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Abstract

The support/query episodic training strategy has been widely applied in modern
meta learning algorithms. Supposing the n training episodes and the test episodes
are sampled independently from the same environment, previous work has derived
a generalization bound of O(1/

√
n) for smooth non-convex functions via algorith-

mic stability analysis. In this paper, we provide fine-grained analysis of stability
and generalization for modern meta learning algorithms by considering more gen-
eral situations. Firstly, we develop matching lower and upper stability bounds for
meta learning algorithms with two types of loss functions: (1) nonsmooth convex
functions with α-Hölder continuous subgradients (α ∈ [0, 1)); (2) smooth (includ-
ing convex and non-convex) functions. Our tight stability bounds show that, in
the nonsmooth convex case, meta learning algorithms can be inherently less stable
than in the smooth convex case. For the smooth non-convex functions, our stability
bound is sharper than the existing one, especially in the setting where the number
of iterations is larger than the number n of training episodes. Secondly, we derive
improved generalization bounds for meta learning algorithms that hold with high
probability. Specifically, we first demonstrate that, under the independent episode
environment assumption, the generalization bound of O(1/

√
n) via algorithmic

stability analysis is near optimal. To attain faster convergence rate, we show how to
yield a deformed generalization bound of O(lnn/n) with the curvature condition
of loss functions. Finally, we obtain a generalization bound for meta learning
with dependent episodes whose dependency relation is characterized by a graph.
Experiments on regression problems are conducted to verify our theoretical results.

1 Introduction

The last decade has witnessed the success of deep learning techniques in machine learning community
[30, 26, 12]. However, the need of large amount of annotated data hinders their application in real-life
scenarios. To alleviate this issue, meta learning [4], which employs knowledge from past tasks to
facilitate adaptation to the new task, has emerged as a promising direction to reduce annotation cost.

Traditional meta learning algorithms directly minimize the empirical error over all samples in the
training tasks [3, 36, 37, 41, 38]. To improve the generalization ability of meta learning algorithms,
recent works propose the support/query (S/Q) episodic training strategy [48, 21, 44]. Specifically, in
modern meta learning algorithms, each episode/task is split into two non-overlapped parts: support set
and query set. The support set is used to learn a hypothesis, and the query set is used to measure the
performance of the learned hypothesis on that episode. Therefore, the S/Q episodic strategy regards
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each task as a training instance and updates the meta learning model by implementing episode-level
stochastic gradient descent (SGD). Supposing the n training episodes and the test episodes are
sampled independently from the same environment, previous work [9] has derived a high-probability
generalization bound of O(1/

√
n) for modern meta learning. Such bound is obtained via algorithmic

stability analysis [7] for smooth non-convex loss functions. However, it is still unknown whether such
generalization bound of O(1/

√
n) is optimal, and whether we can obtain sharper bounds for modern

meta learning. Further, there is still lack of comprehensive comparisons between the bounds obtained
via S/Q episodic training and the bounds obtained via traditional empirical risk minimizing (ERM).

In this work, we will address the above problems via algorithmic stability analysis. Algorithmic
stability, roughly speaking, bounds the change in the model output by the algorithm when a single data
in the dataset is replaced. Our goal is to provide fine-grained analysis of stability and generalization
for modern meta learning algorithms by considering more general situations. Firstly, we develop
matching lower and upper stability bounds for meta learning algorithms with two types of loss
functions: (1) nonsmooth convex functions with α-Hölder continuous subgradients where 0 ≤ α < 1;
(2) smooth (including convex and non-convex) functions. Our tight stability bounds demonstrate that,
in the nonsmooth convex case, modern meta learning algorithms can be less stable than in the smooth
convex case. In particular, the lower stability bound for nonsmooth convex functions is vacuous
even if we train modern meta learning algorithms with a relatively small constant step size in SGD.
In the smooth non-convex case, our derived bound is sharper than the existing one [9], especially
in the setting where the number of SGD iterations is larger than the number n of training episodes.
Secondly, we provide high-probability generalization bounds for modern meta learning algorithms
with the aforementioned two types of loss functions. Specifically, we first demonstrate that, under
the independent episode environment assumption, the bound of O(1/

√
n) is near optimal and is

independent of the sample size m per episode. We thus show that, in terms of the sharpness of the
generalization bounds, the S/Q episodic training strategy is superior to the traditional ERM strategy
for meta learning (see Remark 6). To obtain faster convergence rate, we next show how to yield
a deformed generalization bound of O(lnn/n) with additional curvature assumption (i.e., Polyak-
Łojasiewicz condition [49]) of the loss function. Finally, we use the graph approximation technique
[50] to obtain a bound for meta learning with dependent episodes whose dependency relation can be
characterized by a graph. To the best of our knowledge, this is the first bound that captures how the
dependency between episodes can affect the generalization behavior of meta learning algorithms.

Overall, our contributions are four-fold: (1) We provide matching lower and upper stability bounds
for modern meta learning algorithms with general loss functions. The stability bound for nonsmooth
convex functions implies that modern meta learning algorithms are not stable enough; and the stability
bound in the smooth non-convex case is sharper than the existing one. (2) We develop a near-optimal
high-probability bound of O(1/

√
n) on the transfer error in meta learning. Such bound is also used to

reveal the advantage of the S/Q episodic strategy for meta learning over the traditional ERM strategy.
(3) We derive a deformed generalization bound of O(lnn/n) with additional curvature condition of
loss functions. (4) We obtain the first bound for meta learning with dependent episodes. Experiments
on regression problems are conducted to validate the convergence of our generalization bounds.

2 Related Work
Algorithmic Stability Theory. Algorithmic stability analysis is an important tool to provide
theoretical guarantee for the learnability of machine learning models. [43] has shown that there
are non-trivial problems where traditional uniform convergence analysis (i.e., empirical process
theory [47]) fails to hold, but stability can be identified as the sufficient and necessary condition
for learnability. There are two main groups in this direction: (1) The first group develop different
notations of stability and connect their relation to the generalization of specific algorithms. Among
them, uniform stability is the most widely used notation and has been utilized to analyze the stability
and generalization of regularized ERM algorithms [7]. Hypothesis stability is a weaker notation and
has been used to show the stability of k-Nearest Neighbor model [13]. Both of the above algorithmic
stability notions have been extended to the randomized setting to demonstrate the stability of Bagging
algorithm [16]. In recent years, different notations have been employed to analyze the stability
and in-expectation generalization bounds of stochastic gradient descent method, which include
uniform stability [25], on-average stability [31], uniform argument stability [35, 2], on-average
model stability [33] and locally elastic stability [11]. (2) The second group aims to derive tight
high-probability generalization bounds for uniformly stable algorithm in single-task learning. The
first high-probability bound has been derived by [7], and has been improved in [19]. Recently, nearly
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optimal generalization bounds of O(1/
√
n) have been established in [20, 8], where n is the size of

training dataset. Further, with additional Bernstein condition, [29] derives a generalization bound
of O(1/n). In this work, we aim to provide tight stability bounds and improved high-probability
generalization bounds for episodic meta learning algorithms. The key step to achieve our goal is to
reveal the equivalence of notations between single-task learning and episodic meta learning, hence
we can extend the demonstration techniques from [8, 29, 50] to the episodic meta learning setting.

