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Learning Rates for Nonconvex Pairwise Learning1

Shaojie Li and Yong Liu2

Abstract—Pairwise learning is receiving increasing attention3
since it covers many important machine learning tasks, e.g., metric4
learning, AUC maximization, and ranking. Investigating the gener-5
alization behavior of pairwise learning is thus of great significance.6
However, existing generalization analysis mainly focuses on the7
convex objective functions, leaving the nonconvex pairwise learning8
far less explored. Moreover, the current learning rates of pairwise9
learning are mostly of slower order. Motivated by these problems,10
we study the generalization performance of nonconvex pairwise11
learning and provide improved learning rates. Specifically, we12
develop different uniform convergence of gradients for pairwise13
learning under different assumptions, based on which we charac-14
terize empirical risk minimizer, gradient descent, and stochastic15
gradient descent. We first establish learning rates for these algo-16
rithms in a general nonconvex setting, where the analysis sheds17
insights on the trade-off between optimization and generalization18
and the role of early-stopping. We then derive faster learning19
rates of order O(1/n) for nonconvex pairwise learning with a20
gradient dominance curvature condition, where n is the sample21
size. Provided that the optimal population risk is small, we further22
improve the learning rates to O(1/n2), which, to the best of our23
knowledge, are the first O(1/n2) rates for pairwise learning.

Q1
24

Index Terms—Generalization performance, learning rates,25
nonconvex optimization, pairwise learning.26

I. INTRODUCTION27

PAIRWISE learning focuses on learning tasks with loss28

functions depending on a pair of training examples, and29

thus has a great advantage in modeling relative relationships be-30

tween paired samples. As an important field of modern machine31

learning, pairwise learning instantiates many well-known learn-32

ing tasks, for instance, similarity and metric learning [10], [30],33

[45], [55], AUC maximization [15], [16], [21], [42], [52], [77],34

[83], [86], [91], bipartite ranking [1], [12], [13], [57], gradient35

learning [60], [61], [85], minimum error entropy principle [23],36

[28], multiple kernel learning [35], and preference learning [20],37

etc.38

Since its significance, there has been an increasing interest39

in the generalization performance analysis of pairwise learning40
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to understand why it performs well in practice. Generalization 41

analysis investigates how the predictive models learned from 42

training samples behave on the testing samples, which is one 43

of the primary interests in the machine learning community [6], 44

[34], [43], [54], [80]. In contrast to the classical pointwise learn- 45

ing problems where the loss function involves single instances, 46

pairwise learning loss contains pairs of training samples. This 47

coupled construction leads to the fact that the empirical risk of 48

pairwise learning hasO(n2) dependent terms if there aren train- 49

ing samples [38]. The fundamental assumption of independent 50

and identical distributed (i.i.d.) random variables for sample is 51

thus violated for the empirical risk of pairwise learning, which, 52

unfortunately, renders the standard generalization analysis in the 53

i.i.d. case not applicable in this context. 54

There are many existing studies on the generalization perfor- 55

mance of pairwise learning, but most of them have the following 56

limitations. First, they mostly study specific instantiations, for 57

instance, metric learning, bipartite ranking or AUC maximiza- 58

tion [37]. On the contrary, there is far less work studying the 59

general framework of pairwise learning [36], [38]. Second, they 60

typically require convexity conditions [38]. In the related work 61

of studying the general pairwise framework, [31], [49], [78] 62

investigate online pairwise learning, which is different from the 63

offline setting of this paper. And [64], [71] study the variants of 64

stochastic gradient descent (SGD). The most related works to 65

this paper are [36], [37], [38]. In [37], the authors study the gen- 66

eralization performance of regularized empirical risk minimizer 67

(RRM) via a peeling technology in uniform convergence. In [36], 68

the authors establish the relationship between the generalization 69

measure and algorithmic stability, and then use this connection 70

to study the generalization performance of RRM and SGD. 71

While in [38], the authors conduct a systematic generalization 72

analysis of SGD under milder assumptions via algorithmic sta- 73

bility and uniform convergence of gradients. However, the above 74

works [31], [36], [37], [38], [49], [64], [71] are almost limited 75

to convex learning, and even often require the restrictive strong 76

convexity condition. An exception is [38], where nonconvex 77

learning is involved. Third, in [38], the authors only investigate 78

the SGD, where there are two learning rates derived for noncon- 79

vex pairwise learning. One is of order O(
√
d/n), provided with 80

high probability under general nonconvex assumptions, while 81

another is of order O(n−
2
3 ), provided in expectation under an 82

extra gradient dominated assumption [38], wheren is the sample 83

size and d is the dimension of parameter space. However, one 84

can see that these rates are of slower order. 85

Motivated by these limitations, we provide a systematic and 86

improved generalization analysis for nonconvex pairwise learn- 87

ing. Our contributions are summarized as follows. 88
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� We study the generalization performance of the rarely89

explored nonconvex pairwise learning problems. Our anal-90

ysis is performed on the general pairwise learning frame-91

work and spans empirical risk minimizer (ERM), gradient92

descent (GD), and stochastic gradient descent (SGD).93
� We first consider the general nonconvex learning and obtain94

learning rates for these algorithms. Our analysis reveals95

that the optimization and generalization should be balanced96

to achieve good learning rates, which sheds insights on the97

role of early-stopping. The derived learning rates are based98

on our developed uniform convergences of gradients for99

pairwise learning, which may be of independent interest.100
� We then study the nonconvex learning with a commonly101

used curvature condition, i.e., the gradient dominance102

assumption. We establish faster learning rates of order103

O(1/n). If the optimal population risk is small, we further104

improve this learning rate to O(1/n2). To our best knowl-105

edge, the O(1/n) rate is the first for nonconvex pairwise106

learning, and the O(1/n2) rate is the first for pairwise107

learning, whether in convex learning or nonconvex learn-108

ing. In summary, this work provides a comprehensive and109

systematical analysis on the generalization properties of110

nonconvex pairwise learning.111

This paper is organized as follows. The related work112

is reviewed in Section II. In Section III, we introduce113

the notations and present our main results. We provide114

the proofs in Section IV. Section V concludes this pa-115

per. Some discussions and proofs are deferred to the Ap-116

pendix, which can be found on the Computer Society Digital117

Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.118

2023.3259324, including a systematic comparison with the re-119

lated work.120

II. RELATED WORK121

This section introduces the related work on generalization122

performance analysis of pairwise learning based on different123

approaches.124

Algorithmic stability is a popular approach to study the125

generalization performance of pairwise learning. It is also a126

fundamental concept in statistical learning theory [8], [9], [33],127

which has a deep connection with learnability [65], [68], [70].128

A training algorithm is stable if small changes in the training129

set result in small differences in the output predictions of the130

trained model [8]. [1], [22] establish the relationship between131

generalization and stability for ranking. [30], [76] study the132

regularized metric learning based on stability. [29], [81] con-133

sider differential privacy problems in pairwise setting. [71] uses134

stability to study the trade-off between the generalization error135

and optimization error for a variant of pairwise SGD. [36] starts136

the studying of pairwise learning framework via algorithmic137

stability. They provide an improved stability analysis based138

on [9], and further use it to establish learning rates for RRM139

and SGD. [38] further provides generalization guarantees for140

pairwise SGD under milder assumptions. Although algorithmic141

stability has been widely employed in pairwise learning, it142

generally requires convexity assumptions [38], which means143

that the above studies are mostly limited to convex learning. 144

Moreover, the strong convexity condition is often required when 145

establishing faster learning rates. However, it is known that the 146

strong convexity condition is too restrictive [32]. 147

Another popular approach employed for pairwise learning 148

is uniform convergence [4], [5], [46], [56]. An advantage of 149

uniform convergence is that it can imply meaningful learning 150

rates for nonconvex learning [17], [19], [36], [38], [58]. In the 151

related work of uniform convergence, [10], [12], [13], [42], 152

[45], [52], [57], [67], [74], [83], [84], [86], [92] focus on the 153

specific instantiations of pairwise learning, i.e., metric learning, 154

ranking or AUC maximization. They often bound the general- 155

ization gap by its supremum over the whole (or a subset) of 156

the hypothesis space. Then, some space complexity measures, 157

including VC dimension, covering number, and Rademacher 158

complexity, can be adapted to prove the learning rates. Although 159

some work above doesn’t require the convexity condition, they 160

don’t study the pairwise learning framework. [37] studies the 161

pairwise learning framework via the uniform convergence tech- 162

nique. But they require a strong convexity assumption. In a very 163

recent work, [38] develops uniform convergence of gradients for 164

pairwise learning based on [39], and further uses it to investigate 165

the learning rates of SGD in nonconvex pairwise learning. The 166

uniform convergence of gradients has recently drawn increasing 167

attention in nonconvex learning [17], [19], [39], [58], [79] and 168

stochastic optimization [53], [88], [89], which is a gap between 169

the gradients of the population risk and the gradients of the 170

empirical risk. However, these works are limited to the pointwise 171

learning setting. In this paper, we study the more complex 172

pairwise learning and provide improved uniform convergence of 173

gradients than [38], based on which we investigate the learning 174

rates for generalization performance of nonconvex pairwise 175

learning. As discussed before, the dependency in the empirical 176

risk hinders the standard i.i.d technique. To overcome this diffi- 177

culty, we need to decouple this dependency so that the standard 178

generalization analysis established for independent data can be 179

applied to this context. Furthermore, we develop different uni- 180

form convergence of gradients under different assumptions. For 181

the demand of the proof, we also create two more general forms 182

of the Bernstein inequality of pairwise learning, which may be 183

of independent interest and benefit the Bernstein inequality’s 184

broader applicability (please refer to Appendix B, available in 185

the online supplemental material, for details). 186

Except for the algorithmic stability and uniform convergence, 187

convex analysis is employed in online pairwise learning [31], 188

[78]. The tool of integral operator is also used to study the 189

generalization of pairwise learning, but is often limited to the 190

specific least square loss functions [23], [87]. 191

III. MAIN RESULTS 192

A. Preliminaries 193

LetP be a probability measure defined over a sample spaceZ 194

and Pn be the corresponding empirical probability measure. Let 195

f(·, z, z′) : W �→ R be a random objective function depending 196

on random variables z, z′ ∈ Z , where W is a parameter space 197

of dimension d. In pairwise learning, we aim to minimize the 198
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following expected risk199

