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Abstract

Recent studies suggest that computer vision models come
at the risk of compromising fairness. There are exten-
sive works to alleviate unfairness in computer vision using
pre-processing, in-processing, and post-processing meth-
ods. In this paper, we lead a novel fairness-aware learning
paradigm for in-processing methods through the lens of the
lottery ticket hypothesis (LTH) in the context of computer
vision fairness. We randomly initialize a dense neural net-
work and find appropriate binary masks for the weights to
obtain a fair sparse subnetworks without any weight train-
ing. Interestingly, to the best of our knowledge, we are the
first to discover that such sparse subnetworks with inborn
fairness exist in randomly initialized networks, achieving
an accuracy-fairness trade-off comparable to that of dense
neural networks trained with existing fairness-aware in-
processing approaches. We term these fair subnetworks
as Fair Scratch Tickets (FSTs). We also theoretically pro-
vide fairness and accuracy guarantees for them. In our
experiments, we investigate the existence of FSTs on var-
ious datasets, target attributes, random initialization meth-
ods, sparsity patterns, and fairness surrogates. We also find
that FSTs can transfer across datasets and investigate other
properties of FSTs.

1. Introduction

In recent years, deep neural networks (DNN) has become
one of the core technologies in computer vision (CV). How-
ever, it has been observed that CV models learn spurious
age, gender, and race correlations when trained for seem-
ingly unrelated tasks [7, 65]. There are growing appeals
for fairness-aware learning [56]. A model should not dis-
criminate against any demographic group with sensitive at-
tributes [3, 15, 58, 61, 74].
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Extensive work has been done to alleviate unfairness
in CV using pre-processing [35, 52, 62, 64], in-processing
[5, 6, 12, 55], and post-processing methods [37, 72]. Only
in-processing approaches can optimize notions of fairness
during model training. Such methods have direct con-
trol over the optimization function of the model [8] and
have attracted great attention in the research community.
Popular in-processing ideas include fairness regularization
[5, 12, 13, 33, 47, 50, 55, 67] and fairness-aware adversarial
training [6, 19, 42, 70]. Fairness regularization is to intro-
duce regularization terms to penalize unfairness. Fairness-
aware adversarial training uses an adversary to predict the
sensitive attribute and enforces the main classifier to pre-
vent the adversary from predicting successfully. However,
most in-processing methods leverage deep and dense neural
networks so that they are computationally intensive during
the inference phase [28].

In this paper, to fill the research gap, we raise an intrigu-
ing and challenging question: Is there a learning paradigm
without weight training that is plug-and-play for bias mit-
igation approaches in computer vision? Intuitively, the re-
cently proposed Lottery Ticket Hypothesis (LTH) [20] is
a natural fit for our needs. LTH focuses on finding sparse
trainable subnetworks (winning tickets) that reach test accu-
racy comparable to the original dense neural network. The
primal training method in [20] is iteratively pruning and re-
training the neural network. Interestingly, some researchers
empirically discover that winning tickets can be found with-
out weight training [51,73], which is theoretically validated
in [14, 43, 46, 48]. Both empirical observations and theoret-
ical results have verified the feasibility of finding winning
tickets without training the weights of the neural networks.
Motivated by the above, we break down the original ques-
tion into three sub-questions instead:

• Q1: Is there a fair winning ticket?

• Q2: How can we find it without weight training?

• Q3: Is it easy to generalize on various datasets, tar-



get attributes, random initialization methods, sparsity
patterns and fairness surrogates?

For the first question, Proposition 1 states that a suf-
ficiently over-parameterized neural network with random
weights contains a subnetwork that can approximate any
target neural network with high probability under some con-
ditions. Furthermore, our Theorem 1 shows that if we suc-
cessfully find a sparse neural network that approximates a
fair and accurate neural network well, then the sparse neu-
ral network is also fair and accurate. Combining the results
of Proposition 1 and Theorem 1, they answer our first ques-
tion by clarifying the possibility of finding fair and accurate
winning tickets without any weight training. To our best
knowledge, LTH remains poorly understood in the context
of fairness. For the second question, note that the proof
of Theorem 2.1 in [43] follows a constructive routine for
masking. Therefore, it sheds light on the feasibility of find-
ing fair winning tickets without any weight training by de-
signing an appropriate masking scheme, and that is exactly
what we do. We randomly initialize a DNN and search
for masks to iteratively find Fair Scratch Tickets (FSTs).
In particular, following [51], we search for the best bi-
nary masks by optimizing a continuously updated learnable
score for each weight. For the third question, to verify
the generality of FST, we demonstrate its effectiveness in
two famous types of in-processing approaches in CV fair-
ness: fairness regularization [5] and fairness-aware adver-
sarial training [70]. Extensive experiments verify the exis-
tence of FSTs on various datasets, target attributes, random
initialization methods, sparsity patterns and fairness surro-
gates. We further show the properties of fine-tuning and
transferability of FSTs.

Overall, our contributions are threefold:

• We are the first to theoretically and empirically con-
firm the existence of winning tickets with inborn fair-
ness. And we extend the application scenario of LTH
to CV fairness.

• We are the first to propose a brand new plug-and-play
learning paradigm that does not require weight training
for the CV fairness community.

• Extensive experiments verify the existence of FSTs
on various datasets, target attributes, random initial-
ization methods, sparsity patterns and fairness surro-
gates. Furthermore, we show the properties of fine-
tuning and transferability of FSTs.