Generalization Bounds for Meta Learning. Supposing the n training tasks and the novel tasks
are sampled independently from the same environment, [4] derives the first generalization bound on
the transfer error over the novel task for meta learning. Under the independent task environment
assumption, we can categorize existing transfer error bounds into three main groups: (1) transfer
error bounds of hypothesis space. Such bounds are always achieved via covering number analysis [4]
or VC theory [6], and hence are always dimension-dependent. The latest upper bound in this group
is of O(1/

√
nm + 1/

√
m) in [23, Theorem 5], where m is the sample size per task. (2) transfer

error bounds of the hyper-distribution of prior. Such bounds are obtained via PAC-Bayes analysis
[41, 42, 14]. The tightest bound in this group is of order O(1/

√
n+ 1/m) in [18, Theorem 3]. (3)

transfer error bounds of the algorithm. Such bounds are obtained via algorithmic stability analysis
[36, 1]. The tightest bound in this group is of O(1/

√
n) in [9, Theorem 4] for episodic meta learning

algorithms. Detailed comparisons between different transfer error bounds can be found in Table A.2
of Appendix A. There also exist other works without the task environment assumption. Instead, they
choose to bound the excess risk on the novel task by proposing task-similarity measurement [15, 46],
or using the total variation distance as the diversity measurement between novel task and training
tasks [17]. In this work, we take the task environment assumption and follow the work of [9]. Our
first improvement is to demonstrate that the bound of O(1/

√
n) is near optimal. Besides, we show

how to obtain a deformed generalization bound of O(lnn/n) with additional curvature assumption
of the loss function. Further, we derive a bound with dependent training episodes, revealing how
dependency relation between episodes can affect the generalization of meta learning algorithms.

3 Problem Formulation
In supervised learning, a sample space Z = X×Y is a product space of an input space X and an output
space Y . H = {hw : w ∈ W} is the hypothesis space where the hypothesis hw ∈ H is parameterized
by parameter w in the parameter space W . A measurable function f : H×Z → [0,M ](M > 0) is
defined as a nonnegative and bounded loss function, whose loss of a hypothesis hw over a sample z
is denoted by f(hw, z) or f(w, z). Let M1(A) denote the set of probability measures over the set A.

Loss Functions. Throughout we assume that the parameter space W ⊂ Rd. Thus, we use unambigu-
ously || · || = || · ||2 as the Euclidean norm. Let ProjW be the Euclidean projection onto W , which is
nonexpansive ||ProjW(u)−ProjW(v)|| ≤ ||u−v||. For any fixed z ∈ Z , a function f(·, z) : W → R
is convex if for all u, v ∈ W , f(u, z) ≥ f(v, z) + ⟨g, u − v⟩, where g ∈ ∂f(v, z), and ∂f(v, z)
denotes the set of subgradients of f(·, z) at v. Let ∂0f(v, z) denote the subgradient with the least
norm. If f(·, z) is differentiable, ∂f(·, z) denotes the gradient of f(·, z), i.e., ∂f(·, z) = {∇f(·, z)}.
For any z ∈ Z , f(·, z) is σ-Lipschitz if ∀u, v ∈ W , |f(u, z)− f(v, z)| ≤ σ||u− v||. For any z ∈ Z ,
f(·, z) is G-smooth if ∀u, v ∈ W , ||∂f(u, z)− ∂f(v, z)|| ≤ G||u− v||. We also give the definition
of function with (α,G)-Hölder continuous subgradient as follows. We may refer to such functions as
(α,G)-Hölder smooth or α-Hölder smooth function for simplicity when the context is clear.

Definition 1 Let G > 0, α ∈ [0, 1]. For any z ∈ Z , a function f(·, z) is called (α,G)-Hölder
smooth if its subgradient is (α,G)-Hölder continuous, i.e., ∂f(·, z) satisfies the following conditions:

∀u, v ∈ W, ||∂f(u, z)− ∂f(v, z)|| ≤ G||u− v||α. (1)

If (1) holds with α = 1, then f(·, z) is a G-smooth function; if (1) holds with α = 0, this implies the
subgradient boundedness of f(·, z). The examples of loss functions in machine learning satisfying
(1) include the q-norm hinge-loss f(w, z) =

(
max(0, 1− y⟨w, x⟩)

)q
for classification and the q-th

power absolute distance loss f(w, z) = |y − ⟨w, x⟩|q for regression, whose subgradients are both
(q − 1, C)-Hölder continuous for some C > 0 if q ∈ [1, 2] (see [10]). For (α,G)-Hölder smooth
function, define cα = (1 + 1/α)

α
1+αG

1
1+α if α ∈ (0, 1]; and cα = supz ||∂f(0, z)||+G, if α = 0.

Single-Task Learning. The training dataset S = {zj = (xj , yj)}mj=1 is given by m independent
draws from an unknown distribution D on Z (i.e., D ∈ M1(Z)). An algorithm A takes S as input
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and outputs a hypothesis A(S) in H. The set of such algorithms depends only on H and Z and will
be denoted by A(H,Z). In single-task learning, a hypothesis A(S) is always obtained by minimizing
the empirical error on S: L̂(A(S), S) ≜ 1

m

∑m
j=1 f(A(S), zj). The performance of the returned

hypothesis A(S) is measured by the expected/generalization error with respect to (w.r.t.) the data
distribution D: L(A(S), D) ≜ Ez∼Df(A(S), z). The goal of learning theory is thus to give a (lower
or upper) bound on the expected error based on the empirical error on the training dataset S.

Meta Learning. Following existing theoretical works for meta learning[4, 36, 41, 9], we assume
that the distributions {Di}ni=1 associated with different training tasks are drawn from the same task
environment τ , which is a probability distribution over the set of all data distributions on Z (i.e.,
τ ∈ M1(M1(Z))). During the training process, a meta-sample S = {Si = Str

i ∪ Sts
i }ni=1 is

available, where Str
i

i.i.d.∼ DK
i of size K is the training set, and Sts

i
i.i.d.∼ Dq

i of size q is the test set of
the i-th training task. In this work, we assume that K+ q = m for notation convenience. The training
set and the test set are also called support set and query set [9], respectively. Let A(A(H,Z),Zm)
be the set of meta learning algorithms. For any A ∈ A(A(H,Z),Zm), it takes the meta-sample
S = {Si}ni=1 as input and outputs an algorithm (inner-task algorithm) A(S) : ∪∞

m=1Zm → H. The
performance of the learned inner-task algorithm is measured by the expectation of the generalization
error w.r.t. the task environment τ , which is defined as the transfer error by [36, 9] as follows:

er(A(S), τ) ≜ ED∼τEStr∼DKEz∼Df(A(S)(Str), z). (2)

Actually, the environment τ can define an induced distribution Dτ ∈ M1(Zm), by setting
Dτ (F ) = ED∼τD

m(F ) for any measurable set F ⊆ Zm. Define the estimator l(A(S), S) ≜

L̂(A(S)(Str), Sts), where S = Str ∪ Sts, S i.i.d.∼ Dm. Then we can rewrite the transfer error as
a simple form: er(A(S), τ) = ES∼Dτ

l(A(S), S). This means that, the training error l(A(S), S)
is the unbiased version of the transfer error er(A(S), τ) = ES∼Dτ

l(A(S), S). This is similar to
the fact that, in single-task learning, the empirical error f(A(S), z) is the unbiased version of the
generalization error L(A(S), D) = Ez∼Df(A(S), z). Therefore, a transfer error bound is formally
equivalent to a single-task generalization error bound under the identifications Z ↔ Zm, f ↔ l,
A ↔ A. The relation of the notations between single-task learning and meta learning is listed in
Table B.1 in Appendix B. In practice, it is difficult to minimize er(A(S), τ) directly as we have
no information of the environment distribution τ . Instead, we choose to minimize the following
empirical risk based on the S/Q episodic training strategy. The goal of meta learning theory is thus to
give a bound on the transfer error, based on the empirical multi-task error on the meta-sample S:

êr(A(S),S) ≜
1

n

n∑
i=1

L̂(A(S)(Str
i ), Sts

i ) =
1

n

n∑
i=1

l(A(S), Si). (3)

Uniform Stability of Meta Learning Algorithms. We say two meta-samples S = {Si}ni=1 and
S′ = {S′

i}ni=1 are neighboring, denoted by S ≃ S′, if they only differ on a single entry, i.e., there
exists i ∈ [n] s.t. ∀j ̸= i, Sj = S′

j ; and Si ̸= S′
i . We also define Si = {S1, .., S

′
i, ...Sn} as the

neighboring meta sample of S that differs only on the i-th entry. We next define the uniform stability
of meta algorithms with episodic training strategy, which is formulated explicitly in [9, Definition 3].