F (w) = Ez,z′ [f(w; z, z′)], (1)

where Ez,z′ denotes the expectation with respect to (w.r.t.)200

z, z′ ∼ P . In (1), F (w) is also referred to as population risk.201

z and z′ can be considered as samples, w can be interpreted202

as a model or hypothesis, and f(·, ·, ·) can be viewed as a loss203

function.204

A well-known example of (1) is the pairwise supervised205

learning. Specifically, in the supervised learning, Z = X × Y206

with X ⊂ R
d′

being the input space and Y ⊂ R being the207

output space (d′ may not equal to d). Let S = {z1, . . ., zn} be208

a training dataset drawn independently according to P , based209

on which we wish to build a prediction function h : X �→ R or210

h : X × X �→ R. Considering the parametric models, in which211

the predictor hw can be indexed by a parameter w ∈ W , and212

defining �(w; z, z′) as the loss that measures the quality of hw213

over z, z′ ∈ Z , where � : W ×Z ×Z �→ R, the corresponding214

expected risk of supervised learning can be written as215

F (w) = Ez,z′ [�(w; z, z′)]. (2)

In contrast to the traditional pointwise learning problems where216

the quality of a model parameter w is measured over an individ-217

ual point, a distinctive property of (2) is that the performance of218

hw should be quantified on pairs of data samples. Note that the219

minimization of (1) is more general than supervised learning in220

(2) and could be more challenging to handle [68], [70].221

From (1), we know that the population riskF (w)measures the222

prediction performance of w over the underlying distribution.223

However, P is typically not available and what we get is only224

a set of i.i.d. training samples S. In practice, we minimize the225

following empirical risk as an approximation [75]226

FS(w) =
1

n(n− 1)

∑
i,j∈[n],i�=j

f(w; zi, zj), (3)

where [n] = {1, . . ., n}. In optimizing (3), some popular algo-227

rithms are proposed including empirical risk minimizer (ERM),228

gradient descent (GD), and stochastic gradient descent (SGD).229

For this reason, we will provide generalization analysis for230

these algorithms. We now introduce some notations used in231

this paper. Denote ‖ · ‖ to be the L2 norm in R
d, i.e., ‖w‖ =232 (∑d

i=1 |wi|2
) 1

2

. Letw∗ be the best parameter withinW , satisfy-233

ing w∗ ∈ argminW F (w). LetB(w0, R) := {w ∈ R
d : ‖w −234

w0‖ ≤ R} denote a ball with center w0 ∈ R
d and radiusR. We235

assume that there is a radiusR1 such that W ⊆ B(w∗, R1). Let236

e be the base of the natural logarithm.237

For a better understanding of the pairwise learning framework238

(1)–(3), we provide two examples to explain it.239
� Bipartite ranking. In ranking problems, we aim to learn240

a good estimator hw : X × X �→ R which can correctly241

predict the ordering of pairs of binary labeled samples,242

i.e., predicting y > y′ if hw(x, x′) > 0. The performance243

of hw at examples (z, z′) can be measured by choosing244

the 0− 1 loss. However, the 0− 1 loss is hard to be opti-245

mized in practice, one often employs surrogate losses [14].246

By considering the convex surrogate losses � : R �→ R+,247

the loss function of ranking is of the form f(w; z, z′) = 248

�(sign(y − y′)hw(x, x′)), where sign(x) is the sign of x. 249

Common choices of the surrogate loss � include the hinge 250

loss and the logistic loss [59]. 251
� Metric learning. Let’s consider the supervised metric learn- 252

ing with the label spaceY = {−1,+1}. Under this setting, 253

we want to learn a distance metric function hw(x, x′) = 254

〈w, (x− x′)(x− x′)T 〉 such that a pair (x, x′) of inputs 255

from the same class (y = y′) are close to each other while 256

a pair from different classes (y �= y′) have a large distance 257

hw(x, x′) [38], where xT denotes the transpose of x ∈ R
d 258

andw ∈ R
d×d. Similarly, considering the convex surrogate 259

loss function �, a common choice of the loss function in 260

supervised metric learning is of the form f(w; z, z′) = 261

�(yy′(1− hw(x, x′))) [30], [38]. Moreover, one can re- 262

fer to [45] for examples of unsupervised metric learning, 263

where the authors study the similarity-based clustering 264

learning under the framework of pairwise learning. 265

B. Uniform Convergence of Gradients 266

Uniform convergence of gradients measures the deviation 267

between the population gradients ∇F and the empirical gra- 268

dients ∇FS , where ∇ denotes the gradient operator. In this 269

subsection, we aim to provide improved uniform convergence 270

of gradients than the associated one in [38]. Before providing 271

the main theorems, we first introduce a crucial assumption. 272

Assumption 1. For all w1,w2 ∈ W , we assume that 273
∇f(w1;z,z

′)−∇f(w2;z,z
′)

‖w1−w2‖ is a γ-sub-exponential random vector, 274

i.e., for any unit vector u ∈ B(0, 1) and w1,w2 ∈ W , 275

E

{
exp

( |uT (∇f(w1; z, z
′)−∇f(w2; z, z

′))|
γ‖w1 −w2‖

)}
≤ 2,

where γ > 0. 276

Remark 1. This assumption is stronger than the smoothness 277

of the population risk, but much milder than the uniform smooth- 278

ness condition (Assumption 4). Please refer to Section IV-A for 279

the proof. 280

Based on Assumption 1, we have the first theorem on uniform 281

convergence of gradients. 282

Theorem 1. Suppose Assumption 1 holds. Then for any δ ∈ 283

(0, 1), with probability 1− δ, for all w ∈ W , we have 284

‖(∇F (w)−∇FS(w))− (∇F (w∗)−∇FS(w
∗))‖

≤ cγmax

{
‖w −w∗‖, 1

n

}⎛
⎝
√
d+ log 4 log2(

√
2R1n+1)
δ

n

+
d+ log 4 log2(

√
2R1n+1)
δ

n

)
,

where c is an absolute constant. 285

Remark 2. Uniform convergence of gradients is first studied 286

in convex learning [88], [89]. Recently, uniform convergence 287

of gradients of nonconvex learning is also proposed based on 288

different techniques. Specifically, [58] is based on covering num- 289

bers, [19] is based on a chain rule for vector-valued Rademacher 290
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complexity, [39] is based on Rademacher chaos complexity, [17]291

is based on the gradient of the Moreau envelops, and [79] is based292

on a novel uniform localized convergence technique. However,293

the above-mentioned works are limited to the pointwise learning294

case. In Theorem 1, we present the uniform convergence of295

gradients for the more complex pairwise learning. As discussed296

in Section II, a key difference between pointwise learning and297

pairwise learning is that the gradient of the empirical risk in298

pairwise learning (see (3)) involves O(n2) dependent terms,299

which makes the proof of Theorem 1 more challenging.300

We now introduce a Bernstein condition at the optimal point,301

based on which we will show Theorem 2.302

Assumption 2. The gradient at w∗ satisfies the Bernstein303

condition, i.e., there exists D∗ > 0 such that for all 2 ≤ k ≤ n,304

E
[‖∇f(w∗; z, z′)‖k] ≤ k!

2
E
[‖∇f(w∗; z, z′)‖2]Dk−2

∗ .