2. Related Work
2.1. Fairness in Computer Vision

In the past few years, based on the observation that fa-
cial image analysis systems cause substantial accuracy dis-

parities for different sensitive groups [7], there has been
a growing number of papers on fairness in computer vi-
sion [59, 60]. Most of the existing work in this field falls
into three categories: pre-processing, in-processing, and
post-processing. Similar categories also appear in the fair
machine learning literature, which is exhaustively surveyed
in [8, 44].

Pre-processing methods are data operations that focus
on changing the data itself to mitigate unwanted bias. Most
of them use deep models to incorporate techniques such
as image generation [17, 35, 52, 71], sampling [54, 57],
reweighing [2, 36], masking [62], perturbation [64], etc. As
a result, the pre-processed or augmented images can be used
to train fairer models. Post-processing methods try to mod-
ify the prediction results to satisfy the fairness definitions,
e.g., [30, 37, 72]. In-processing is the research emphasis
of this paper. Such approaches learn sensitive-free fea-
tures from data during training. Popular ideas include fair-
ness regularization [5,12,13,33,47,50,55,67] and fairness-
aware adversarial training [6, 19, 42, 70]. Fairness regular-
ization incorporates unfairness penalty terms into the ob-
jective. The penalty can be designed according to intuitions
from a specific fairness criterion [5, 12, 67], disentangling
meaningful and sensitive representations [13,47,50,55], and
others like [1,33]. Fairness-aware adversarial training uses
an adversary [6, 19, 42, 70] to predict the sensitive attribute
of the training set. Then the main classifier should act in
opposition to fool the adversary and at the same time ac-
complish the main prediction task. Among pre-processing,
in-processing, and post-processing, a key advantage of in-
processing is that it can easily incorporate fairness consider-
ations into the optimization objective. Consequently, there
is a high flexibility in picking the accuracy-fairness trade-
off, and in-processing has attracted great attention in the
research community. However, deep and dense neural net-
works are commonly used in in-processing models and thus
making the inference phase time-consuming.

In contrast to many methods mentioned above that re-
quire training a neural network from scratch, our FSTs suf-
fer from less computational burden because they are sparse
and do not require any weight training. Furthermore, FSTs
also serve as a universally adaptable plug-in for any DNN-
based approaches in CV fairness so that it can be naturally
combined with existing DNN-based fair CV models.

2.2. Lottery Ticket Hypothesis

A recently proposed technique called Lottery Tickets
Hypothesis (LTH) [20] leads a fast-rising field that inves-
tigates sparse trainable subnetworks within fully dense net-
works [14, 21–23, 39, 41, 43, 46, 48, 53, 63, 73]. The orig-
inal lottery ticket hypothesis states that in a randomly ini-
tialized dense neural network, there is a sparse subnetwork
that can achieve similar test accuracy when trained in isola-



tion [20]. The sparse neural network is called “winning tick-
ets” and can be found by iteratively pruning the dense net-
work. In the follow-up work [22, 53], the authors introduce
LTH with rewinding to enable LTH for deeper models and
larger datasets. The robustness, learning dynamics, and un-
derlying condition of LTH are also dissected in [21,23,39],
respectively. LTH has been extensively explored in vari-
ous application scenarios like image classification [9, 25],
natural language processing [10, 49] and graph neural net-
works [11]. In addition, winning tickets can be found with
some inborn characteristics, such as robustness [24] and dif-
ferential privacy [27].

Going a step further, in particular, there is a refresh-
ing line of work empirically discovering that winning tick-
ets can be found with little training [68] or even no train-
ing [51, 73]. From a theoretical perspective, the researchers
even prove that winning tickets can be found without any
training under some conditions [43]. And this result is fur-
ther improved by [46, 48], which shows that logarithmic
over-parameterization is sufficient. It is extended to con-
volutional neural networks in the follow-up work [14]. In
general, both empirical observations and theoretical results
have verified the feasibility of finding winning tickets with-
out weight training. In support of the above observations
and theory, an orthogonal work [24] to ours successfully
finds robust winning tickets without training the weights.
A piece of related work is [29]. They empirically study
the impact of some pruning strategies on fairness in natu-
ral language processing. Distributionally robust optimiza-
tion loss [38] is considered to find a fair winning ticket. By
comparison, our approach differs from their work in that
our FSTs do not require training the weights of the neural
network, and we focus more on CV fairness.

Notably, although extensive research has been done on
LTH, to the best of our knowledge, there has been no previ-
ous research that provides evidence for fair winning tick-
ets without weight training in the field of computer vi-
sion. Therefore, in the perspective of application scenario
of LTH, we motivate the research community that it is pos-
sible to obtain a fair winning ticket without weight training
in computer vision.

3. Preliminaries

3.1. Fair Classification

X is the feature space. Y = {−1, 1} and S = {a, b}
represent the space of class labels and sensitive attributes,
respectively. The training set D̂Z = {(xi, si, yi)}Ni=1 is
drawn from the distribution DZ over Z = X × S × Y .
It consists of three parts: predictive features x ∈ X , sen-
sitive attribute s ∈ S and target attribute y ∈ Y . There
are Nsy data with sensitive attribute s and label y, Ns· data
with sensitive attribute s and any label, and N·y data with

label y and any group. The predicted target label is ŷ ∈ Y .
A classifier f(θ, x) : X 7→ R is parameterized by θ. If
f(θ, x) > 0, then ŷ = 1. The training set accuracy is

ACC(f) =
1

N

∑
(x,s,y)∼D̂Z

Iy=ŷ,

where I[·] is the indicator function.
In this paper, we focus on two widely used fairness met-

rics: demographic parity (DP) [18] and equality of opportu-
nity (EO) [30]. The difference in demographic parity (DDP)
is P(ŷ = 1|s = a)− P(ŷ = 1|s = b). We use the empirical
version of DDP to indicate the violation of DP:

D̂DP(f) =
1

Na·

∑
(x,s,y)∼D̂Z

s=a

If(x)>0−
1

Nb·

∑
(x,s,y)∼D̂Z

s=b

If(x)>0.