Definition 2 (Uniform stability of modern meta learning algorithms) A meta algorithm A has
uniform stability w.r.t. the loss function L̂ if the following holds for any meta-sample S and for any
i ∈ [n], any D ∼ τ , Str ∼ DK , Sts ∼ Dq: |L̂(A(S)(Str), Sts)− L̂(A(Si)(Str), Sts)| ≤ γ.

Since l(A(S), S) = L̂(A(S)(Str), Sts), we can also define the uniform stability of A as: ∀S ∼
Dτ ,∀i ∈ [n], |l(A(S), S)− l(A(Si), S)| ≤ γ. Such definition is analogous to the uniform stability
of an inner-task algorithm A in single-task learning (see Definition D.1 in Appendix D) under the
identifications: l ↔ f,A ↔ A,S ↔ S. Thus, we can directly apply the existing uniform stability
based generalization bound from single-task learning [7, Theorem 12] to obtain the uniform stability
based transfer bound for episodic meta learning [9, Theorem 2], without lengthy and somewhat
duplicate proof in [9]. We list such fundamental uniform stability based transfer error bound in
Theorem 1 for later comparison. To derive sharper transfer error bounds, our key step is to utilize the
equivalent relation between the notations of single-task learning and episodic meta learning, thus
extending fast-rate bounds in single-task learning [8, 29, 50] to the episodic meta learning setting.
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Theorem 1 Suppose the S/Q episodic meta learning algorithm A has uniform stability γ w.r.t. the
estimator l(·, S) bounded by M . Then, for any task distribution τ ∈ M1(M1(Z)), any δ ∈ (0, 1),
the following inequality holds with probability at least 1− δ over the draw of meta sample S:

er(A(S), τ) ≤ êr(A(S), S) + γ + (2nγ +M)

√
ln (1/δ)

2n
.

4 Uniform Argument Stability Bounds of Meta Learning Algorithms
For a modern meta learning algorithm with deep neural networks [21, 44], we always employ stochas-
tic gradient descent (SGD) method to minimize the empirical error 1

n

∑n
i=1 L̂(A(S)(Str

i ), Sts
i ) to

learn a good feature embedding. Formally, we define the sampling-with-replacement gradient update
rule at (t + 1)-th step as: wt+1 = ProjW [wt − ηt∂wt

L̂(A(S)(Str
it
), Sts

it
)], where it is indepen-

dently and identically drawn (i.i.d.) from the uniform distribution Unif([n]). Therefore, although
L̂(A(S)(Str

it
), Sts

it
) is the loss only calculated over the query samples Sts

it
, it is still related to the

support samples Str
it

, and the updated parameter wt+1 is also related to Str
it

. Therefore, we define an
equivalent empirical loss R̂(A(S)(S), S) ≜ L̂(A(S)(Str), Sts) to indicate that: the empirical loss
over the episode S = Str ∪ Sts is related to the whole episode sample S, and so is the output hypoth-
esis A(S)(S). Therefore, for the empirical error 1

n

∑n
i=1 R̂(A(S)(Si), Si), the episode-level SGD

update rule is: wt+1 = ProjW [wt − ηt∂wt
R(wt, Sit)]. The pseudo code as well as several examples

of modern meta learning algorithms can be found in Subsection 4.1. In this section, we provide lower
and upper stability bounds for meta learning with sampling-with-replacement SGD method. First, we
give the definition of uniform argument stability of episodic meta learning algorithms.

Definition 3 (Uniform argument stability of meta learning algorithms). Given a meta learning
algorithm A, any neighboring meta samples S,S′, and any training episode S ∈ Zm, we define the
uniform argument stability random variable of A as δA(S,S′;S) = ||A(S)(S)−A(S′)(S)||.
A is defined as a uniform argument β-stable meta learning algorithm if for some β > 0, we have
supS≃S′,S δA(S,S′;S) ≤ β or supS≃S′,S EAδA(S,S′;S) ≤ β, where EA denote the expectation
w.r.t. the internal randomness of A. For a meta learning algorithm with SGD method, the internal
randomness of A comes from the randomness of sampling at each iteration. Note that if R̂(·, S) is a
Lipschitz function for any S ∈ Zm, the uniform argument stability of A implies the uniform stability
of A in Definition 2. In this work, we investigate the stability of modern meta learning algorithms
with sampling-with-replacement SGD training strategy. Therefore, we will derive lower and upper
bounds on EA||A(S)(S)−A(S′)(S)|| across different settings in Subsections 4.2-4.3.

4.1 Pseudo Code of Modern Meta Learning Algorithms

Algorithm 1 Support/Query Episodic Training based Meta Learning Algorithm
1: Input: training dataset S = {Si}ni=1 with Si = {Str

i , Sts
i }, # of iterations T , learning rates ηt

(t ∈ [T ]).
2: Initialize: the parameters of deep neural networks w1.
3: for t = 1 to T do
4: Uniformly sample one of n training episodes with replacement. Let it be the episode index.
5: wt+1 = ProjW

(
wt − ηt∂R̂(wt, Sit)

)
// episode-level SGD update

6: end for
7: return wT+1

We provide several specific meta learning algorithms to illustrate the calculation of loss R̂(wt, Sit)
on the episode Sit at the t-th iteration, where wt is always the parameters of the feature extractor that
is shared across different episodes. For the metric-learning based algorithms [44, 48] in classification,
hwt

is regarded as the feature extractor to output the feature vector hwt
(x) with data x as input. Then

R̂(wt, Sit) =
1

q

∑
(x,y)∈Sts

it

− log
exp{−d(hwt(x), cy)}∑
k exp{−d(hwt

(x), ck)}
,
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where ck = 1
Norm

∑
(x,y)∈Str

it
,y=k hwt(x) is the prototype (i.e., averaged vector) of the sample

features in the support set Str
it

with the same class label k; d(·, ·) is the distance between two feature
vectors, e.g. the Euclidean distance in ProtoNet [44], and the Cosine distance in MatchingNet [48].
For the classifier-learning based meta learning algorithm MetaOptNet [32],

R̂(wt, Sit) =
1

q

∑
(x,y)∈Sts

it

− log
exp{λ⟨hwt(x), ϕy⟩}∑
k exp{λ⟨hwt

(x), ϕk⟩}
,

where {ϕk}Kk=1 are the parameters of the classifier returned by supervised learning algorithms (e.g.
SVM) on the support set Str

it
, ⟨, ⟩ represents the inner product. For the gradient-learning based meta

algorithm MAML [21], let αt be the learning rate of the inner-task algorithm at the t-th iteration, then

R̂(wt, Sit) =
1

q

∑
z∈Sts

it

f(wt −
αt

K

∑
z′∈Str

it

∂f(wt, z
′), z).