Remark 3. Assumption 2 is pretty mild since D∗ > 0 only305

depends on gradients at w∗. Moreover, the Bernstein condition306

is milder than the bounded assumption of random variables and307

is also satisfied by various unbounded variables [75]. Please refer308

to [75] for more discussions on this assumption.309

Theorem 2. Suppose Assumptions 1 and 2 hold. For any δ >310

0, with probability at least 1− δ, for all w ∈ W , we have311

‖∇F (w)−∇FS(w)‖ ≤ cγmax

{
‖w −w∗‖, 1

n

}

×

⎛
⎜⎝
√
d+ log

8 log2(
√
2R1n+1)
δ

n
+
d+ log

8 log2(
√
2R1n+1)
δ

n

⎞
⎟⎠

+
4D∗ log 4

δ

n
+

√
8E [‖∇f(w∗; z, z′)‖2] log 4

δ

n
,

where c is an absolute constant.312

Remark 4. There is only one existing result guaranteeing uni-313

form convergence of gradients for pairwise learning, developed314

in [38]. We now compare our uniform convergence of gradients315

with [38]. Under uniformly smooth assumption (Assumption316

4), [38] shows that with probability at least 1− δ317

sup
w∈B(0,R)

‖∇F (w)−∇FS(w)‖

≤ c(βR+ b)√
n

(
2 +

√
96e(log 2 + d log(3e)) +

√
log(1/δ)

)
,

(4)

where b = supz,z′∈Z ‖∇f(0; z, z′)‖. Compared with (4), we318

successfully relax the uniform smoothness assumption to a319

milder Assumptions 1. Moreover, the factor in (4) is c(βR+ b),320

while in Theorem 2 is cγmax{‖w −w∗‖, 1
n}, not involving321

a term supz,z′∈Z ‖∇f(0; z, z′)‖ that may be very large. And322

we emphasize that it is the construction of the factor that323

allows us to derive improved learning rates when considering324

Assumption 3. The proof techniques of bounding the term325

supw∈B(0,R) ‖∇F (w)−∇FS(w)‖ in [38] rely on the McDi-326

marid’s inequality and the global Rademacher complexity. Dif-327

ferent from the technique in [38], we use the uniform localized328

convergence (localized complexity technique) proposed in [79], 329

i.e., Lemma 1 in the Appendix, available in the online supple- 330

mental material. However, [79] studies the pointwise setting. 331

We study the uniform convergence of gradients for the more 332

complex pairwise learning. The influence is that, for instance, 333

in the proof of Theorem 1, after obtaining the sub-exponential 334

random variable of (12) by following the proof of [79], we need 335

Bernstein inequalities of pairwise learning for the unbounded 336

random variable, which is different from the commonly used 337

Bernstein inequalities for the bounded random variable. As 338

discussed in Section II, the loss structure of pairwise learning 339

hinders the standard i.i.d technique. To proceed, we need to 340

decouple the dependency that emerged in pairwise learning. 341

Please see Lemmas 6 and 8 in the appendix, available in the 342

online supplemental material, for details. Then, using the generic 343

chaining technique and Lemma 1 in the Appendix, available in 344

the online supplemental material, we finish the proof. 345

In the following, we further provide an improved uniform con- 346

vergence of gradients when the PL curvature condition (gradient 347

dominance condition) is satisfied. 348

Assumption 3. Fix a set W . For any function f : W �→ R, let 349

f ∗ = minw∈W f(w). f satisfies the Polyak-Łojasiewicz (PL) 350

condition with parameter μ > 0 on W if 351

f(w)− f ∗ ≤ 1

2μ
‖∇f(w)‖2, ∀w ∈ W.

Remark 5. PL condition is also referred to as “gradient dom- 352

inance condition” [19]. This condition means that the subop- 353

timality of function values can be bounded by the squared 354

magnitude of gradients, which can be used to bound how far 355

away the nearest minimizer is in terms of the optimality gap. It is 356

one of the weakest curvature conditions and is widely employed 357

in nonconvex learning [11], [32], [38], [39], [41], [66], [79], 358

[93], to mention but a few. Under suitable assumptions on the 359

input, many popular nonconvex objective functions satisfy PL 360

condition, including neural networks with one hidden layer [48], 361

ResNets with linear activations [24], robust regression [50], 362

linear dynamical systems [25], matrix factorization [50], phase 363

retrieval [73], blind deconvolution [47], mixture of two Gaus- 364

sians [3], etc. Furthermore, the PL condition is assumed on 365

the parameter w, not the sample. Thus, the PL condition of 366

pointwise learning can be easily extended to pairwise learn- 367

ing. We now take AUC maximization as an example to illus- 368

trate this point. Specifically, AUC maximization aims to rank 369

positive instances above negative ones which involves a loss 370

f(w; (x, y), (x,′ y′)) = (1−wT (x− x′))+I[y=1
∧

y′=−1] with 371

x, x′ ∈ X ⊆ R
d and y, y′ ∈ Y = {±1}. Consider the problem 372

of learning a generalized linear model with the square loss, the 373

loss of pointwise learning is f(w;x, y) = (y − logit(wTx))2, 374

where logit(t) = (1 + exp(−t))−1. In Section III of [19], 375

it was shown that this loss satisfies the PL condition. In 376

this case, the loss function for the problem of AUC maxi- 377

mization becomes f(w; (x, y), (x,′ y′)) = (1− logit(wT (x− 378

x′)))2I[y=1
∧

y′=−1]. Since the PL condition focuses on the 379

parameter w, this loss of AUC maximization also satisfies the 380

PL condition, as shown in [82]. Moreover, AUC maximization 381

problem with the classifier given by a one hidden layer network 382
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satisfies the PL condition as shown in Theorem 4 in [51], corre-383

sponding to the pointwise learning in [48]. Additionally, under384

technical restrictions, such as the smoothness of Assumption 4,385

many other well-known conditions including strong convexity,386

one-point convexity, star convexity and τ -star convexity imply387

the PL condition [32].388

Theorem 3. Assume Assumptions 1 and 2 hold. Suppose the389

population risk F satisfies Assumption 3 with parameter μ.390

Then for any δ > 0, when n ≥
cγ2

(
d+log

8 log2(
√
2R1n+1)
δ

)

μ2 , with391

probability at least 1− δ, for all w ∈ W , we have392

‖∇F (w)−∇FS(w)‖ ≤ ‖∇FS(w)‖+ μ

n

+
8D∗ log(4/δ)

n
+ 4

√
2E [‖∇f(w∗; z, z′)‖2] log(4/δ)

n
, (5)

where c is an absolute constant.393

Remark 6. Note that w∗ cannot be any minimizer of F . w∗394

should be the projection ofw onto the minimizer ofF . It depends395

on w. For Theorem 3, it is clear that (5) implies396

‖∇F (w)‖ ≤ 2 ‖∇FS(w)‖+ μ

n

+
8D∗ log(4/δ)

n
+ 4

√
2E[‖∇f(w∗; z, z′)‖2] log(4/δ)

n
. (6)

Typically, we call ‖∇FS(w)‖2 the optimization error and397

‖∇FS(w)−∇F (w)‖2 the statistical error (or generalization398

error) [39], since the former is related to the optimization al-399

gorithm to optimize FS , and the latter is related to approxi-400

mating the true gradient with its empirical form. In Theorem401

3, ‖∇FS(w)‖ can be tiny since the optimization algorithms,402

such as GD and SGD, can optimize it to be small enough.403

E
[‖∇f(w∗; z, z′)‖2] may be also small since it depends on the404

gradient on the optima w∗ and involves an expectation operator.405

First, the bound in (4) scales with supz,z′∈Z ‖∇f(0; z, z′)‖,406

which depends on the worst case of the sample space supz,z′∈Z407

and may be very large, while E
[‖∇f(w∗; z, z′)‖2] involves an408

expectation operator. Second, from (35), one can see that if f409

is nonnegative and β-smooth, we have E[‖∇f(w∗; z, z′)‖2] ≤410

4βF (w∗). For the overparametrized models, such as the deep411

learning models, the population risk at the optima w∗, i.e.,412

the optimal population risk F (w∗), is generally very small.413

In the latter application in Sections III-C, III-D, and III-E,414

we assume E
[‖∇f(w∗; z, z′)‖2] = O (

1
n

)
or F (w∗) = O (

1
n

)
415

just to show that we can get improved bounds under the low416

noise condition. The two terms should be independent of n. It is417

notable that the assumptionF (w∗) = O (
1
n

)
, evenF (w∗) = 0,418

is common and can be found in [36], [38], [40], [53], [72], [88],419

[89], which is natural since F (w∗) is the minimal population420

risk. Moreover, even without the low noise condition, the bounds421

with a fast rate established in this paper are still sharper than the422

results in the related work. Therefore, compared with Theorems423

1 and 2, and (4), this uniform convergence of gradients is clearly424

tighter. Moreover, the fact that our established convergence of425

gradients scales tightly with the optimal parameter, i.e., the426

gradient norms at the optima w∗, largely contributes to derive427

fasterO(1/n2) rates of this paper, which is a remarkable advance428

compared to (4). The appearance of E
[‖∇f(w∗; z, z′)‖2] re- 429

quires technical analysis. Additionally, an obvious shortcoming 430

of uniform convergence is that it often implies learning rates with 431

a square-root dependency on the dimension dwhen considering 432

general problems [18], as shown in (4), and Theorems 1 and 433

2. Another distinctive improvement of Theorem 3 is that we 434

successfully remove the dimension dwhen the population riskF 435

satisfies the PL condition and the sample size n is large enough. 436

Based on Theorem 3, we will provide dimension-independent 437

learning rates for ERM, GD, and SGD. In addition to these 438

algorithms, the uniform convergence of gradients in this paper 439

can be employed to study other optimization algorithms, such as 440

variance reduction variants and momentum-based optimization 441

algorithms [62], which would also be very interesting. 442

C. Empirical Risk Minimizer 443

Generalization performance means the generalization behav- 444

ior of the trained model on testing examples. Let w(S) be the 445

learned model produced by some algorithms on the training set 446

S. In Sections III-C, III-D, and III-E, we first consider the general 447

nonconvex learning problems and present the learning rate for 448

the gradient norm of the population risk, i.e., ‖∇F (w(S))‖. 449

After that, we study the noconvex learning with the PL condition 450

and provide learning rates for the generalization performance 451

gap F (w(S))− F (w∗), where w∗ ∈ argminw∈W F (w). In 452

this section, we consider the ERM problem. In ERM, we fo- 453

cus on the optima ŵ∗ of the empirical risk FS , i.e., ŵ∗ ∈ 454

argminw∈W FS(w). 455

Theorem 4. Suppose the empirical risk minimizers ŵ∗ exists. 456

Assume Assumptions 1 and 2 hold. For any δ ∈ (0, 1), with 457

probability at least 1− δ, we have 458

‖∇F (ŵ∗)‖ = O
⎛
⎝
√
d+ log logn

δ

n

⎞
⎠.