Similarly, the difference in equality of opportunity (DEO) is
P(ŷ = 1|s = a, y = 1) − P(ŷ = 1|s = b, y = 1). And its
empirical version is

D̂EO(f) =
1

Na1

∑
(x,s,y)∼D̂Z

s=a
y=1

If(x)>0−
1

Nb1

∑
(x,s,y)∼D̂Z

s=b
y=1

If(x)>0.

For a fairness threshold δ > 0, the fair classification
task is to find a classifier f such that

∣∣∣D̂DP(f)
∣∣∣ ≤ δ (or∣∣∣D̂EO(f)

∣∣∣ ≤ δ). In the experiments, D̂DP and D̂EO are
indicators to measure the violation of specific fairness met-
rics.

3.2. LTH without Weight Training

The original LTH iteratively prunes a small fraction of
weights and retrains the remaining weights. However, in
this work, we focus on finding winning tickets that do not
require weight training. As a consequence, once the neural
network f(θ) is randomly initialized, the weights θ ∈ Rd

are fixed. We search for binary masks m ∈ {0, 1}d to find
a winning ticket f(θ ⊙ m), where ⊙ is the element-wise
product.

Previous theoretical work proves that winning tickets can
be found without any weight training under some conditions
[14, 43]. We briefly review their conclusions below.

Proposition 1. To approximate any target neural network
f∗(θ∗), from a randomly initialized deep and wide enough
neural network f(θ), we can find a sparse subnetwork
f(θ ⊙ m) such that ∀xi ∈ X and some ϵ > 0, the in-
equality |f∗(θ∗, xi)− f(θ ⊙m,xi)| ≤ ϵ holds with high
probability.



Proposition 1 is an informal version of the conclusions
in [14, 43]. The detailed theorem and proof can be found
in their papers. Thus, to approximate f∗(θ∗), it is quite
possible to find a good approximation f(θ⊙m) from a deep
and wide enough f(θ) without weight training.

4. Drawing Fair Scratch Tickets
4.1. Do FSTs Exist?

In Theorem 1, we extend the results in Proposition 1 and
validate the existence of FSTs. We demonstrate that the
FSTs are both fair and accurate.

Theorem 1. Given the training set D̂Z = {(xi, si, yi)}Ni=1,
approximation error threshold ϵ > 0, fairness tolerance
δf∗ > 0, δf ′ > 0, accuracy lower bound δacc > 0. As-
sume that the following conditions hold:

(A) a sufficiently large training set: N ≥
∑N

i=1 I|f∗(xi)|≤ϵ

δf′
,

(B) a fair and accurate neural network f∗ that satisfies∣∣∣D̂DP(f∗)
∣∣∣ ≤ δf∗ and ACC(f∗) ≥ δacc,

(C) a neural network f ′ = f(θ ⊙ m) such that ∀xi ∈ X ,
there holds |f∗(xi)− f ′(xi)| ≤ ϵ.

Then f ′ is fair and accurate:{ ∣∣∣D̂DP(f ′)
∣∣∣ ≤ δf∗ + δf ′ , (Fairness)

ACC(f ′) ≥ δacc − δf ′ .(Accuracy)

The proof and EO version of this theorem are given in
the supplementary. Theorem 1 ensures that if a fair and
accurate neural network f∗ and f(θ ⊙ m) share similar
results for any input feature, then for a sufficiently large
training set, there are fairness and accuracy guarantees for
the winning ticket f(θ ⊙ m), which is our FST. Notice
that all of the three conditions are natural and not restric-
tive. For assumption (A),

∑N
i=1 I|f∗(xi)|≤ϵ is the number

of points that are close to the decision boundary. When ϵ
is small, there holds

∑N
i=1 I|f∗(xi)|≤ϵ ≪ N . So the con-

dition N ≥
∑N

i=1 I|f∗(xi)|≤ϵ

δf′
can be satisfied. For assump-

tion (B), although f∗ is an ideal neural network, at least
any fair and accurate neural networks in previous fairness-
aware methods can be cases of f∗. So this assumption is
naturally satisfied based on existing works. For assumption
(C), its reasonability has been validated by Proposition 1
and theoretical justifications [14,43], which means that this
assumption is also a mild one for our theorem.

In summary, we now establish the relation between our
analysis and FST. We initialize f(θ) with random weights
θ. We keep θ unchanged and only search for masks m to
find the winning ticket f(θ⊙m). It can be found with high

probability because of Proposition 1. According to Theo-
rem 1, when we find the winning ticket, it is guaranteed to
be fair and accurate. The fair and accurate winning ticket
f(θ ⊙m) is just our FST.

4.2. How to Search for FSTs?

Our method operates on each convolutional layer. In
a randomly initialized dense network f(θ), θl denotes the
weights of l-th layer of f(θ) and ml denotes the binary
masks associated with θl. Given a pre-defined weight re-
maining ratio η (0 < η < 1), FST search is equivalent to
finding appropriate binary masks m for untrained weights
θ. Generally, FST search can be formulated as

m̂ ∈ argmin
m

1

N

∑
i

ℓ(f(θ ⊙m,xi), yi, si),

s.t.∥ml∥0 = η · nl, l = 1, . . . , L

(1)

where m̂ is the winning binary masks of FST, ℓ is the fair-
ness loss function, nl is the number of weights in layer l and
L is the number of layers in f(θ).