4.2 Stability Bounds for Nonsmooth Functions with α-Hölder Continuous Subgradients

In this subsection, we provide lower and upper stability bounds for episodic meta learning algorithm
whose loss function is nonsmooth convex and has α-Hölder continuous subgradient with 0 ≤ α < 1.

Theorem 2 ∀ fixed S ∈ Zm, let R̂(·, S) be a convex and (α,G)-Hölder smooth function, where
α ∈ [0, 1). Let A be a meta learning algorithm with sampling-with-replacement SGD. Denote by
wj and w′

j the outputs after j(j ∈ [T ]) steps of SGD on S and Si, respectively. Define RS(w) =

n−1
∑n

i=1 R̂(w, Si), ∀w ∈ W . Then ∀S ∈ Zm, EAδA(S,S′;S) is upper bounded by

√
2cα

[ T∑
j=1

η2jE
[
R

2α
1+α

S (wj) +R
2α

1+α

Si (w′
j)
]] 1

2

+
2cα
n

T∑
j=1

ηj
[
R̂

α
1+α (wj , Si) + R̂

α
1+α (wj , S

′
i)
]
. (4)

In addition, if R̂(·, S) is bounded by M and the step size ηj = η ∀j ∈ [T ], we can obtain the
lower and upper bounds of the uniform argument stability of A: cαM

α
1+α (min{1, T

n }η
√
T + ηT

n ) ≤
supS,S′,S EAδA(S,S′;S) ≤ 4cαM

α
1+α

(
min{1, T

n }η
√
T + ηT

n

)
.

Remark 1 Our upper stability bound in Eq. (4) depends on the empirical risk during the optimization
process. Formally, Eq. (4) shows that, the stability of modern meta algorithm increases if we find
good parameters wj with small empirical risk RS(wj) at the j-th optimization step. This illustrates
a key insight that optimization is beneficial to improve the generalization of algorithms. Besides, our
stability upper bound also implies the importance of a good embedding [45] (which may have a good
initialization and low empirical risk during the first several optimization steps) to generalization.

Remark 2 We additionally suppose the function to be bounded by M such that the stability bounds
can be used to analyze the generalization bounds in the next section where the loss function is always
assumed to be bounded. Note that when α = 0, R̂(·, S) is a nonsmooth cα-Lipschitz convex function,
and our lower and upper stability bounds recover the results in [2]. For bounded convex α-Hölder
smooth functions, the lower stability bound implies that modern meta learning algorithms are not
stable enough even if we train them with a relatively small constant step size in each SGD iteration.

Remark 3 The above result shows that, for bounded convex α-Hölder smooth function (α ∈ [0, 1)),
the uniform argument stability parameter β = O

(
cαM

α
1+α (min{1, T/n}η

√
T + ηT/n)

)
. Another

work [33] also focuses on convex α-Hölder smooth function. Using the technique from [33], we obtain
the upper stability bounds for bounded convex α-Hölder smooth function under the same conditions:
β ≤ O

(
cαM

α
1+α (η

1
1−αT + ηT/n)

)
or β ≤ O

(
cαM

α
1+α (η

1
1−α

√
T + η

√
T/n)

)
(see Theorems C.1-

C.2 in Appendix C.2.2), both of which are larger than our tight stability bound in Theorem 2 under
the setting T ≤ n. When T > n, the upper bound β ≤ O

(
cαM

α
1+α (η

1
1−α

√
T + η

√
T/n)

)
in

Theorem C.2 is slightly sharper than the upper bound O
(
cαM

α
1+α (η

√
T + ηT/n)

)
in Theorem 2.

4.3 Stability Bounds for Smooth Functions

In this subsection, we provide lower and upper uniform argument stability bounds for modern meta
learning algorithms with smooth functions. First, we consider smooth convex functions.
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Theorem 3 ∀ fixed S ∈ Zm, let R̂(·, S) be a G-smooth convex function. Let A be a meta learning
algorithm with sampling-with-replacement SGD. Denote by wj and w′

j the outputs after j(j ∈ [T ])

steps of SGD on neighboring meta samples S and Si, respectively. Then ∀S ∈ Zm, ηj ≤ 2/G,

EA||A(S)(S)−A(Si)(S)|| ≤
√
2G

n

T∑
j=1

ηjEA

[√
R̂(wj , Si) +

√
R̂(w′

j , S
′
i)
]
.

In addition, if R̂(·, S) is bounded by M , we can obtain the lower and upper bounds of the uniform
argument stability of A: 1

n

∑T
j=1 ηj ≤ supS,S′,S EAδA(S,S′;S) ≤ 2

√
2MG
n

∑T
j=1 ηj .

If we set all ηj = η, then for bounded convex functions, the tight stability bound of O(ηTn ) under the
smooth case is sharper than the stability bound of O(min{1, T

n }η
√
T + ηT

n ) in Theorem 2 under the
nonsmooth case. This indicates that in the smooth case, meta learning algorithms are more stable
than in the nonsmooth case. Finally, we give stability bounds for smooth non-convex functions.

Theorem 4 ∀ fixed S ∈ Zm, let R̂(·, S) be a σ-Lipschitz and G-smooth function. Let A be a meta
learning algorithm. Denote by wj and w′

j the outputs after j(j ∈ [T ]) steps of SGD on S and Si,
respectively. Define the learning rate ηj =

a
jG , ∀j ∈ [T ] with a > 0. Then ∀S ∈ Zm, the lower and

upper stability bounds of A satisfy: Ta

6n1+a ≤ supS,S′,S EAδA(S,S′;S) ≤ 11 ln (n)σTa

n1+a .

Under the same step size setting, existing upper uniform argument stability bound in [9, Theorem3]
or in [35, Proposition 4] for non-convex, smooth and Lipschitz function is of O(T

a
1+a /n) . Our

bound of order O(T a/n1+a) is improved over the existing bound when T
a

1+a ≤ n. Besides, our
stability bound can be non-vacuous for multi-pass SGD setting (i.e., when T = kn, k ∈ N) where
the number T of SGD iterations is larger than n, as long as k ≤ n1/a.

5 High Probability Transfer Error Bounds for Meta Learning
In this section, we establish high probability bounds for transfer error er(A(S), τ). Specifically, we
still consider two kinds of loss function: (1) convex and (α, G)-Hölder smooth function (α ∈ [0, 1]);
(2) non-convex, σ-Lipschitz and G-smooth function. We always assume that the loss function R̂(·, ·)
is bounded by M . Define σα = cαM

α
1+α if R̂(w, S) is a convex and (α,G)-Hölder smooth function;

σα = σ if R̂(w, S) is a σ-Lipschitz and G-smooth function. We just exhibit the generalization
bounds of randomized algorithm A by supposing PA[δA(S,S′;S) > β] ≤ δ0. We provide an
example to illustrate how to calculate δ0 in Example D.1 in Appendix D. The generalization bound
for deterministic meta algorithm (e.g. with gradient descent) can be stated by setting δ0 = 0.

5.1 Near Optimal Transfer Error Bound for Meta Learning with Independent Episodes

We denote by a ≲ b the existence of some universal constant c > 0 such that a ≤ cb. Then we obtain
the following near optimal bound of O(1/

√
n) under the independent task environment assumption.