Remark 7. When Assumptions 1 and 2 hold, Theorem 459

4 shows that the learning rate of ‖∇F (ŵ∗)‖ is of order 460

O
(√

d+log 1
δ

n

)
(log n is small and can be ignored typically). 461

Note that this bound does not require the uniform smoothness 462

condition (Assumption 4). Although it is hard to find ŵ∗ in 463

nonconvex learning, this learning rate is meaningful by assuming 464

the ERM has been found. Moreover, this learning rate may 465

be comparable to the classical one O
(√

d logn log(d/δ)
n

)
in 466

the stochastic convex optimization [69], without requiring the 467

convexity condition. 468

Theorem 5. Suppose Assumptions 1 and 2 hold, and the 469

population risk F (w) statisfies Assumption 3 with parameter 470

μ. For any δ ∈ (0, 1), with probability at least 1− δ, when 471

n ≥
cγ2

(
d+log

(
8 log(

√
2nR1+1)
δ

))

μ2 , we have 472

F (ŵ∗)− F (w∗)=O
(
log2 1

δ

n2
+
E
[‖∇f(w∗; z, z′)‖2] log 1

δ

n

)
.
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Algorithm 1: GD for Pairwise Learning.

Input: initial point w1 = 0, step sizes {ηt}t, and dataset
S = {z1, . . ., zn}

1: for t = 1, . . ., T do
2: update wt+1 = wt − ηt∇FS(wt)
3: end for

If further assume E
[‖∇f(w∗; z, z′)‖2] = O (

1
n

)
, we have473

F (ŵ∗)− F (w∗) = O
(
log2(1/δ)

n2

)
.

Remark 8. Theorem 5 shows that when population riskF (w)474

satisfies the PL condition, we can provide much faster learning475

rate than Theorem 4. The learning rate can even up to O (
1
n2

)
.476

We now compare our result with the most related work [37],477

[41]. [37] studies the learning rate of generalization perfor-478

mance gap of regularized empirical risk minimizers (RRM) via479

uniform convergence technique. Under the Lipschitz continuity480

condition and the strong convexity condition, Theorems 1 and481

2 in [37] provide O
(

log(1/δ)
n

)
order rates. [41] studies the gen-482

eralization performance gap of RRM via algorithmic stability.483

Under the Lipschitz continuity and strong convexity conditions,484

Theorem 3 in [41] provides O
(

logn log(1/δ)√
n

)
order rates. By485

the comparison, we have established much faster learning rates,486

significantly, under a nonconvex learning setting.487

D. Gradient Descent488

We now analyze the generalization performance of gradient489

descent of pairwise learning, where the algorithm is shown in490

Algorithm 1. Denote A � B if there exists universal constants491

C1, C2 > 0 such that C1A ≤ B ≤ C2A. Similarly, we first492

introduce a necessary assumption.493

Assumption 4 (Smoothness). Let β > 0. For any sample494

z, z′ ∈ Z and w1,w2 ∈ W , there holds that495

‖∇f(w1; z, z
′)−∇f(w2; z, z

′)‖ ≤ β‖w1 −w2‖.
Remark 9. The uniform smoothness condition is commonly496

used in nonconvex learning [17], [19], [26], [38], [39], [58]. As497

discussed in Section IV-A, Assumption 4 implies Assumption498

1. Thus, the established uniform convergences of gradients is499

also correct under Assumption 4. In the following, we require500

this assumption to derive the optimization error bound, i.e.,501

‖∇FS(w(S))‖.502

Theorem 6. Suppose Assumptions 2 and 4 hold and the ob-503

jective function f is nonnegative. Let {wt}t be the sequence504

produced by Algorithm 1 with ηt = η1t
−θ, θ ∈ (0, 1) and η1 ≤505

1/β. For any δ ∈ (0, 1), with probability at least 1− δ, when506

T � (nd−1)
1

2(1−θ) , we have507

1∑T
t=1 ηt

T∑
t=1

ηt‖∇F (wt)‖2 ≤ O
(
d+ log logn

δ√
nd

)
.

Remark 10. To our best knowledge, this is the first work that508

investigates the learning rates of GD for nonconvex pairwise509

Algorithm 2: SGD for Pairwise Learning.

Input: initial point w1 = 0, step sizes {ηt}t, and dataset
S = {z1, . . ., zn}

1: for t = 1, . . ., T do
2: draw (it, jt) from the uniform distribution over the set

{(i, j) : i, j ∈ [n], i �= j}
3: update wt+1 = wt − ηt∇f(wt; zit , zjt)
4: end for

learning. Theorem 6 shows that for pairwise GD, one should 510

select an appropriate iterative number for early-stopping to 511

achieve a good learning rate. In the proof, (28) reveals that 512

we should balance the optimization error (optimization) and the 513

statistical error (generalization), which demonstrates the reason 514

for early-stopping. According to Theorem 6, the optimal iterative 515

number should be chosen as T � (nd−1)
1

2(1−θ) for polynomially 516

decaying step sizes. 517

Theorem 7. Suppose Assumptions 2 and 4 hold and the ob- 518

jective function f is nonnegative. Assume the empirical risk FS 519

and the population risk F satisfy Assumption 3 with parameter 520

μ. Let {wt}t be the sequence produced by Algorithm 1 with 521

ηt = 1/β. For any δ ∈ (0, 1), with probability at least 1− δ, 522

when n ≥
cβ2

(
d+log

(
16 log(

√
2nR1+1)
δ

))

μ2 , we have 523

F (wT+1)− F (w∗) ≤ O
(
(1− μ

β
)T
)

+O
(
log2(1/δ)

n2
+
F (w∗) log(1/δ)

n

)
.

If further assume F (w∗) = O (
1
n

)
and choose T � log n, we 524

have 525

F (wT+1)− F (w∗) = O
(
log2(1/δ)

n2

)
.

Remark 11. For brevity, we show Theorem 7 with a step size 526

ηt = 1/β. Indeed, Theorem 7 is correct for any 0 < ηt ≤ 1/β. 527

Theorem 7 reveals that when the PL condition is satisfied, 528

the generalization performance gap of GD is of the order 529

O
(

F (w∗) log(1/δ)
n

)
, faster than the result of Theorem 6. If we 530

suppose the optimal population risk is small as assumed in [36], 531

[38], [40], [53], [72], [88], [89], we further obtain faster learning 532

rate of order O( log
2(1/δ)
n2 ). 533

E. Stochastic Gradient Descent 534

Stochastic gradient descent optimization algorithm has found 535

wide application in machine learning due to its simplicity in im- 536

plementation, low memory requirement and low computational 537

complexity per iteration, as well as good practical behavior [2], 538

[7], [27], [90]. The description of SGD of pairwise learning 539

is shown in Algorithm 2. We also first introduce a necessary 540

assumption. 541

Assumption 5. Assume the existence of G > 0 and σ > 0 542

satisfying 543

√
ηt‖∇f(wt; z, z

′)‖ ≤ G,∀t ∈ N, z, z′ ∈ Z, (7)
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Eit,jt

[‖∇f(wt; zit , zjt)−∇FS(wt)‖2
] ≤ σ2, ∀t ∈ N, (8)

where Eit,jt denotes the expectation w.r.t. it and jt.544

Remark 12. In Assumption 5, (7) is much milder than the545

bounded gradient assumption (see Appendix A, available in the546

online supplemental material) since ηt is typically small [38],547

such as the setting of this paper. (8) is a common assumption548

in the generalization performance analysis of SGD [38], [44],549

[93].550

Theorem 8. Suppose Assumptions 2, 4 and 5 hold and the551

objective function f is nonnegative. Let {wt}t be the se-552

quence produced by Algorithm 2 with ηt = η1t
−θ, θ ∈ (0, 1)553

and η1 ≤ 1
2β . Then, for any δ > 0, with probability 1− δ, when554

T � (nd−1)
1

2−2θ , we have555

(
T∑

t=1

ηt

)−1 T∑
t=1

ηt‖∇F (wt)‖2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

O
((√

d
n

) θ
1−θ

log3(1/δ)

)
, if θ < 1/2,

O
(√

d
n log(T/δ) log3(1/δ)

)
, if θ = 1/2,

O
(√

d
n log3(1/δ)

)
, if θ > 1/2.

Remark 13. Similar to Theorem 6, Theorem 8 also implies a556

trade-off between the optimization error (optimization) and the557

statistical error (generalization) for SGD, as revealed in (36)–558

(38). Theorem 8 suggests that we achieve similar fast learning559

rates for polynomially decaying step size with θ ∈ [1/2, 1).560

While for the varying T � (nd−1)
1

2−2θ , the optimal iterative561

number should be chosen with θ = 1/2 or closing to 1/2.562

We compare Theorem 8 with the most related work [38]. [38]563

also studies SGD of nonconvex pairwise learning, and provide564

O
(
n−

1
2 log2(1/δ)(d+ log(1/δ))

1
2

)
order rates, which has the565

same order O(
√

d
n ) as ours. However, the proof technique566

between Theorem 8 and [38] is different. Another difference567

is that [38] studies the case ηt = η/
√
T with η ≤ √

T/(2β),568

while Theorem 8 studies with different step sizes. Theorem 8 is569

thus served as an important complementary result for nonconvex570

pairwise learning.571

Theorem 9. Suppose Assumptions 2, 4 and 5 hold, and the ob-572

jective function f is nonnegative. Suppose the empirical risk FS573

and the population risk F satisfy Assumption 3 with parameter574

2μ. Let {wt}t be the sequence produced by Algorithm 2 with575

ηt =
2

μ(t+t0)
such that t0 ≥ max{ 4β

μ , 1} for all t ∈ N. Then,576

for any δ > 0, with probability at least 1− δ over the sample S,577

when n ≥
cβ2

(
d+log

(
16 log(

√
2nR1+1)
δ

))

μ2 and T � n2, we have578

F (wT+1)− F (w∗) = O
(
log n log3( 1δ )

n2
+
F (w∗) log 1

δ

n

)
.

