and relative position embed-
ding is employed to further enhance the representation. Finally, the
representation of the first token (“[CLS]”) is used to compute the
ranking score.

RICR [5] uses the overall history representation to enhance the
information of queries and documents on word level.

COCA [42] is one of the state-of-the-art methods in the session
search task. It is a two-step training model. First, it uses three data
augmentation strategies to create similar user history sequences
and applies a contrastive learning objective to a BERT encoder to
pull close the representation of similar sequences and push apart
different ones. Next, it finetunes the trained BERT encoder in the
session search task.

ASE[6] applies a pre-trained BART with three generative tasks,
including information of future queries, future clicked documents
and a supplemental query, to enhance the BART-based session
encoder.

4.4 Experimental Results and Analysis
Table 2 and Table 3 list the overall experimental results of baselines
and our model on the two mentioned datasets. According to the
results, we have some observations as follows:

First, the proposed SSGC model outperforms all baseline mod-
els, which demonstrates the overall effectiveness of our model. To
be specific, ASE shows the best performance among all baseline
methods. Compared to the best baseline model ASE, SSGC achieves
consistent improvements on all matrics. This further shows the
search graphs contain structural and topological information. Mean-
while, with our design of session graphs and the representative
power of the graph-based modeling method on session graphs,
rich interactions and structural information of multi-type nodes
in a session can be better extracted and encoded. Additionally, the
most improvement in NDCG@1 indicates that our model is good
at recognizing the most relevant documents.

Secondly, the superiority of ASE and SSGC over two BERT-based
models highlights the impact of unsupervised learning methods

on enhancing the expressiveness and performance of the model on
downstream tasks.

Interestingly, our SSGCmethod demonstrates amore pronounced
improvement in the AOL dataset. This can be attributed to the high
levels of noise present in the AOL dataset. Our approach not only
leverages multi-granularity and multi-perspective features, but also
utilizes a DGI-based pre-training methodology that strengthens the
correlation between session-level local features and global features,
thus providing enhanced robustness to noise and increased ability
to identify anomalous data, which implies that our approach has
better robustness.

In general, the BERT-based models outperform the RNN-based
model CARS and the traditional method BM25. This observation
reflects the advantage of BERT in encoding sequence data.

Furthermore, the main difference between the two BERT-based
models is the contrastive learning part. The better performance
of COCA against HBA-Transformer shows the effectiveness of
contrastive learning.

4.5 Evaluation of Session Length
To further investigate the model performance with different lengths
of session data, we equally extract sessions of different lengths
(𝑠𝑒𝑠𝑠𝑖𝑜𝑛_𝑙𝑒𝑛𝑔𝑡ℎ = 2, 3, 4 and 5 ≤ 𝑠𝑒𝑠𝑠𝑖𝑜𝑛_𝑙𝑒𝑛𝑔𝑡ℎ ≤ 10) to construct
four fixed-length testing sets. Again, note that because we are more
concerned with the accuracy of the top rankings, we do not include
NDCG@10 in the chart for a more concise comparison. As depicted
in Figure 4, the proposed SSGCmodel demonstrates superior perfor-
mance compared to the other two models across all session lengths.
Additionally, the results indicate that session length significantly in-
fluences the model performance. Specifically, for sessions of length
3, the performance of all models is enhanced, indicating that longer
sessions contain more useful information for inferring user intent.
Notably, the improvement of SSGC is particularly remarkable, high-
lighting its strong capability in extracting features from session
data. However, the performance of all models decreases when han-
dling sessions of length 4 and from 5 to 10. The possible causes of
this can be traced to two factors: firstly, the limited representation
of long sessions in the training data (10,119 out of 120,256) and sec-
ondly, the increased noise in longer sessions, which often indicates
a lack of satisfactory and relevant documents to meet the user’s
information needs. Despite these challenges, SSGC demonstrates
improved performance compared to baseline methods, reflecting
its strong effectiveness and resilience.

4.6 Ablation Studies
Our focus will be on the effects of variations in graph construc-
tion, graph encoding, and training methodology on the overall
performance of the model, to gain a deeper understanding of the
contributions of each component of our model to its overall perfor-
mance and to identify areas for potential improvement.