Theorem 5 Let A ∈ A(A(H,Z),Zm) be a uniform argument β-stable meta algorithm, i.e.,
supS≃S′,S EA||A(S)(S) − A(S′)(S)|| ≤ β. For any S ∈ Zm, let R̂(·, S) be [0,M ]-valued,
and satisfy one of the two following conditions: (1) R̂(·, S) is convex and (α,G)-Hölder smooth
(α ∈ [0, 1]); (2) R̂(·, S) is σ-Lipschitz and G-smooth. Suppose PA[δA(S,S′;S) > β] ≤ δ0. Then
for any independent task environment τ ∈ M1(M1(Z)), any δ ∈ (0, 1), the following holds with
probability at least 1− δ − δ0 over the draw of S and the internal randomness of A:

σαβ ln
1

δ
+

M√
n

√
ln (1/δ) ≲ er(A(S), τ)− êr(A(S),S) ≲ σαβ ln

n

δ
+

M√
n

√
ln (1/δ).

Remark 4 Our transfer error bound in Theorem 5 has three advantages over the bound in Theorem
1 from [9]: (1) Theorem 1 gives a high-probability upper bound of O(

√
nγ +M/

√
n) for transfer

error, where γ is the uniform stability parameter and always scales as O(1/n); in contrast, our upper
bound of O(β lnn+M/

√
n) is improved by replacing the

√
n factor before the stability parameter

with lnn. (2) In [9], the uniform stability γ = O(T
a

a+1 /n), whereas our uniform argument stability
β = O(T a/n1+a) is tighter when T

a
a+1 ≤ n, i.e., when the uniform stability bound γ = O(T

a
a+1 /n)

is non-vacuous. (3) Our high-probability transfer error bound of order O(1/
√
n) is near optimal.
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Remark 5 We uncover two limitations of stability-based meta learning theory: (1) Recall the lower
stability bound for meta learning algorithms with convex α-Hölder smooth function (α ∈ [0, 1)) in
Theorem 2, we find that the lower transfer error bound in Theorem 5 is er(A(S), τ)− êr(A(S),S) ≳
σα ln (1/δ)cαM

α
1+α (η

√
T + ηT/n) when T ≥ n. This indicates that the lower transfer error bound

is greater than a constant and will not converge to zero with the increase of n. Thus, the stability-based
transfer error bound is vacuous and cannot provide asymptotic guarantees for convex Hölder smooth
functions. (2) The stability-based transfer error bound of O(1/

√
n) in Theorem 5 is near optimal.

Such result is consistent with the observation in [38, Section 2] that under the (i.i.d.) task environment
assumption, the term O(1/

√
n) in the generalization bound is unavoidable. Thus, to obtain sharper

generalization bounds for meta learning (e.g. the bound of O(1/
√
mn) or even O(1/mn)), we need

to consider other stability notions (e.g. [17]), or suppose stronger task relatedness in the environment
(e.g. [6, 23]), or even drop the task environment assumption (e.g. [15, 46]).

Remark 6 Under the independent task environment assumption, we compare our bound of O(1/
√
n)

via S/Q episodic training strategy with other transfer error bounds that are obtained via traditional
ERM strategy over all samples in training tasks. In detail, the bound from [36, Theorems 2 and 6]
via algorithmic stability analysis is of O(1/m+ 1/

√
n); the bounds from [41, Theorem 1] and [42,

Theorem 2] via PAC-Bayes analysis are of O(1/
√
n+ 1/

√
m); the bound from [23, Theorem 5] via

covering number analysis is of O(1/
√
nm+1/

√
m). All of these bounds via ERM strategy involve a

term O(1/
√
m), and such term can be large when m is relatively small (e.g. m = 5 or m = 10 in the

few-shot learning setting). Thus, in terms of the tightness of transfer error bounds, the S/Q episodic
training strategy is superior to the ERM strategy for meta learning, when m << n. Such result was
also pointed out by [9] and is more rigorously demonstrated in this work. Detailed comparisons
between different transfer error bounds for meta learning are shown in Table A.2 in Appendix A.

5.2 Fast Transfer Error Bound of O(lnn/n) for Meta Learning with Independent Episodes

To obtain faster convergence rate, we need to take additional assumption. The generalized Bernstein
condition is one of the most widely used condition to attain fast convergence rate of generalization
bound in single-task learning [35, 29]. Next, we extend the generalized Bernstein condition to the
meta learning setting, where we study the optimal algorithm A∗ instead of the optimal hypothesis.

Definition 4 (Generalized Bernstein Condition for Meta Learning) Assume that A∗(H,Z) =
ArgminA∈A(H,Z)er(A, τ) is a set of risk minimizers in a closed set. We say that an algorithm
A together with the environment τ and the empirical estimator l satisfies the generalized Bernstein
condition if for some B > 0, ∀A ∈ A(H,Z), there is a A∗ ∈ A∗(H,Z), such that

ES∼Dτ

(
l(A,S)− l(A∗, S)

)2 ≤ B
(
er(A, τ)− er(A∗, τ)

)
. (5)

[29] has shown that in single-task learning, a strongly-convex and Lipschitz function satisfies the
generalized Bernstein condition. In this work, we relax the strong-convexity condition by considering
the following Polyak-Łojasiewicz condition, one of the weakest curvature conditions of functions.

Definition 5 (Polyak-Łojasiewicz [49]) Any function f : W → R satisfies the Polyak-Łojasiewicz
(PL) condition on W with parameter µ > 0 if for all w ∈ W , f(w) − f(w∗) ≤ 1

2µ ||∂0f(w)||22,
where w∗ denotes the Euclidean projection of w onto the set of global minimizer of f in W .

A key insight into the PL condition is that it is the sufficient and necessary condition to guarantee
the linear convergence of gradient descent methods for smooth convex optimization problem [40].
Such PL condition can also be satisfied by many non-convex neural network models, such as the
two-layer neural networks with ReLU activation functions [34] and the deep linear residual networks
[24]. We will show that if the functions in Theorem 5 additionally satisfy the PL condition, then the
loss functions in meta learning also satisfy the generalized Bernstein condition in Definition 4. Thus,
we can derive a "deformed" transfer error bound of O(lnn/n) for modern meta learning algorithms.

Theorem 6 Under the same conditions of Theorem 5, for any fixed S ∈ Zm, let R̂(·, S) additionally
satisfy Polyak-Łojasiewicz condition in Definition 5. Suppose PA[δA(S,S′;S) > β] ≤ δ0. Then,
there exist c > 0, such that for any environment τ ∈ M1(M1(Z)), and any δ ∈ (0, 1), the following
holds with probability at least 1− δ − δ0 over the draw of S and the internal randomness of A:

er(A(S), τ) ≤ (1 + η)êr(A(S),S) + c(1 + 1/η)
(
σαβ lnn+

M

n

)
ln

1

δ
.
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Recall in Section 4, our stability parameter is always β = O(1/n). Hence, when the empirical error
in the RHS of the above bound is close to zero, the transfer error bound always scales as O(lnn/n).

5.3 Transfer Error Bound for Meta Learning with Dependent Episodes

In this subsection, we investigate the generalization bound for meta learning algorithms with depen-
dent episodes whose dependency relation can be characterized by a graph. The approach undertaken
to establish our results is based on the forest approximation of the dependency graph [27]. Formally,
a dependency graph is an undirected graph Γ = (V,E) of a random vector S = (S1, ..., Sn) if the
following two conditions are satisfied: (1) V (Γ) = [n]; (2) if I, J ⊂ [n] are non-adjacent in Γ, then
{Si}i∈I and {Sj}j∈J are independent. We next give the concept of forest approximation.