If further assume F (w∗) = O( 1n ), we have 579

F (wT+1)− F (w∗) = O
(
log n log3(1/δ)

n2

)
.

Remark 14. Theorem 9 reveals that under the PL condition, 580

the learning rate of SGD can be significantly improved com- 581

pared to Theorem 8. In the related work, if f is nonnegative, 582

Lipschitz continuous and smooth, FS satisfies the PL con- 583

dition, and Assumption 5 hold, the learning rate derived for 584

E[F (wT+1)− F (w∗)] in [38] is at most of order O
(
n−

2
3

)
. By 585

a comparison, one can see that our learning rates are derived 586

with high probability and are significantly faster than the results 587

in [38]. The generalization performance gap is also studied 588

for pairwise SGD in [36] via algorithmic stability. However, 589

their learning rate is limited to convex learning. Specifically, 590

if f is convex and smooth, F (wT+1)− F (w∗) is of order 591

O
(
log n

√
T/n+ n−

1
2

)
+O

(
T− 1

2 log T
)

. By taking the opti- 592

mal T � n, the learning rate becomes O
(
n−

1
2 log n

)
, which is 593

much slower than results of Theorem 9. To our best knowledge, 594

the O (
1
n

)
rate is the first for SGD in nonconvex pairwise 595

learning, and the O (
1
n2

)
rate is also the first whether in convex 596

or nonconvex pairwise learning. Additionally, when we take 597

T � n, the learning rate of the generalization performance gap 598

of Theorem 9 is of order
logn log3( 1

δ )
n , which is still faster than 599

the existing rates in the related work. Furthermore, please refer 600

to Table I in Appendix A, available in the online supplemental 601

material, for a systematic comparison with the related work. 602

Remark 15. In conclusion, this paper studies two cases: the 603

general nonconvex learning and then the PL condition. The 604

results of the general nonconvex learning are general enough to 605

be extended to other nonconvex settings. When deriving the fast 606

rate, we need the PL condition. The fast rate cannot be achieved 607

for free. PL condition is a simple condition that is sufficient 608

to show a global linear convergence rate for gradient descent. 609

Moreover, in terms of showing a global linear convergence rate 610

to the optimal solution, the PL condition is weaker than most 611

existing conditions [32]. How to relax the PL condition so that 612

the results can be extended to more nonconvex settings is an 613

interesting problem and worth further study. 614

IV. PROOFS 615

In this section, we provide proofs of theorems in Section III. 616

A. Proof of Remark 1 617

Proof. According to the uniform smoothness condition, for 618

any sample z, z′ ∈ Z and w1,w2 ∈ W , there holds 619

‖∇f(w1; z, z
′)−∇f(w2; z, z

′)‖ ≤ β‖w1 −w2‖.
Then, for any unit vector u ∈ B(0, 1), we have 620

|uT (∇f(w1; z, z
′)−∇f(w2; z, z

′))|
≤ ‖u‖‖∇f(w1; z, z

′)−∇f(w2; z, z
′)‖ ≤ β‖w1 −w2‖,
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which implies621

|uT (∇f(w1; z, z
′)−∇f(w2; z, z

′))|
β‖w1 −w2‖ ≤ 1.

Then we get622

E

{
exp

(
ln 2|uT (∇f(w1; z, z

′)−∇f(w2; z, z
′))|

β‖w1 −w2‖
)}

≤ 2.

So we obtain that ∇f(w1;z,z
′)−∇f(w2;z,z

′)
‖w1−w2‖ is a β

ln 2 -sub-623

exponential random vector, for all w1,w2 ∈ W .624

Furthermore, when Assumption 1 holds, according to625

Jensen’s inequality, we can derive that626

exp

{
E

( |uT (∇f(w1; z, z
′)−∇f(w2; z, z

′))|
β‖w1 −w2‖

)}
≤ 2,

which means627

E‖∇f(w1; z, z
′)−∇f(w2; z, z

′)‖ ≤ (ln 2)β‖w1 −w2‖
≤ β‖w1 −w2‖.

Further by Jensen’s inequality, we obtain628

‖∇F (w1)−∇F (w2)‖ ≤ β‖w1 −w2‖.
The proof is complete. �629

B. Proof of Theorem 1630

The proof is inspired by the recent breakthrough work [79].631

To prove Theorem 1, we need many preliminaries on generic632

chaining and two more general forms of the Bernstein inequality633

of pairwise learning. Considering the length limit, we leave the634

introduction of this part to Appendix B, available in the online635

supplemental material.636

Proof. We define V = {v ∈ R
d : ‖v‖ ≤ max{R1,

1
n}}.637

For all (w,v) ∈ W × V , let g(w,v) = (∇f(w; z, z′)−638

∇f(w∗; z, z′))Tv. Also, for any (w1,v1) and (w2,v2) ∈639

W ×V , we define the following norm on the product space640

W ×V ,641

‖(w1,v1)− (w2,v2)‖W×V =(‖w1 −w2‖2 + ‖v1 − v2‖2) 1
2.

Define a ball B(
√
r) = {(w,v) ∈ W × V : ‖w −w∗‖2 +642

‖v‖2 ≤ r}. Given any (w1,v1) and (w2,v2) ∈ B(
√
r), we643

make the following decomposition644

g(w1,v1)(z, z
′)− g(w2,v2)(z, z

′)

= (∇f(w1; z, z
′)−∇f(w∗; z, z′))Tv1

− (∇f(w2; z, z
′)−∇f(w∗; z, z′))Tv2

= (∇f(w1; z, z
′)−∇f(w∗; z, z′))T (v1 − v2)

+ (∇f(w1; z, z
′)−∇f(w2; z, z

′))Tv2.

Since (w1,v1) and (w2,v2) ∈ B(
√
r), there holds that645

‖w1 −w∗‖‖v1 − v2‖ ≤ √
r‖v1 − v2‖

≤ √
r‖(w1,v1)− (w2,v2)‖W×V . (9)

And, according to Assumption 1, we know that 646
∇f(w1,z,z

′)−∇f(w2,z,z
′)

‖w1−w2‖ is a γ-sub-exponential random vector 647

for all w1,w2 ∈ W , which means that 648

E

{
exp

(
(∇f(w1; z, z

′)−∇f(w∗; z, z′))T (v1 −v2)

γ‖w1−w∗‖‖v1 − v2‖
)}

≤ 2.

(10)
Now, combined with (10) and (9), and according to Definition 649

1 of Appendix B, available in the online supplemental ma- 650

terial, we know (∇f(w1; z, z
′)−∇f(w∗; z, z′))T (v1 − v2) 651

is γ
√
r‖(w1,v1)− (w2,v2)‖W×V -sub-exponential. Similarly, 652

we can derive that 653

‖w1 −w2‖‖v2‖ ≤ √
r‖w1 −w2‖

≤ √
r‖(w1,v1)− (w2,v2)‖W×V .

Also, there holds that 654

E

{
exp

(
(∇f(w1; z, z

′)−∇f(w2; z, z
′))T (v2)

γ‖w1 −w2‖‖v2‖
)}

≤ 2.

Thus, we know (∇f(w1; z, z
′)−∇f(w2; z, z

′))Tv2 is also 655

γ
√
r‖(w1,v1)− (w2,v2)‖W×V -sub-exponential. 656

Till here, for any (w1,v1) and (w2,v2) ∈ B(
√
r), we obtain 657

E

{
exp

(
g(w1,v1)(z, z

′)− g(w2,v2)(z, z
′)

2γ
√
r‖(w1,v1)− (w2,v2)‖W×V

)}

≤ E

{
1

2
exp

(
(∇f(w1; z, z

′)−∇f(w∗; z, z′))T (v1 − v2)

γ
√
r‖(w1,v1)− (w2,v2)‖W×V

)}

+ E

{
1

2
exp

(
(∇f(w1; z, z

′)−∇f(w2; z, z
′))T (v2)

γ
√
r‖(w1,v1)− (w2,v2)‖W×V

)}
≤ 2,

(11)

where the first inequality follows from Jensen’s inequal- 658

ity. And (11) means that g(w1,v1)(z, z
′)− g(w2,v2)(z, z

′) is 659

a 2γ
√
r‖(w1,v1)− (w2,v2)‖W×V -sub-exponential random 660

variable, that is 661

‖g(w1,v1)(z, z
′)− g(w2,v2)(z, z

′)‖Orlicz−1

≤ 2γ
√
r‖(w1,v1)− (w2,v2)‖W×V . (12)