Motivated and guided by prior works [24,51] which find
winning scratch tickets in randomly initialized neural net-
works, we search for winning binary masks m by iteratively
updating learnable scores r attached to each randomly ini-
tialized weight. Given a pre-defined remaining ratio η, we
obtain winning scratch tickets by retaining the weights in
each layer which own the top-η highest scores and discard-
ing the other weights. The learnable scores r is updated by
gradient descent, which is written as

r = r −
∂ 1

N

∑
i ℓ(f(θ ⊙m,xi), yi, si)

∂r
.

After each updating of r, the binary masks ml of layer l are
correspondingly updated by

mi,l =

{
1, ri,l ≥ rη,l
0, ri,l < rη,l

,

where ri,l denotes the i-th weight in layer l and rη,l repre-
sents the value of the score ranking exactly top-η in layer
l. Our search only learns the attached scores r by gradi-
ent descent and obtains winning scratch tickets without any
weight training.

Next, we introduce two specific search methods for FSTs
under fairness regularization and fair adversarial training.

4.3. FST Search under Fairness Regularization

Fairness regularization improves the fairness of predic-
tion by incorporating a fairness penalty into the objective



function, which is formulated as

argmin
m

1

N

∑
i

ℓc(f(θ ⊙m,xi)), yi) + λRg(xi, yi, si),

s.t.∥m̂l∥0 = η · nl, l = 1, . . . , L

(2)

where Rg denotes the fairness regularization, ℓc is loss func-
tion and λ is the regularization coefficient.

Following [5], to optimize DDP and DEO, the regular-
ization is given by

Rddp(x, y, s) =

{
u(f(θ,x))

pa
, s = a

u(−f(θ,x))
pb

, s = b
, (DDP ) (3)

Rdeo(x, y, s) =


u(f(θ,x))

pa1
, s = a, y = 1

u(−f(θ,x))
pb1

, s = b, y = 1

0, otherwise

, (DEO)

(4)

where u(·) is a smooth surrogate of the indicator function.

4.4. FST Search under Adversarial Training

Fairness-aware adversarial training aims to mitigate bias
by avoiding the prediction of sensitive attributes from the
representation or target output. We adopt the method pro-
posed in [6] to verify the existence of FSTs under ad-
versarial debiasing methods. The network in this method
has three sub-components, including a shared representa-
tion encoder e, a target prediction head t, and an adver-
sarial head o. We denote the parameters of these three
sub-components as θe, θt and θo, respectively. The binary
masks m also include three corresponding sub-components,
i.e., me , mt and mo. The goal of this method is to make
e(θe, x) produce a fair representation, t(θt, e(θe, x)) can
predict the targets , o(θo, e(θe, x)) can predict the sensi-
tive attributes. This method adopts a special identity func-
tion Jλ(·) with negative gradient where Jλ(x) = x and
∂Jλ(e(θe,x))

∂x = −λ∂e(θe,x)
∂x . The objective function of the

adversarial method can be formulated as

argmin
m

[
1

N

∑
(xi,yi)

ℓy(t(θt ⊙mt, e(θe ⊙me, xi)), yi)

+λ
1

N

∑
(xi,yi,si)

ℓz(o(θo ⊙mo, Jλ(e(θe ⊙me, xi))), si)],

s.t.∥m̂l∥0 = η · nl, l = 1, . . . , L

(5)

where both ℓy and ℓz are loss functions, and λ is the trade-
off coefficient.
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Figure 1. FSTs exist under Rddp regularization on CelebA and
LFW datasets with remaining ratio η = 10%.

5. Experiments
5.1. Experimental Setup

We briefly introduce some necessary experimental setup
here. More details are provided in the supplementary.
Datasets. We evaluate the existence and property of FSTs
on two real-world face image datasets, i.e., CelebA [40] and
LFW [34]. We adopt gender as the sensitive attribute. We
use Smiling and Blond Hair as the target labels on CelebA
and take Smiling and Wary Hair as the target labels on LFW.
Model initialization. In our experiments, we consider
four widely used initialization methods, i.e., Kaiming Uni-
form [31], Kaiming Normal [31], Signed Kaiming Con-
stant [51], Xavier Normal [26]. We use the Signed Kaiming
Constant as the default initialization method.
Implementation details. We use ResNet18 [32] as the net-
work architecture in our experiments. We train a network
with training set, select the network weights with the best
accuracy in validation set, and report the accuracy and un-
fairness in test set. The reported results are the average of
three trials with different random seeds.
Evaluation metrics. For evaluation, we use the accuracy-
fairness trade-off by varying the coefficient λ in the objec-
tive. A better accuracy-fairness trade-off means higher ac-
curacy and fairness metrics closer to zero. We take accuracy
as the x-axis and fairness metrics as the y-axis. In the ex-
periments in our main paper, we only consider D̂DP. The
corresponding experiments for D̂EO are deferred to the sup-
plementary.

5.2. The Existence of Fair Scratch Tickets

We call the fair dense networks trained with exist-
ing fairness-aware in-processing methods “dense counter-
parts” for short. We plot the results of FSTs and their vari-
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Figure 2. FSTs exist under Rddp regularization with four initial-
ization methods on CelebA with Smiling targets.
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Figure 3. FSTs exist under adversarial training with four initial-
ization methods on CelebA with Blond Hair targets.

ants using solid lines and the results of dense counterparts
using dashed lines.