Definition 6 (Forest Approximation [50]) Given a graph Γ, a forest F , and a mapping ϕ : V (Γ) →
V (F ), if ϕ(u) = ϕ(v) or ⟨ϕ(u), ϕ(v)⟩ ∈ E(F ) for any ⟨u, v⟩ ∈ E(Γ), we say that (ϕ, F ) is a forest
approximation of Γ. Let Φ(Γ) denote the set of forest approximations of Γ.

Intuitively, a forest approximation transform a graph into a forest by merging vertices and removing
self-loops. We then give the definition of forest complexity, which measures how a dependency graph
looks like a forest, and hence measures the strength of dependency among random variables in S.

Definition 7 (Forest Complexity [50]) Given a graph Γ and any forest approximation (ϕ, F ) ∈ Φ(G)

with F consisting of trees {Ti}i∈[k]. Define λ(ϕ,F ) =
∑

⟨u,v⟩∈E(F )

(
|ϕ−1(u)| + |ϕ−1(v)|

)2
+∑k

i=1 minu∈V (Ti) |ϕ−1(u)|2. We call Λ(Γ) = min(ϕ,F )∈Φ(Γ) λ(ϕ,F ) the forest complexity of the
graph Γ = (V,E). Here, ϕ−1(u) is the set of pre-images of the element u.

For sample S whose components are independent, we choose the identity map and its dependency
graph as the forest approximation. Hence Λ(Γ) =

∑n
i=1 1

2 = n. For sample S whose dependency
graph Γ is a tree, the identity map between Γ and itself is a forest approximation of Γ. Then
Λ(Γ) ≤ |E(Γ)|(1+1)2+1 = 4n−3 = O(n). More examples of forest approximation can be found
in [50, Section 3.3]. We next give a forest-complexity based transfer error bound for meta learning.

Theorem 7 Under the same conditions of Theorem 5, except that S is a meta sample of size n with
dependency graph Γ. Let the maximum degree of the graph Γ is △. Suppose PA[δA(S,S′;S) >
β] ≤ δ0. Then, for any environment τ ∈ M1(M1(Z)), any δ ∈ (0, 1), the following holds with
probability at least 1− δ − δ0 over the draw of S and the internal randomness of A:

er(A(S), τ) ≤ êr(A(S),S) + σαβ
(
△+ 1

)
+

(
2σαβ +

M

n

)√Λ(Γ) ln 1/δ

2
,

When S is an independent sample, the forest complexity Λ(Γ) = n, the maximum degree △ = 0, and
the above forest-complexity based generalization bound degenerates to the bound in Theorem 1 for
meta learning with independent episodes. When S is a dependent sample, Λ(Γ) will be greater than n.
Both the complexity Λ(Γ) and the maximum degree △ will increase with more dependency relation
between samples in S (i.e., with more adjacent edges in its dependency graph Γ = (V,E)). In the next
section, we conduct experiments on regression problems to show the convergence performance of the
generalization bound for meta learning with dependent episodes. The corresponding forest-complexity
based generalization bound for such problem is provided in Example D.2 in Appendix D.3.

6 Experiments
To verify our theoretical analysis, we conduct experiments on few-shot regression problems to show
the convergence performance of our generalization bounds with independent and dependent episodes.

Experimental Settings. We follow the experimental setting in [21, 9]. The problem aims to
approximate the distribution of parameters of function f(x) = α sin(βx). The task environment τ is
the joint distribution p(α, β) of the parameters α and β. We set p(α) = U [−5, 5], p(β) = U [0, π].
For independent setting, we construct training episodes by sampling pairs (α, β) from the task
distribution τ = p(α, β); for dependent setting, we construct the first half training episodes by
sampling pairs (α, β) from τ = p(α, β) independently, and construct the rest half training episodes
by setting (−α, π−β) with (α, β) from the first half training episodes. Each training episode contains
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Figure 1: Convergence analysis of generalization gaps for independent tasks.
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êr(A(S),S)

|er − êr|
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(d) MAML, l1 loss

Figure 2: Convergence analysis of generalization gaps for dependent tasks.

5 support samples and 1 query samples. In both settings, the 600 test episodes are constructed by
sampling (α, β) from τ independently, each containing 5 support samples and 15 query samples. We
implement meta learning algorithms MAML [21] and Bilevel Programming [22] with square loss (l2)
and absolute loss (l1). The neural network has two hidden layers of size 40 with ReLU activation
functions. The generalization gap is the absolute distance between the training error and test error.

Experimental Results. From Figures 1-2, we can observe that: (1) The generalization gap in both
independent and weakly dependent episode settings can converge to 0 with the increase of the training
episodes, demonstrating the asymptotic behaviour of our transfer error bounds in Theorems 5 and 7.
(2) The generalization gap with independent episodes can converge to zero more quickly than the gap
with dependent episodes. The test error with independent episodes also always converge to the lower
level than the one with dependent episodes. The better convergence performance with independent
episodes truly demonstrate how the dependency between episodes can affect the generalization
of meta learning algorithms. (3) With non-convex neural network models, both square loss and
nonsmooth absolute loss can lead to similar convergence performance of generalization bounds.

7 Conclusion and Future Work

In this work, we provide fine-grained analysis of stability and generalization for modern meta
learning algorithms. From the perspective of stability, our tight stability bounds implies that in the
nonsmooth convex case the meta learning algorithm is less stable than in the smooth convex case. The
stability bounds in the smooth non-convex case enjoys an order of O(1/n) even for the multi-pass
SGD setting. From the perspective of generalization, we demonstrate that the high-probability
transfer error bound of O(1/

√
n) is optimal. Based on this bound, we uncover the limitations of

algorithmic stability analysis for meta learning, and reveal the advantage of episodic training strategy
for meta learning over tradition ERM training strategy. Further, by extending the generalized Berstein
condition to the meta learning setting, we obtain a deformed generalization bound of O(lnn/n) with
additional Polyak-Łojasiewicz condition. Finally, we derive a generalization bound for meta learning
with dependent episodes. Experiments are also provided to show the convergence performance of
generalization error with independent and dependent episodes. In the future, we will explore new
stability notions to see whether we can develop sharper generalization bounds for meta learning.
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APPENDIX

A Different Transfer Error Bounds for Meta Learning

Table A.1: Three types of transfer error and the corresponding empirical multi-task error for meta
learning. The empirical multi-task error is calculated over all samples in the training tasks.

Object Transfer Error Empirical Multi-Task Error

Hypothesis Space H er(H, τ) = ED∼τ infh∈H L(h,D) êr(H,S) = 1
n

∑n
j=1 infh∈H L̂(h, Sj)

Hyper-Posterior Q er(Q, τ) = EP∼QED∼τES∼DmEh∼Q(S,P )L(h,D) êr(Q,S) = 1
n

∑n
j=1 EP∼QEh∼Q(Sj ,P )L̂(h, Sj)

Algorithm A er(A, τ) = ED∼τES∼DmL(A(S), D) êr(A,S) = 1
n

∑n
j=1 L̂(A(Sj), Sj)

We describe in detail existing three main types of transfer error for meta learning in Table A.1.
They include: (1) transfer error of hypothesis space H in model capacity theory for meta learning
[4, 23]; (2) transfer error of hyper-posterior Q in PAC-Bayesian analysis for meta learning [41, 18];
(3) transfer error of an algorithm A in algorithmic stability analysis for meta learning [36]. The
corresponding empirical multi-task errors are all calculated over all samples in the training tasks.
Denote by L(h,D) = Ez∼Df(h, z) the expected error over the underlying distribution D, L̂(h, S) =
1
m

∑m
i=1 f(h, zi) the empirical error over the training sample S. Let {Sj}nj=1 denote the training

samples, where each Sj ∼ Dm
j contains m samples, Dj is the distribution sampled from the

environment τ . In PAC-Bayesian meta learning theory, Q(S, P ) is the posterior distribution over the
hypothesis space H, i.e., Q(S, P ) ∈ M1(H). Q(S, P ) is the output of the PAC-Bayesian algorithm
that takes sample S and prior distribution P (∈ M1(H)) as input. In algorithmic stability analysis
for meta learning, an algorithm A takes sample S as input and then returns a hypothesis A(S) ∈ H.