Then, the next step is to apply the Bernstein inequal- 662

ity of pairwise learning (Lemma 10 of Appendix B, avail- 663

able in the online supplemental material) to g(w1,v1)(z, z
′)− 664

g(w2,v2)(z, z
′). From (12), we know that the Bernstein param- 665

eters of sub-exponential g(w1,v1)(z, z
′)− g(w2,v2)(z, z

′) are 666

2γ
√
r‖(w1,v1)− (w2,v2)‖W×V (see Lemma 13 of Appendix 667

B, available in the online supplemental material). Now, we can 668

derive that 669

Pr
(∣∣∣(P − Pn)[g(w1,v1)(z, z

′)− g(w2,v2)(z, z
′)]
∣∣∣

≥ 2γ
√
r‖(w1,v1)− (w2,v2)‖W×V

√
2u
�n
2 �

+
2γ

√
r‖(w1,v1)− (w2,v2)‖W×V

�n
2 �

u
)
≤ 2e−u, (13)
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where �n
2 � is the largest integer no greater than n

2 and670

“Pr” means probability. According to Definition 3 of Ap-671

pendix B, available in the online supplemental material,672

(13) implies that the process (P − Pn)[g(w,v)(z, z
′)] has a673

mixed sub-Gaussian-sub-exponential increments w.r.t. the met-674

ric pair
(

2γ
√
r‖·‖W×V
�n
2 � , 2γ‖ · ‖W×V

√
2r
�n
2 �
)

. Hence, from the675

generic chaining for a process with mixed tail increments in676

Lemma 7 of Appendix B, available in the online supplemental677

material, for all δ ∈ (0, 1), with probability at least 1− δ, we678

have679

sup
‖w−w∗‖2+‖v‖2≤r

|(P − Pn)[g(w,v)(z, z
′)]|

≤ C

(
γ2

(
B(

√
r), 2γ‖ · ‖W×V

√
2r

�n
2 �

)

+γ1

(
B(

√
r),

2γ
√
r‖ · ‖W×V
�n
2 �

)
+ γr

log 1
δ

�n
2 �

+ γr

√
log 1

δ

�n
2 �

)
.

From Lemma 6 of Appendix B, available in the online sup-680

plemental material, the γ1 functional and the γ2 functional can681

be bounded by the Dudley’s integral, which implies that there682

exists an absolute constant C such that for any δ ∈ (0, 1), with683

probability at least 1− δ684

sup
‖w−w∗‖2+‖v‖2≤r

|(P − Pn)[g(w,v)(z, z
′)]|

≤ Cγr

(√
d+ log 1

δ

�n
2 �

+
d+ log 1

δ

�n
2 �

)
, (14)

where the inequality follows from (B.3) of [79]. Till here, the685

next step is to apply Lemma 5 of Appendix B, available in the686

online supplemental material, to (14).687

We set T (f) = ‖w −w∗‖2 + ‖v‖2, ψ(r; δ) =688

Cγr

(√
d+log 1

δ

�n
2 � +

d+log 1
δ

�n
2 �

)
. Since ‖w −w∗‖2 + ‖v‖2 ≤689

R2
1 +R2

1 +
1
n2 , we set R = 2R2

1 +
1
n2 . And let r0 = 2

n2 .690

Applying Lemma 5, we obtain that for any δ ∈ (0, 1), with691

probability at least 1− δ, for all w ∈ W and v ∈ V ,692

(P − Pn)[g(w,v)(z, z
′)]

= (P − Pn)
[
(∇f(w; z, z′)−∇f(w∗; z, z′))Tv

]
≤ ψ

(
max

{
‖w −w∗‖2 + ‖v‖2, 2

n2

}
;

δ

2 log2(Rn
2)

)

= Cγmax

{
‖w −w∗‖2 + ‖v‖2, 2

n2

}

×
⎛
⎝
√
d+ log 2 log2(Rn2)

δ

�n
2 �

+
d+ log 2 log2(Rn2)

δ

�n
2 �

⎞
⎠. (15)

Now, we choose v as max
{‖w −w∗‖, 1

n

}
693

(P−Pn)(∇f(w;z,z′)−∇f(w∗;z,z′))
‖(P−Pn)(∇f(w;z,z′)−∇f(w∗;z,z′))‖ . It is clear that ‖v‖ =694

max{‖w −w∗‖, 1
n} ≤ max{R1,

1
n}, which belongs to the695

space V . Plugging this v into (15), we obtain that for any696

δ ∈ (0, 1), with probability at least 1− δ, for all w ∈ W , 697

‖(P − Pn)(∇f(w; z, z′)−∇f(w∗; z, z′))‖

≤ Cγmax

{
‖w −w∗‖, 1

n

}

×
⎛
⎝
√
d+ log 2 log2(Rn2)

δ

�n
2 �

+
d+ log 2 log2(Rn2)

δ

�n
2 �

⎞
⎠

≤ Cγmax

{
‖w −w∗‖, 1

n

}

×
⎛
⎝
√
d+ log 2 log2(Rn2)

δ

n
+
d+ log 2 log2(Rn2)

δ

n

⎞
⎠. (16)

Since R = 2R2
1 +

1
n2 , (16) thus implies that 698

‖(P − Pn)(∇f(w; z, z′)−∇f(w∗; z, z′))‖

≤ Cγmax

{
‖w −w∗‖, 1

n

}

×
⎛
⎝
√
d+ log 4 log2(

√
2R1n+1)
δ

n
+
d+log 4 log2(

√
2R1n+1)
δ

n

⎞
⎠.

The proof is complete. � 699

C. Proof of Theorem 2 700

Proof. From Theorem 1, we have 701

‖∇F (w)−∇FS(w)‖

≤ ‖∇F (w∗)−∇FS(w
∗)‖+ Cγmax

{
‖w −w∗‖, 1

n

}

×
⎛
⎝
√
d+ log 4 log2(

√
2R1n+1)
δ

n
+
d+ log 4 log2(

√
2R1n+1)
δ

n

⎞
⎠,

(17)

where the inequality follows from that ‖∇F (w)− 702

∇FS(w)‖ − ‖∇F (w∗)−∇FS(w
∗)‖ ≤ ‖(∇F (w)− 703

∇FS(w))− (∇F (w∗)−∇FS(w
∗))‖. Denote ξn,R1,d,δ = 704√

d+log
4 log2(

√
2R1n+1)
δ

n +
d+log

4 log2(
√
2R1n+1)
δ

n . We are now to 705

prove the bound of ‖∇F (w∗)−∇FS(w
∗)‖. 706

It is clear that∇F (w∗) = 0. From Lemma 12 of Appendix B, 707

available in the online supplemental material, and Assumption 2, 708

we have the following inequality for any δ > 0, with probability 709

at least 1− δ 710

‖∇F (w∗)−∇FS(w
∗)‖

≤
√

2E[‖∇f(w∗; z, z′)‖2] log 2
δ

�n
2 �

+
D∗ log 2

δ

�n
2 �

. (18)
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Plugging (18) into (17), we obtain that for any δ > 0, with711

probability at least 1− δ712

‖∇F (w)−∇FS(w)‖ ≤ Cγmax

{
‖w −w∗‖, 1

n

}
ξn,R1,d,

δ
2

+

√
2E[‖∇f(w∗; z, z′)‖2] log 4

δ

�n
2 �

+
D∗ log 4

δ

�n
2 �

≤
√

8E[‖∇f(w∗; z, z′)‖2] log 4
δ

n
+

4D∗ log 4
δ

n

+ Cγmax

{
‖w −w∗‖, 1

n

}
ξn,R1,d,

δ
2
.

The proof is complete. �713

D. Proof of Theorem 3714

Proof. Denote ξn,R1,d,δ =

√
d+log

8 log2(
√
2R1n+1)
δ

n +715

d+log
8 log2(

√
2R1n+1)
δ

n . According to Theorem 2, for any716

δ ∈ (0, 1), with probability at least 1− δ, we have the following717

inequality718

‖∇F (w)−∇FS(w)‖ ≤
√

8E[‖∇f(w∗; z, z′)‖2] log 4
δ

n

+
4D∗ log 4

δ

n
+ Cγmax

{
‖w −w∗‖, 1

n

}
ξn,R1,d,δ. (19)

This implies that719

‖∇F (w)‖−‖∇FS(w)‖≤ Cγmax

{
‖w−w∗‖, 1

n

}
ξn,R1,d,δ

+
4D∗ log 4

δ

n
+

√
8E[‖∇f(w∗; z, z′)‖2] log 4

δ

n
.

According to Remark 1, Assumption 1 implies the population720

risk F (w) is γ-smooth. Moreover, when F (w) is smooth and721

satisfies the PL condition, there holds the following error bound722

property (refer to Theorem 2 in [32])723

‖∇F (w)‖ ≥ μ‖w −w∗‖.
Thus, we have724

μ‖w −w∗‖ ≤ ‖∇F (w)‖ ≤ ‖∇FS(w)‖

+

√
8E[‖∇f(w∗; z, z′)‖2] log 4

δ

n
+

4D∗ log 4
δ

n

+ Cγmax

{
‖w −w∗‖, 1

n

}
ξn,R1,d,δ. (20)

And according to [63], there holds the following property for725

γ-smooth functions f :726

1

2γ
‖∇f(w)‖2 ≤ f(w)− inf

w∈W
f(w). (21)

Thus we have 727

1

2γ
‖∇F (w)‖2 ≤ F (w)− F (w∗) ≤ ‖∇F (w)‖2

2μ
, (22)

which means that μ
γ ≤ 1. Let c = max{4C2, 1}. When 728

n ≥
cγ2

(
d+ log

8 log2(
√
2R1n+1)
δ

)
μ2

,

we have Cγξn,R1,d,δ ≤ μ
2 , followed from the fact that μ

γ ≤ 1. 729

Plugging Cγξn,R1,d,δ ≤ μ
2 into (20), we can derive that 730

‖w −w∗‖ ≤ 2

μ

(
‖∇FS(w)‖+ 4D∗ log(4/δ)

n

+

√
8E[‖∇f(w∗; z, z′)‖2] log(4/δ)

n
+

μ

2n

)
. (23)

Then, substituting (23) into (19), we derive that for all w ∈ W , 731

when n ≥
cγ2

(
d+log

8 log2(
√
2R1n+1)
δ

)

μ2 , with probability at least 732

1− δ 733

‖∇F (w)−∇FS(w)‖ ≤ ‖∇FS(w)‖

+
μ

n
+ 2

4D∗ log(4/δ)
n

+ 2

√
8E[‖∇f(w∗; z, z′)‖2] log(4/δ)

n
.