In Fig. 1, we show the empirical existence of FSTs under
Rddp regularization on CelebA and LFW with a widely used
remaining ratio η = 10%. The corresponding experiments
for adversarial training are deferred to the supplementary.
We can see that: (1) in Figs. 1a to 1d, the accuracy-fairness
trade-off of FSTs are very close to the trade-off of the dense
counterparts; (2) the accuracy-fairness trade-off of FSTs
can outperform the dense counterparts in some cases; (3) in
Fig. 1d, FSTs can even consistently outperform the dense
counterparts.

Overall, it verifies that sparse subnetworks with inborn
fairness do exist in randomly initialized dense networks and
have comparable or even better accuracy-fairness trade-off
than the dense counterparts, without any weight training.
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Figure 4. FSTs exist under Rddp regularization with different spar-
sity patterns on CelebA with Smiling targets.
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Figure 5. FSTs exist under adversarial training with different spar-
sity patterns on CelebA with Blond Hair targets.

5.3. FSTs Exist under Different Remaining Ratios

In Figs. 2 and 3, we show the accuracy-fairness trade-off
of FSTs on CelebA with Smiling targets (for fairness regu-
larization) and Blond Hair targets (for adversarial training)
under a wide range of remaining ratios (i.e., η = 5% ∼
80%) with four different initialization methods.

In Fig. 2, under Rddp regularization, we can observe that:
(1) FSTs have comparable accuracy-fairness trade-off to the
dense counterparts under a wide range of weight remain-
ing ratios (i.e., η = 5% ∼ 80%), even without any weight
training; (2) FSTs perform best under the remaining ratio
η = 10%, indicating that an appropriate remaining ratio
plays an important role in FSTs. It shows that FSTs with
low or high remaining ratio have relatively worse perfor-
mance than FSTs with the best appropriate remaining ra-
tio. When the weight remaining ratio is low, FSTs suffer



from being under-parameterized due to the small capacity
of the subnetworks. While the original randomly initialized
weights are retained at high ratio level, FSTs are close to
the randomly initialized networks and incline to make ran-
dom predictions. In Fig. 3, the results also follow a similar
trend under adversarial training: although some FSTs can
outperform the dense in all reported remaining ratios, FSTs
still suffer from performance drop when the remaining ra-
tios are low (e.g., η = 5%) or high (e.g., η = 80%).

In summary, FSTs have comparable or even superior per-
formance to the dense counterparts, and less inference time
makes FSTs more advantageous.

5.4. FSTs Exist under Different Initialization

As shown in Figs. 2 and 3, when applying four different
widely used distributions to randomly initialize the dense
networks, FSTs consistently exist and achieve comparable
or even better accuracy-fairness trade-off, showing that our
FST search method is general.

5.5. FSTs Exist under Different Sparsity Patterns

We investigate the impact of structured sparsity patterns
of FSTs and visualize their accuracy-fairness trade-off in
Figs. 4 and 5. Besides element-wise sparsity, we consider
other two structured sparsity patterns: row-wise sparsity
and kernel-wise sparsity. We can observe that FSTs do exit
under different sparsity patterns. Moreover, Fig. 4 shows
that a more structured sparsity pattern leads to FSTs with
more inferior performance under fairness regularization. In
Fig. 5, the element-wise sparsity also suffers from a perfor-
mance drop when the remaining ratio is low or high. How-
ever, the structured sparsity patterns (i.e., row-wise sparsity
and kernel-wise sparsity) show a different trend that FSTs
can outperform the dense counterparts with considerably
high remaining ratios (e.g., even η = 80%).

We also study how FSTs exist under different fairness
surrogates, including linear [4, 16, 69], hinge [66], and
logistic [5] surrogates in the supplementary.

6. The Properties of FSTs

6.1. Fine-tuned Random Tickets and Fine-tuned
FSTs

In randomly initialized networks, we randomly select
weights of each convolutional layer with pre-defined re-
maining ratios to obtain random tickets. We fine-tune ran-
dom tickets to obtain fine-tuned random tickets.

In Figs. 6 and 7, we first compare the fine-tuned random
tickets with the dense counterparts. We can observe that: (1)
fine-tuned random tickets suffer from model collapse under
very low remaining ratios (e.g., Figs. 6a and 7a); (2) fine-
tuned random tickets can have comparable performance to
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Figure 6. Comparisions of FST variants under Rddp regularization
on CelebA with Smiling targets.
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Figure 7. Comparisions of FST variants under adversarial training
on CelebA with Smiling targets.

the dense counterparts under relatively high remaining ra-
tios (e.g., Figs. 6d and 7d), which is expected due to the
large capacity of subnetworks under relatively high remain-
ing ratios. Thus, when studying the fine-tuning properties,
we only consider the relatively low remaining ratios (e.g.,
η ≤ 10% in Fig. 6 and η ≤ 40% in Fig. 7).

Following [24,51], we also consider two fine-tuning set-
tings: (1) fine-tuning FSTs with initialization inherited from
the vanilla FSTs, and (2) fine-tuning FSTs with random re-
initialization of the vanilla FSTs.

In Fig. 6, under fairness regularization, we can find: (1)
fine-tuned FSTs can improve performance of the vanilla
FSTs under relatively high remaining ratios (e.g., η ≥
0.5%); (2) fine-tuned FSTs under high remaining ratios
(e.g., η = 5% and 10%) have performance very close
to the dense counterparts, which is expected due to large
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Figure 8. Comparisons between fine-tuned transferred FSTs and
other methods under Rddp on LFW with Smiling targets.

capacity of networks; (3) fine-tuned FSTs with inherited
weights outperform fine-tuned FSTs with randomly reini-
tialized weights when weights remaining ratios are low
(e.g., η = 0.1% and η = 0.5%) and these two fine-tuned
FSTs have comparable performance when the remaining
ratios are high (i.e., η ≥ 5%), indicating that FSTs can
find initialization particularly adept at further fairness learn-
ing; (4) fine-tuned FSTs outperform fine-tuned random tick-
ets under low remaining ratios, i.e., under-parameterization,
showing that FSTs find good network architectures that are
adept at fairness learning.