4.6.1 Contribution of Heterogeneity, Pre-training and Inter-
session Context. As shown in Table 4, it can be observed that the
performance of the models has been degraded to varying extents
when certain components or strategies are not utilized. Especially,
in order to investigate the impact of incorporating heterogeneity
in search logs on the session search task, a variant of SSGC was
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Figure 4: Visualization: Coarse comparison of intent mod-
eling capability of four models (SSGC, ASE, COCA and
CARS) on multi-length testing session data. The numbers
(2, 3, 4, 5+) indicate the fixed-length testing sets that the mod-
els are tested in, representing 𝑠𝑒𝑠𝑠𝑖𝑜𝑛_𝑙𝑒𝑛𝑔𝑡ℎ = 2, 3, 4 and
5 ≤ 𝑠𝑒𝑠𝑠𝑖𝑜𝑛_𝑙𝑒𝑛𝑔𝑡ℎ ≤ 10 respectively.
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Figure 5: Visualization: Comparison of contributions of
multi-type Nodes. We perform the following operations re-
spectively: i. remove the current query node. Therefore the
last query is set as the same as the history query node, not
a unique query type (current query). ii. remove all of the
keyword nodes. iii. remove all of the query nodes (except for
the current query). iv. remove clicked document nodes and
the corresponding keyword nodes.

constructed by building session graphs as homogeneous graphs
and replacing the heterogeneous pooling method (HG-Pool) with
diffpool [37], which is a method for homogeneous graphs. This
variant of SSGC is referred to as SSGC(w/o H.&P.). Results show
that compared to SSGC(w/o P.), there is a significant decrease in per-
formance. However, when compared to other methods, SSGC(w/o
H.&P.) still outperforms CARS, but does not surpass BERT-based
models. From these observations, it can be inferred that incorporat-
ing type-specified features in a session leads to a notable enhance-
ment in SSGC performance. Additionally, even when not utilizing
the feature of heterogeneity and pre-train, SSGC(w/o H.&P.) still
surpasses CARS in performance, highlighting the superiority of the
graph-based session modeling approach over traditional recurrent
neural network-based sequence modeling methods.

4.6.2 Contribution of Multi-type Nodes. To evaluate the con-
tribution of each type of node in session graphs to the performance
of the proposed model, we conduct three ablation experiments.
These experiments involve replacing the current query node type
with query node type, removing all keyword nodes, removing all
query nodes (except for the current query), and removing clicked
document nodes and their corresponding keywords. The results of
these experiments are illustrated in Figure 5.

Our findings indicate a decrease in the performance of SSGC by
2.5%, 1.8%, 1.3% and 1.1% for NDCG@1, @3, @5 and @10 respec-
tively when the current query type setting is removed and the last
query is treated equally with the historical queries. Notably, there is
a greater impact on the accuracy of the top-5 rankings. This obser-
vation highlights the effectiveness of extracting the type-specific
features of the current query in improving re-ranking accuracy in
the session search task. Additionally, our results indicate that the
features of keyword nodes, query nodes, and clicked documents
(together with their corresponding keyword nodes) make varying
degrees of improvement in model performance. The results of iii.
w/o queries and iv. w/o clicks demonstrate that the deletion of clicks
impairs performance significantly. In contrast, the deletion of query
nodes causes relatively little influence, which can be attributed to
the rich information in clicked documents partially compensating
for the loss of clues in queries. These findings indicate that clicked
documents and their corresponding keywords carry crucial infor-
mation for better user intent inference. Furthermore, the results
also suggest that the keyword nodes in clicked documents play a
important role similar to the history query nodes.

5 CONCLUSION AND FUTUREWORKS
In this paper, we propose a novel model, SSGC, for session search.
Previous methods have largely overlooked the topological nature
of session data and represented sessions as linear sequences. In con-
trast, we propose a more effective method of representing a search
session as a graph and design a new graph classification model for
the session search task. Additionally, we develop an unsupervised
pre-training strategy to further enhance the graph representation.
Our proposed SSGC method consistently and significantly outper-
forms state-of-the-art methods in extensive experiments, demon-
strating the effectiveness of our model and the superior ability of
graph-based solutions for the session search task.
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