We also provide different transfer error bounds in Table A.2 to show the improvements of our bounds
over existing ones. Under the task environment assumption, traditional transfer error bounds are
obtained by minimizing the empirical risk over all samples in the training tasks; modern transfer
error bounds are derived for support/query episodic training based meta learning algorithms. The
comparisons between different transfer error bounds demonstrate that: the episodic training strategy
can always lead to a generalization bound unrelated to the sample size m per task, thus outperforming
the traditional ERM training strategy under the few-shot learning regime where m is small.
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Table A.2: Different bounds on the generalization gap in meta learning, where generalization gap
= transfer error - empirical multi-task error. The T-ERM training strategy represents traditional
empirical risk minimization strategy over all samples in training tasks; the S/Q training strategy
represents the support/query episodic training strategy for modern meta learning. All error bounds
hold for [0,M ]-valued bounded functions, under the independent task environment assumption,
with n training tasks and m samples per task. For the bound in [23, Theorem 5], c1, c2 represent
norm-based complexity of neural networks. For the PAC-Bayes bounds in [41, 18], KL(Q||P )
represents the KL-divergence between distributions Q and P . For the stability-based bounds in
[36, 9], γn = O( 1n ) represents the uniform stability of a meta learning algorithm; γm = O( 1

m )

represents the uniform stability of an inner-task algorithm. In our bounds, βn = O( 1n ) represents the
uniform argument stability of a meta learning algorithm, and the generalization bound of O( 1n ) is
obtained with additional Polyak-Łojasiewicz condition.

Existing Works Object Training Strategy Generalization Gap Bounds on Generalization Gap

[23, Theorem 5] H T-ERM er(H, τ)− êr(H,S) O( c1√
nm

+ c2√
m
)

[41, Theorem 1] Q T-ERM er(Q, τ)− êr(Q,S) O(KL(Q||P)√
n

+ EP∼Q KL(Q(Si,P )||P )√
m

)

[18, Theorem 3] Q T-ERM er(Q, τ)− êr(Q,S) O(
√

KL(Q||P)
n + γm)

[36, Theorem 6] A(S) T-ERM er(A(S), τ)− êr(A(S),S) O(γn
√
n+ M√

n
+ γm)

[9, Theorem 1] A(S) S/Q er(A(S), τ)− êr(A(S),S) O(γn
√
n+ M√

n
)

Our Theorem 5 A(S) S/Q er(A(S), τ)− êr(A(S),S) O(βn lnn+ M√
n
)

Our Theorem 6 A(S) S/Q er(A(S), τ)− êr(A(S),S) O(βn lnn+ M
n )

Remark A.1 It is still hard to directly compare our bounds with the latest stability-based general-
ization bound for meta learning [17], due to the following three reasons: (1) We focus on different
bounding objective. Our work aims to bound the transfer error over the novel task (under the task
environment assumption), whereas [17] aims to bound the (expected) excess risk over the novel
task (without the task environment assumption, cf. its Corollary 2). (2) The generalization bounds
hold with different forms. The bounds in our Theorem 5-7 all hold with high probability, but the
generalization bounds in [17] (i.e. the bound on the gap between the expected multi-task error and
empirical multi-task error in its Theorem 1, as well as the bound on the excess risk on the novel
task) hold in expectation (w.r.t. all training samples). (3) We take different assumption of the loss
function. In Assumption 1 of [17], they assume the loss function satisfy 4 conditioins: strong convexity,
Lipschitzness, smoothness and Hessian Lipschitzness. But our work only takes one or two conditions
to derive stability of meta algorithm. Consider the above reasons, we believe it is not suitable to
directly compare our in-probability generalization bound with the in-expectation bound of [17].

Remark A.2 We could potentially derive a sharper generalization bound for meta learning w.r.t. m
in two aspects: (1)Under the task environment assumption: actually we can extend the algorithmic
stability notions in single-task learning (e.g. uniform stability [7], uniform argument stability [35, 2],
on-average stability [31], on-average model stability [33]) to the episodic meta learning setting by
defining an algorithmic stability in a way that the whole dataset corresponding to a task changes
(see our Definition 2 and Definition 3). However, no matter which stability notion we use, our
Remark 5 tells us that the stability-based transfer error bound will not be tighter than O(1/

√
n).

Therefore, to derive sharper transfer error bound (e.g. of O(1/
√
nm)) for meta learning under the

task environment assumption, we should leverage the tools of other theories (e.g. model-capacity
theory in [23]), instead of the tool of algorithmic stability analysis. (2) Without the task environment
assumption: without such assumption, we cannot define the transfer error of a meta algorithm on the
novel task, so we should focus on the excess risk bound on the novel task. In this case, we can define
a more elaborate algorithmic stability notion in a way that the part (not the whole) of dataset in a
task change, and may derive a sharper bound that is related to the number m of samples per task
(like the expected multi-task error bound of O( 1

nm ) in [17]).

B Comparisons between Single-Task Learning and Modern Meta Learning
In this section, we provide the comparisons of notations between single-task learning and episodic
meta learning in Table B.1. From this table, we can find the equivalence relation between these two
learning paradigms, and hence can directly apply existing generalization bounds [8, 29, 50] from
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single-task learning to the episodic meta learning setting. We next give formal definitions of the
generalization error bound for single-task learning and the transfer error bound for meta learning.

Table B.1: The relation between the notations of single-task learning and support/query (S/Q) episodic
training based meta learning. In meta learning, the empirical estimator l(A(S), S) = R̂(A(S)(S), S).
Such Table is an adaptive version from [36, Table 1]. We list it here to show the equivalence relation
between traditional single-task learning and modern episodic meta learning.

Single-Task Learning S/Q Training based Meta Learning

Sample z ∈ Z S = (z1, ..., zm) ∈ Zm

Training Set S = (z1, ..., zm) ∈ Zm S = (S1, ..., Sn) ∈ (Zm)n

Hypothesis h ∈ H A ∈ A(H,Z)

Algorithm A ∈ A(H,Z) A ∈ A(A(H,Z),Zm)

Learning Task D ∈ M1(Z)
D ∈ M1(Zm), typically D = Dτ

is induced by the environment τ ∈
M1(M1(Z)).