In Fig. 7, under adversarial training, fine-tuned FSTs
have different properties: although fine-tuned FSTs can im-
prove the performance of FSTs under low remaining ratios
(e.g., η = 10% and η = 0.5%), the fine-tuned FSTs even
have inferior performance to the vanilla FSTs (e.g., η = 5%
and η = 10%). It shows that under fair adversarial training,
FSTs without weight training is really a good approach to
fairness.

Overall, FSTs can find combinations of sparse architec-
tures and initialization that are with inborn fairness and even
particularly adept at further fairness learning.

6.2. FTTs Drawn from Trained Dense Networks

Here, we investigate the winning tickets drawn from
dense networks trained with existing in-processing fair-
ness method, which is called Fair Trained Tickets (FTTs).
The accuracy-fairness trade-off of FTTs are also shown
in Figs. 6 and 7. We can find that FTTs have inferior perfor-
mance to the fine-tuned FSTs in the vast majority of cases,
except Figs. 7c and 7d, suggesting that firstly finding un-
trained tickets from randomly initialized networks then fine-
tuning the remaining weights is better than firstly training
weights then finding tickets from the trained networks.

6.3. Transferability of FSTs across Datasets

Inspired by [45], we conduct experiments to study the
transferability of FSTs. As shown in Fig. 8, we fine-tune
the FSTs drawn from large dataset to small dataset, i.e.,
from CelebA with Smiling targets to LFW also with Smiling
targets. We can see that when the remaining ratios are rel-
atively high (e.g., η = 0.5%, 5% and 10%), the fine-tuned
transferred FSTs perform better than other methods, includ-
ing the vanilla FSTs and the fine-tuned FSTs, and even bet-
ter than the dense counterparts (e.g., η = 5%, 10%). It
verifies that our FSTs have good transferability. Although
the weights of FSTs are untrained and selected from ran-
domly initialized dense networks, our FST search method
really have good understanding of training set.

7. Conclusion

In this work, we propose a novel fairness-aware learn-
ing paradigm for in-processing methods in computer vision
from the perspective of the lottery ticket hypothesis. We
are the first to theoretically and empirically verify that sub-
networks drawn from randomly initialized neural networks
can achieve comparable or even better accuracy-fairness
trade-off than the existing in-processing methods, without
any weight training. We provide theoretical guarantees for
the fairness and accuracy of FSTs. Extensive experiments
show that FSTs can generalize on various datasets, target
attributes, random initialization methods, sparsity patterns,
and fairness surrogates. Furthermore, we study the proper-
ties of fine-tuning and transferability of FSTs. Throughout
the theoretical justification and extensive experiments, we
show that our FSTs are effective, and we believe that our
study can provide new insights into the CV fairness com-
munity.
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A. Overview and Outline
In this supplement, we provide a complement to the main content as outlined as below:

• We provide the proof for the Theorem 1 and EO version of Theorem 1 in Appendix B;

• We provide detalied experimental setup in Appendix C;

• We provide more experiments in Appendix E;

B. Proof and EO version of Theorem 1
B.1. Proof of Theorem 1

Proof. We provide the proof for fairness and accuracy, respectively.
Fairness. Notice that ∀x, |f∗(x)− f ′(x)| ≤ ϵ. So we denote Ta, Tb, ta, tb as follows:

•
∑N

i=1 I|f∗(xi)|≤ϵ,s=a = Ta,

•
∑N

i=1 I|f∗(xi)|≤ϵ,s=b = Tb.

•
∑

(x,s,y)∼D̂Z
s=a

If ′(x)>0 = ta +
∑

(x,s,y)∼D̂Z
s=a

If∗(x)>0,

•
∑

(x,s,y)∼D̂Z
s=b

If ′(x)>0 = tb +
∑

(x,s,y)∼D̂Z
s=b

If∗(x)>0

So we can derive that

• Ta + Tb = T ,

• |ta| ≤ Ta,

• |tb| ≤ Tb.

The last two inequalities are because the point xi that satisfies f∗(xi)f
′(xi) < 0 is obviously in the range |f∗(xi)| ≤ ϵ

because the assumption ∀xi, |f∗(xi)− f ′(xi)| ≤ ϵ.
Therefore,∣∣∣∣∣∣∣∣

∑
(x,s,y)∼D̂Z

s=a

If ′(x)>0 −
∑

(x,s,y)∼D̂Z
s=b

If ′(x)>0

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
ta +

∑
(x,s,y)∼D̂Z

s=a

If∗(x)>0

−

tb +
∑

(x,s,y)∼D̂Z
s=b

If∗(x)>0


∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
∑

(x,s,y)∼D̂Z
s=a

If∗(x)>0 −
∑

(x,s,y)∼D̂Z
s=b

If∗(x)>0

∣∣∣∣∣∣∣∣+ |ta − tb|

≤

∣∣∣∣∣∣∣∣
∑

(x,s,y)∼D̂Z
s=a

If∗(x)>0 −
∑

(x,s,y)∼D̂Z
s=b

If∗(x)>0

∣∣∣∣∣∣∣∣+ |Ta + Tb|

=N
∣∣∣D̂DP(f∗)

∣∣∣+ T

≤Nδf∗ + T.