The proof is complete. � 734

E. Proof of Theorem 4 735

Proof. Plugging ŵ∗ into Theorem 2, we have 736

‖∇F (ŵ∗)‖ − ‖∇FS(ŵ
∗)‖

≤
√

8E[‖∇f(w∗; z, z′)‖2] log 4
δ

n
+

4D∗ log 4
δ

n

+ Cγmax

{
‖ŵ∗ −w∗‖, 1

n

}

×
⎛
⎝
√
d+ log 8 log2(

√
2R1n+1)
δ

n
+
d+ log 8 log2(

√
2R1n+1)
δ

n

⎞
⎠.

Since ŵ∗ is the ERM of FS , there holds that ∇FS(ŵ
∗) = 0. 737

Thus, we can derive that 738

‖∇F (ŵ∗)‖ ≤
√

8E[‖∇f(w∗; z, z′)‖2] log 4
δ

n

+
4D∗ log 4

δ

n
+ Cγ

(
R1 +

1

n

)

×
⎛
⎝
√
d+ log 8 log2(

√
2R1n+1)
δ

n
+
d+ log 8 log2(

√
2R1n+1)
δ

n

⎞
⎠.

The proof is complete. � 739
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F. Proof of Theorem 5740

Proof. Since F (w) satisfies the PL condition with parameter741

μ, we have742

F (w)− F (w∗) ≤ ‖∇F (w)‖2
2μ

, ∀w ∈ W.

Therefore, to bound the excess riskF (ŵ∗)− F (w∗), we need to743

bound the term ‖∇F (ŵ∗)‖2. Plugging ŵ∗ into Theorem 3 and744

(6), for any δ > 0, when n ≥
cγ2

(
d+log

8 log2(
√
2R1n+1)
δ

)

μ2 , with745

probability at least 1− δ,746

‖∇F (ŵ∗)‖ ≤ 2 ‖∇FS(ŵ
∗)‖+ μ

n

+
8D∗ log(4/δ)

n
+ 4

√
2E[‖∇f(w∗; z, z′)‖2] log(4/δ)

n
,

Since ∇FS(ŵ
∗) = 0, we have ‖∇FS(ŵ

∗)‖ = 0. We can derive747

that748

F (ŵ∗)− F (w∗)

≤ 12D2
∗ log

2(4/δ)

μn2
+

6E[‖∇f(w∗; z, z′)‖2 log(4/δ)
μn

+
2μ

n2
.

The proof is complete. �749

G. Proof of Theorem 6750

Proof. According to Assumption 4 and ηt ≤ 1/β, we can751

derive that752

FS(wt+1)− FS(wt)

≤ 〈wt+1 −wt,∇FS(wt)〉+ β

2
‖wt+1 −wt‖2

= − ηt‖∇FS(wt)‖2 + β

2
η2t ‖∇FS(wt)‖2

=

(
β

2
η2t − ηt

)
‖∇FS(wt)‖2

≤ − 1

2
ηt‖∇FS(wt)‖2, (24)

which implies that753

ηt‖∇FS(wt)‖2 ≤ −2(FS(wt+1)− FS(wt)).

Take a summation from t = 1 to T , we have754

T∑
t=1

ηt‖∇FS(wt)‖2 ≤ 2(FS(w1)− FS(wT+1)). (25)

Furthermore, we derive that755

T∑
t=1

ηt‖∇F (wt)‖2

≤ 2

T∑
t=1

ηt‖∇F (wt)−∇FS(wt)‖2 + 2

T∑
t=1

ηt‖∇FS(wt)‖2

≤ 2

T∑
t=1

ηt max
t=1,...,T

‖∇F (wt)−∇FS(wt)‖2 +O(1),

which implies that with probability at least 1− δ 756

1∑T
t=1 ηt

T∑
t=1

ηt‖∇F (wt)‖2

≤ 2 max
t=1,...,T

‖∇F (wt)−∇FS(wt)‖2 +
(

T∑
t=1

ηt

)−1

O(1)

≤
(

T∑
t=1

ηt

)−1

O(1)+2 max
t=1,...,T

[
Cβmax

{
‖wt−w∗‖, 1

n

}

×

⎛
⎜⎝
√
d+ log

4 log2(
√
2R1n+1)
δ

n
+
d+ log

4 log2(
√
2R1n+1)
δ

n

⎞
⎟⎠

+
4D∗ log 4

δ

n
+

√
8E [‖∇f(w∗; z, z′)‖2] log 4

δ

n

⎤
⎦
2

, (26)

where O(1) in the first inequality is due to (25) and the nonneg- 757

ative property of f , and where the second inequality holds since 758

Theorem 2 and that Assumption 4 implies Assumption 1 (see 759

Remark 1). 760

We now to prove the bound of ‖wt −w∗‖. Since 761

w1 = 0 and wt+1 = wt − ηt∇FS(wt), we have wt+1 = 762∑t
k=1 −ηk∇FS(wk). And according to Schwarz’s inequality, 763

we have 764

∥∥∥ t∑
k=1

ηk∇FS(wk)
∥∥∥2 ≤

(
t∑

k=1

ηk‖∇FS(wk)‖
)2

≤
(

t∑
k=1

ηk

)(
t∑

k=1

ηk‖∇FS(wk)‖2
)

≤
(

t∑
k=1

ηk

)
O(1).

Then we have 765

‖wt+1 −w∗‖ ≤ ‖wt+1‖+ ‖w∗‖

=
∥∥∥ t∑

k=1

ηk∇FS(wk)
∥∥∥+ ‖w∗‖ = O

⎛
⎝(

t∑
k=1

ηk

) 1
2

⎞
⎠.

If θ ∈ (0, 1), then
∑t

k=1 k
−θ ≤ t1−θ/(1− θ). Thus, we have 766

the following result uniformly for all t = 1, . . ., T 767

‖wt+1 −w∗‖ = O
(
T

1−θ
2

)
if θ ∈ (0, 1). (27)

Therefore, plugging (27) into (26), we get that with probability 768

at least 1− δ 769

1∑T
t=1 ηt

T∑
t=1

ηt‖∇F (wt)‖2 ≤
( T∑

t=1

ηt

)−1

O(1)

+O
(
d+ log 4 log2(

√
2R1n+1)
δ

n
T 1−θ

+
log2 4

δ

n2
+

E[‖∇f(w∗; z, z′)‖2] log 4
δ

n

)
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≤ O
(

1

T 1−θ

)
+O

(
d+ log logn

δ

n
T 1−θ

+
log2 4

δ

n2
+

E[‖∇f(w∗; z, z′)‖2] log 4
δ

n

)
. (28)

If we choose T � (nd−1)
1

2(1−θ) , then we derive that770

1∑T
t=1 ηt

T∑
t=1

ηt‖∇F (wt)‖2 ≤ O
(
d

1
2 + d−

1
2 log logn

δ

n
1
2

+
log2 4

δ

n2
+

E[‖∇f(w∗; z, z′)‖2] log 4
δ

n

)

≤ O
(
d

1
2 + d−

1
2 log logn

δ

n
1
2

)
,

where the second inequality holds because d
1
2 +d− 1

2 log logn
δ

n
1
2

is771

the dominant term. The proof is complete. �772

H. Proof of Theorem 7773

Proof. By (24) and the PL condition of FS , we can prove that774

FS(wt+1)− FS(wt) ≤ −1

2
ηt‖∇FS(wt)‖2

≤ − μηt(FS(wt)− FS(ŵ
∗)),

which implies that775

FS(wt+1)− FS(ŵ
∗) ≤ (1− μηt)(FS(wt)− FS(ŵ

∗)).

If ηt ≤ 1
β , then 0 < 1− μηt < 1 since μ

β ≤ 1 according to (22).776

Taking over T iterations, we get777

FS(wT+1)− FS(ŵ
∗) ≤ (1− μηt)

T (FS(w1)− FS(ŵ
∗)).

(29)
If ηt = 1/β, combined with (29), the smoothness of FS (see778

(21)), and the nonnegative property of f , it can be derived that779

‖∇FS(wT+1)‖2 = O
(
(1− μ

β
)T
)
. (30)

Furthermore, sinceF satisfies the PL assumption with parameter780

μ, we have781

F (wT+1)− F (w∗) ≤ ‖∇F (wT+1)‖2
2μ

, ∀w ∈ W. (31)

So to bound F (wT+1)− F (w∗), we need to bound the term782

‖∇F (wT+1)‖2. And there holds783

‖∇F (wT+1)‖2

≤ 2 ‖∇F (wT+1)−∇FS(wT+1)‖2 + 2‖∇FS(wT+1)‖2.
(32)

For the first term ‖∇F (wT+1)−∇FS(wT+1)‖2, from The-784

orem 3, for all w ∈ W , when n ≥
cβ2

(
d+log

8 log2(
√
2R1n+1)
δ

)

μ2 ,785

with probability at least 1− δ, there holds786

‖∇F (wT+1)−∇FS(wT+1)‖ ≤ ‖∇FS(wT+1)‖

+
μ

n
+

8D∗ log(4/δ)
n

+ 4

√
2E[‖∇f(w∗; z, z′)‖2] log(4/δ)

n
.