Finally, ∣∣∣D̂DP(f ′)
∣∣∣ = 1

N

∣∣∣∣∣∣∣∣
∑

(x,s,y)∼D̂Z
s=a

If ′(x)>0 −
∑

(x,s,y)∼D̂Z
s=b

If ′(x)>0

∣∣∣∣∣∣∣∣ ≤ δf∗ +
T

N
≤ δf∗ + δf ′ .



Accuracy. We have

ACC(f∗) =
1

N

∑
(x,s,y)∼D̂Z

Iy=ŷ.

Notice that for the worst case, all of the T points change their labels and are misclassified, causing an accuracy drop of T
N .

So ACC(f ′) is not worse than the worst case:

ACC(f ′) ≥ 1

N

 ∑
(x,s,y)∼D̂Z

Iy=ŷ − T

 = ACC(f∗)− T

N
≥ ACC(f∗)− δf ′ ≥ δacc − δf ′ .

The proof is complete.

B.2. EO Version of Theorem 1

Both the theorem and the proof are similar to that of DP. Just by conditioning on y = 1, the proof is complete.

Theorem 2. Given the training set D̂Z = {(xi, si, yi)}Ni=1, approximation error threshold ϵ > 0, fairness tolerance δf∗ >
0, δf ′ > 0, accuracy lower bound δacc > 0. Assume that the following conditions hold:

(A) a sufficiently large training set: N ≥
∑N

i=1 I|f∗(xi)|≤ϵ

δf′
,

(B) a fair and accurate neural network f∗ that satisfies
∣∣∣D̂EO(f∗)

∣∣∣ ≤ δf∗ and ACC(f∗) ≥ δacc,

(C) a neural network f ′ = f(θ ⊙m) such that ∀xi ∈ X , there holds |f∗(xi)− f ′(xi)| ≤ ϵ.

Then f ′ is fair and accurate: { ∣∣∣D̂EO(f ′)
∣∣∣ ≤ δf∗ + δf ′ , (Fairness)

ACC(f ′) ≥ δacc − δf ′ .(Accuracy)

Proof. Fairness. Notice that ∀x, |f∗(x)− f ′(x)| ≤ ϵ. So we denote Ta, Tb, ta, tb as follows:

•
∑N

i=1 I|f∗(xi)|≤ϵ,s=a,y=1 = Ta,

•
∑N

i=1 I|f∗(xi)|≤ϵ,s=b,y=1 = Tb.

•
∑

(x,s,y)∼D̂Z
s=a
y=1

If ′(x)>0 = ta +
∑

(x,s,y)∼D̂Z
s=a
y=1

If∗(x)>0,

•
∑

(x,s,y)∼D̂Z
s=b
y=1

If ′(x)>0 = tb +
∑

(x,s,y)∼D̂Z
s=b
y=1

If∗(x)>0

So we can derive that

• Ta + Tb = T ,

• |ta| ≤ Ta,

• |tb| ≤ Tb.

The last two inequalities are because the point xi that satisfies f∗(xi)f
′(xi) < 0 is obviously in the range |f∗(xi)| ≤ ϵ

because the assumption ∀xi, |f∗(xi)− f ′(xi)| ≤ ϵ.



Therefore,∣∣∣∣∣∣∣∣∣∣
∑

(x,s,y)∼D̂Z
s=a
y=1

If ′(x)>0 −
∑

(x,s,y)∼D̂Z
s=b
y=1

If ′(x)>0

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

ta +
∑

(x,s,y)∼D̂Z
s=a
y=1

If∗(x)>0

−

tb +
∑

(x,s,y)∼D̂Z
s=b
y=1

If∗(x)>0


∣∣∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣∣
∑

(x,s,y)∼D̂Z
s=a
y=1

If∗(x)>0 −
∑

(x,s,y)∼D̂Z
s=b
y=1

If∗(x)>0

∣∣∣∣∣∣∣∣∣∣
+ |ta − tb|

≤

∣∣∣∣∣∣∣∣∣∣
∑

(x,s,y)∼D̂Z
s=a
y=1

If∗(x)>0 −
∑

(x,s,y)∼D̂Z
s=b
y=1

If∗(x)>0

∣∣∣∣∣∣∣∣∣∣
+ |Ta + Tb|

=N
∣∣∣D̂EO(f∗)

∣∣∣+ T

≤Nδf∗ + T.

Finally,

∣∣∣D̂EO(f ′)
∣∣∣ = 1

N

∣∣∣∣∣∣∣∣∣∣
∑

(x,s,y)∼D̂Z
s=a
y=1

If ′(x)>0 −
∑

(x,s,y)∼D̂Z
s=b
y=1

If ′(x)>0

∣∣∣∣∣∣∣∣∣∣
≤ δf∗ +

T

N
≤ δf∗ + δf ′ .

Accuracy. We have

ACC(f∗) =
1

N

∑
(x,s,y)∼D̂Z

Iy=ŷ.

Notice that for the worst case, all of the T points change their labels and are misclassified, causing an accuracy drop of T
N .

So ACC(f ′) is not worse than the worst case:

ACC(f ′) ≥ 1

N

 ∑
(x,s,y)∼D̂Z

Iy=ŷ − T

 = ACC(f∗)− T

N
≥ ACC(f∗)− δf ′ ≥ δacc − δf ′ .

The proof is complete.

C. Detailed Experiment Setup
C.1. Datasets

We conduct experiments on two real-world face image datasets, i.e., CelebA and LFW. The CelebA dataset consists of
202,599 images along with 40 annotated binary attributes per image, and LFW dataset consists of 13,244 images along with
73 annotated binary attributes per image. We adopt gender as the sensitive attribute. We use Smiling and Blond Hair as the
target labels on CelebA , and we take Smiling and Wavy Hair as the target labels on LFW. We split each dataset into training
set, validation set and test set. We use the torchvision, a library of Pytorch for computer vision to split the original dataset of
CelebA into training set, validation set and test set. We randomly divide the original dataset of LFW into training set with
6,000 images, validation set with 3,600 images and test set with the remaining images. All the images are first resized to 256
× 256, and then center cropped to 224 × 224.

We find that, under fairness-aware adversarial training, when using the Smiling targets on both CelebA and LFW, the
model training suffers from model collapses. Thus, we only evaluate our FST search method on CelebA with Blond Hair



targets and LFW with Wary Hair targets. Moreover, we find that employing the all training set under fairness-aware adver-
sarial training on CelebA leads to model collapse. Thus, under fairness-aware adversarial training on CelebA, we only use
the 10% images of CelebA training set, and the validation set and test set remain unchanged. Although we have to adopt
some special settings for fairness-aware adversarial training due to overcoming model collapses, we believe that our
experiments for adversarial training is enough to prove the generality of our FST search method under fairness-aware
adversarial training. In addition, we would like to emphasize that, the model collapses occur on both the fair dense
networks trained with existing fairness-aware in-processing methods and our FST methods, which to some extent can
also be considered comparable.

Dataset Method Optimizer Epochs Learning Rate

CelebA Regularization SGD 3 0.01
CelebA Adversarial Adam 10 0.01
LFW Regularization Adam 10 0.0005
LFW Adversarial Adam 10 0.01

Table 1. Optimizers, Epochs and Learning Rates for Datasets and Methods

C.2. Implementation details

We implement all experiments by Pytorch. We use ResNet18 as the network architecture under fairness regularization. As
for fairness-aware adversarial training, we use ResNet18 as the shared representation encoder, a fully connected layers with
dimensions of 512-512-1 and ReLU activate function as the target prediction head, a fully connected layers with dimensions
of 256-64-1 and LeakyReLU (negative slope = 0.1) activation function as the target prediction head as the adversarial head.
In Tab. 1, we show the selection of optimizer, epochs and learning rate when specifying the dataset and method. The policy
of learning rate decay is set to cosine annealing, and the mini-batch size is set to 128 except the experiments under Rdeo
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Figure 9. FSTs exist under Rddp regularization with different sparsity patterns on CelebA with Smiling targets.



regularization on CelebA with Blond Hair targets is set to 512. For experiments whose optimizer is SGD, we use momentum
of 0.9 and weight decay of 0.0001. For experiments whose optimizer is Adam, we use betas of 0.9 and 0.999 and weight
decay of 0.0001. We train network with training set, select the network weights with the best accuracy in validation set, and
report the accuracy and unfairness in test set. The reported results are the average of three trials with different random seeds.

D. FSTs Exist under Different Fairness Surrogates
In Fig. 9, we show the accuracy-fairness trade-off of FSTs under different fairness surrogates u(·). We consider three kinds

of surrogates: linear surrogate [4, 16, 69], hinge surrogate [66], and logistic surrogate [5]. We can find that the FSTs exist
under different fairness surrogates. The best surrogate is the logistic surrogate, which is consistent with [5]. An interesting
fact is that FSTs with linear surrogate outperform the dense counterparts trained with linear surrogate, which is different from
other fairness surrogates.

E. More Experiments
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Figure 10. FSTs exist under Rdeo regularization on CelebA and LFW datasets with remaining ratio η = 10%.
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Figure 11. FSTs exist under fairness-aware advesarial training on CelebA and LFW datasets with remaining ratio η = 10% ( D̂DP metric).
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Figure 12. FSTs exist under advesarial training on CelebA and LFW datasets with remaining ratio η = 10% ( D̂EO metric ).
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Figure 13. FSTs exist under Rdeo regularization with four initialization methods on CelebA with Smiling targets.
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Figure 14. FSTs exist under adversarial training with four initialization methods on CelebA with Blond Hair targets ( D̂EO metric) .
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Figure 15. FSTs exist under Rdeo regularization with different sparsity patterns on CelebA with Smiling targets.

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Accuracy

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

D
EO

Element_wise
Row_wise
Kernel_wise
Dense

(a) η = 5%

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Accuracy

0.0

0.1

0.2

0.3

0.4

D
E O

Element_wise
Row_wise
Kernel_wise
Dense

(b) η = 10%

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Accuracy

0.0

0.1

0.2

0.3

0.4

0.5

D
E

O

Element_wise
Row_wise
Kernel_wise
Dense

(c) η = 40%

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Accuracy

0.0

0.1

0.2

0.3

0.4

0.5

D
E O

Element_wise
Row_wise
Kernel_wise
Dense

(d) η = 80%

Figure 16. FSTs exist under adversarial training with different sparsity patterns on CelebA with Blond Hair targets ( D̂EO metric) .
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Figure 17. FSTs exist under Rdeo regularization with different fairness surrogates on CelebA with Smiling targets.
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Figure 18. Comparisions of FST variants under Rdeo regularization on CelebA with Smiling targets.
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Figure 19. Comparisions of FST variants under adversarial training on CelebA with Smiling targets ( D̂EO metric) .
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Figure 20. Comparisons between fine-tuned transferred FSTs and other methods under Rdeo on LFW with Smiling targets.
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