(33)

Therefore, plugging (33), (30) and (32) into (31), we derive with 787

probability at least 1− δ 788

F (wT+1)− F (w∗) ≤ O
(
(1− μ

β
)T
)

+O
(
log2(1/δ)

n2
+

E[‖∇f(w∗; z, z′)‖2] log(1/δ)
n

)
. (34)

When f is nonnegative and β-smooth, from Lemma 4.1 of [72], 789

we have 790

‖∇f(w∗; z, z′)‖2 ≤ 4βf(w∗; z, z′),

thus we have 791

E[‖∇f(w∗; z, z′)‖2] ≤ 4βEf(w∗; z, z′) = 4βF (w∗). (35)

By (35), (34) implies 792

F (wT+1)− F (w∗) ≤ O
(
(1− μ

β
)T
)

+O
(
log2(1/δ)

n2
+
F (w∗) log(1/δ)

n

)
.

The proof is complete. � 793

I. Proof of Theorem 8 794

We first introduce some necessary lemmas on the empirical 795

risk. Note that the proof of the following lemmas of SGD 796

(Algorithm 2) for pairwise learning is the same as that for 797

pointwise learning. 798

Lemma 1. [44] Let {wt}t be the sequence produced by 799

Algorithm 2 with ηt ≤ 1
2β for all t ∈ N. Suppose Assumptions 800

4 and 5 hold. Then, for any δ ∈ (0, 1), with probability at least 801

1− δ, there holds that 802

t∑
k=1

ηk‖∇FS(wk)‖2 = O
(
log

1

δ
+

t∑
k=1

η2k

)
.

Lemma 2. [44] Let {wt}t be the sequence produced by 803

Algorithm 2 with ηt ≤ 1
2β for all t ∈ N. Suppose Assumptions 804

4 and 5 hold. Then, for any δ ∈ (0, 1), with probability at least 805

1− δ, there holds uniformly for all t = 1, .., T 806

‖wt+1 −w∗‖

= O
⎛
⎝(

T∑
k=1

η2k

)1/2

+ 1

⎞
⎠
⎛
⎝(

t∑
k=1

ηk

)1/2

+ 1

⎞
⎠ log

(
1

δ

)
.

Lemma 3. [44] Let {wt}t be the sequence produced by 807

Algorithm 2 with ηt = 2
μ(t+t0)

such that t0 ≥ max{ 4β
μ , 1} for 808

all t ∈ N. Suppose Assumptions 4 and 5 hold, and suppose FS 809

satisfies Assumption 3 with parameter 2μ. Then, for any δ > 0, 810

with probability at least 1− δ, there holds that 811

FS(wT+1)− FS(ŵ
∗) = O

(
log(T ) log3(1/δ)

T

)
.
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Lemma 4. [39] Let e be the base of the natural logarithm.812

There holds the following elementary inequalities.813

a) If θ ∈ (0, 1), then
∑t

k=1 k
−θ ≤ t1−θ/(1− θ);814

b) If θ = 1, then
∑t

k=1 k
−θ ≤ log(et);815

c) If θ > 1, then
∑t

k=1 k
−θ ≤ θ

θ−1 .816

Now, we begin to prove Theorem 8.817

Proof. Similar to the proof of Theorem 6. First, we have818

T∑
t=1

ηt‖∇F (wt)‖2

≤ 2

T∑
t=1

ηt‖∇F (wt)−∇FS(wt)‖2 + 2

T∑
t=1

ηt‖∇FS(wt)‖2

≤ 2

T∑
t=1

ηt max
t=1,...,T

‖∇F (wt)−∇FS(wt)‖2

+O
(

T∑
t=1

η2t + log

(
1

δ

))

with probability at least 1− δ/3, which also implies that with819

probability at least 1− 2δ/3,820

( T∑
t=1

ηt

)−1 T∑
t=1

ηt‖∇F (wt)‖2

≤ 2 max
t=1,...,T

‖∇F (wt)−∇FS(wt)‖2

+

( T∑
t=1

ηt

)−1

O
( T∑

t=1

η2t + log

(
1

δ

))

≤
( T∑

t=1

ηt

)−1

O
( T∑

t=1

η2t + log

(
1

δ

))

+ 2 max
t=1,...,T

[
Cβmax

{
‖wt −w∗‖, 1

n

}

×
⎛
⎝
√
d+ log 12 log2(

√
2R1n+1)
δ

n

+
d+ log 12 log2(

√
2R1n+1)
δ

n

)]2
. (36)

According to Lemma 2 and Lemma 4, with probability 1− δ/3,821

we have the following inequality uniformly for all t = 1, .., T822

‖wt+1 −w∗‖ =

⎧⎪⎨
⎪⎩

O(log(1/δ))T
2−3θ

2 , if θ < 1/2

O(log(1/δ))T
1
4 log1/2 T, if θ = 1/2

O(log(1/δ))T
1−θ
2 , if θ > 1/2.

(37)
Moreover, according to Lemma 4, we have823

(
T∑

t=1

ηt

)−1

O
(

T∑
t=1

η2t + log

(
1

δ

))

=

⎧⎨
⎩
O(log(1/δ)T−θ), if θ < 1/2

O(log(T/δ)T− 1
2 ), if θ = 1/2

O(log(1/δ)T θ−1), if θ > 1/2.

(38)

Denote ξn,d,δ =
d+log logn

δ

n log2(1/δ). Plugging (37) and (38) 824

into (36), we finally get that with probability 1− δ 825(
T∑

t=1

ηt

)−1 T∑
t=1

ηt‖∇F (wt)‖2

=

⎧⎨
⎩
O(ξn,d,δ)T

2−3θ +O(log(1/δ)T−θ), if θ < 1/2

O(ξn,d,δ)T
1
2 log T +O(log(T/δ)T− 1

2 ), if θ = 1/2
O(ξn,d,δ)T

1−θ +O(log(1/δ)T θ−1), if θ > 1/2,

If θ < 1/2, we choose T � (nd−1)
1

2(1−θ) . If θ = 1/2, we set 826

T � nd−1. While if θ > 1/2, we set T � (nd−1)
1

2(1−θ) . Then 827

we can prove the learning rates of Theorem 8. The proof is 828

complete. � 829

J. Proof of Theorem 9 830

Proof. Since F satisfies the PL assumption with parameter 831

2μ, we have 832

F (w)− F (w∗) ≤ ‖∇F (w)‖2
4μ

, ∀w ∈ W. (39)

So to bound F (wT+1)− F (w∗), we need to bound the term 833

‖∇F (wT+1)‖2. And there holds that 834

‖∇F (wT+1)‖2 ≤ 2 ‖∇F (wT+1)−∇FS(wT+1)‖2

+ 2‖∇FS(wT+1)‖2. (40)

From Theorem 3, if Assumptions 2 and 4 hold and F satisfies 835

Assumption 3, for all w ∈ W and any δ > 0, with probability 836

at least 1− δ/2, when n ≥
cβ2

(
d+log

16 log2(
√
2R1n+1)
δ

)

μ2 , there 837

holds 838

‖∇F (wT+1)−∇FS(wT+1)‖ ≤ ‖∇FS(wT+1)‖+ 2μ

n

+
8D∗ log(8/δ)

n
+ 4

√
8βF (w∗) log(8/δ)

n
, (41)

where F (w∗) follows from (35). For the second term 839

‖∇FS(wT+1)‖2, according to the smoothness property of FS 840

(see (21)) and Lemma 3, it can be derived that with probability 841

at least 1− δ/2 842

‖∇FS(wT+1)‖2 = O
(
log(T ) log3(1/δ)

T

)
. (42)

Plugging (42) into (41), we can derive that 843

‖∇F (wT+1)−∇FS(wT+1)‖2

=O
(
log T log3(1/δ)

T

)
+O

(
log2(1/δ)

n2
+
F (w∗) log(1/δ)

n

)
.

(43)

Therefore, substituting (43) and (42) into (40), we derive that 844

‖∇F (wT+1)‖2
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= O
(
log T log3(1/δ)

T

)

+O
(
log2(1/δ)

n2
+
F (w∗) log(1/δ)

n

)
. (44)

Further substituting (44) into (39) and choosing T � n2, we845

finally obtain with probability at least 1− δ846

F (wT+1)− F (w∗) = O
(
log n log3

(
1
δ

)
n2

+
F (w∗) log

(
1
δ

)
n

)
.

The proof is complete. �847

V. CONCLUSION848

We studied the generalization performance of nonconvex849

pairwise learning given that it was rarely studied. We established850

several uniform convergences of gradients, based on which we851

provided a series of learning rates for ERM, GD, and SGD. We852

first investigated the general nonconvex setting and then the non-853

convex learning with a gradient dominance curvature condition.854

Former demonstrated how the optimal iterative numbers should855

be selected to balance the generalization and optimization, shed856

insights on the role of early-stopping, and the latter highlight857

the established learning rates which are significantly faster than858

the state-of-the-art, even up to O(1/n2). Overall, we provide a859

relatively systematic study of nonconvex pairwise learning.860
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