Loss Estimator f : H×Z → [0,M ] l : A(H,Z)×Zm → [0,M ]

Empirical Error L̂(A(S), S) = 1
m

∑m
i=1 f(A(S), zi) êr(A(S),S) = 1

n

∑n
i=1 l(A(S), Si)

Expected Error L(A(S), D) = Ez∼Df(A(S), z) er(A(S), τ) = ES∼Dτ l(A(S), S)

Probability Bound Dm{S :L(A(S), D)≥B(δ, S)}≤δ Dn{S :R(A(S), τ)≥Π(δ,S)}≤δ

Generalization Error and Transfer Error Bounds. A function B : (0, 1)×∪∞
m=1Zm → [0,M ] is

a generalization error bound for an algorithm A ∈ A(H,Z) w.r.t. the loss function f if and only if

∀D ∈ M1(Z),∀δ ∈ (0, 1), Dm{S : L(A(S), D) ≤ B(δ, S)} ≥ 1− δ. (6)

A function Π : (0, 1)×∪∞
m=1(Zm)n → [0,M ] is a transfer error bound for a meta leanring algorithm

A ∈ A(A(H),Z,Zm) w.r.t. the estimator l : A(H,Z)×Zm → [0,M ] if and only if

∀D ∈ M1(Zm),∀δ ∈ (0, 1),Dn{S : er(A(S), τ) ≤ Π(δ,S)} ≥ 1− δ. (7)

A transfer error bound is formally equivalent to an ordinary generalization error bound under the
identifications Z ↔ Zm, h ↔ A, f ↔ l, D ↔ D, L ↔ er, B(δ, S) ↔ Π(δ,S).

C Proof of Stability Bounds for Meta Learning Algorithms

In this section, we will provide stability bounds for meta learning algorithms. According the
equivalence relation of the notations between single task learning and episodic meta learning, we
will use the loss function f(w, z) over the sample z and the loss function R̂(w, S) over the episode S
interchangeably to compute the uniform argument stability bounds of (episode-level) SGD.

C.1 Proof of Sharp Stability Bounds for Convex Losses

In this section, we provide upper stability bounds for convex losses. The upper bounds are particularly
tight for convex and nonsmooth losses (i.e., for convex and Lipschitz function, as well as for convex
and α-Hölder smooth function (α ∈ (0, 1))). The proof technique is originated in [2] for obtaining
upper stability bounds for convex and Lipschitz function, and in this work we generalize it to
the convex setting for deriving upper stability bounds for convex and α-Hölder smooth functions
(α ∈ [0, 1)). Note that when α = 0, the α-Hölder smooth property implies the Lipschitz property of
the loss function. Therefore, our results can be used to analyze more general loss functions.

C.1.1 Proof of Sharp Stability Bounds for Convex Losses

The proof for the following lemma is almost the same as that for the Lemma 3.1 in [2], except that
we do not assume the boundedness of the (sub)gradient of the loss function. We still include the
detailed proof for the completeness of this paper. Such upper stability bound is particularly sharp
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when T > n for Lipschitz continuous function; when T ≤ n, we will derive a sharer stability bound
for Lipschitz continuous function in the next subsection.

Lemma C.1 Let (vt)t∈[T ] and (wt)t∈[T ] with v1 = w1, be online (sub)gradient descent trajectories
for convex objective (ft)i∈[T−1] and (f ′

t)t∈[T−1] respectively; i.e.,

vt+1 = ProjW [vt − ηt∂ft(vt)], wt+1 = ProjW [wt − ηt∂f
′
t(wt)],

for all t ∈ [T − 1]. Suppose for every t ∈ [T − 1], let △t = ||∂ft(vt) − ∂f ′
t(wt)||, θt =

||∂ft(vt)− ∂f ′
t(vt)||, δt = ||vt − wt||. Then if t0 = inf{t ≥ 1 : ft ̸= f ′

t}, we have

||vT − wT || ≤

√√√√T−1∑
j=t0

η2j△2
j + 2

T−1∑
j=t0+1

ηjθj .

Proof. By the definition of t0, we have δ1 = ... = δt0 . For t = t0 + 1, we have δt0+1 =
||ηt0

(
∂ft0(vt0)− ∂f ′

t0(wt0)
)
||. And

δ2t+1 =||ProjW [vt − ηt∂ft(vt)]− ProjW [wt − ηt∂f
′
t(wt)]||2

≤||vt − ηt∂ft(vt)− wt − ηt∂f
′
t(wt)||2

=δ2t + η2t ||∂ft(vt)− ∂f ′
t(wt)||2 − 2ηt⟨vt − wt, ∂ft(vt)− ∂f ′

t(wt)⟩
=δ2t + η2t ||∂ft(vt)− ∂f ′

t(wt)||2 − 2ηt⟨vt − wt, ∂ft(vt)− ∂f ′
t(vt)⟩ − 2ηt⟨vt − wt, ∂f

′
t(vt)− ∂f ′

t(wt)⟩
≤δ2t + η2t ||∂ft(vt)− ∂f ′

t(wt)||2 + 2ηt||vt − wt|| · ||∂ft(vt)− ∂f ′
t(vt)||

=δ2t + η2t△2
t + 2ηtδtθt,

(8)

where the last inequality holds due to the monotonicity of the subgradient of convex objectives.
Unraveling the recursion and noticing δt0+1 = ηt0△t0 gives

δ2t ≤
t−1∑
j=t0

η2j△2
j + 2

t−1∑
j=t0+1

ηjδjθj . (9)

Next we prove the following inequality by induction, which directly gives our results.

δt ≤

√√√√ t−1∑
j=t0

η2j△2
j + 2

t−1∑
j=t0+1

ηjθj .

The above claim clearly holds for t = t0. Suppose the claim holds for any t ∈ [T − 1]. For the
(t+ 1)-th step, we consider two cases. First when δt+1 ≤ maxj∈[t] δj , by induction hypothesis,

δt+1 ≤ max
j∈[t]

δj ≤

√√√√ t−1∑
j=t0

η2j△2
j + 2

t−1∑
j=t0+1

ηjθj ≤

√√√√ t∑
j=t0

η2j△2
j + 2

t∑
j=t0+1

ηjθj .

In the other case when δt+1 > maxs∈[t] δj , we use the result in Eq. (9), and have

δ2t+1 ≤
t∑

j=t0

η2j△2
j + 2

t∑
j=t0+1

ηjδjθj ≤
t∑

j=t0

η2j△2
j + 2δt+1

( t∑
j=t0+1

ηjθj
)
.

Rearrange the terms in the above inequality, we have

(
δt+1 −

t∑
j=t0+1

ηjθj
)2 ≤

t∑
j=t0

η2j△2
j +

( t∑
j=t0+1

ηjθj
)2
.

Take square root of both sides and use the subadditivity of function t →
√
t, we finish the proof. □
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C.1.2 Proof of Sharp Stability Bounds for Convex Losses with T <= n

Lemma C.2 Suppose T ≤ n. Let S = (zi)i∈[n], Si = (z′i)i∈[n] be neighboring datasets that only

differ on the i-th entry. Let (it)t≥0
i.i.d.∼ Unif([n]). Let Bt denote the event that is = i for some

s ≤ t. Let (vt)t∈[T ] and (wt)t∈[T ] with v1 = w1, be online (sub)gradient descent trajectories for
convex objective, respectively; i.e.,

vt+1 = ProjW [vt − ηt∂f(vt, zit)], wt+1 =ProjW [wt − ηt∂f(wt, z
′
it)],

for all t ∈ [T −1]. For every t ∈ [T −1], let △t = ||∂f(vt, zit)−∂f(wt, z
′
it
)||, θt = ||∂f(vt, zit)−

∂f(vt, z
′
it
)||, θ̄t = ||∂f(vt, zi)− ∂f(vt, z

′
i)||, δt = ||vt − wt||. Then we have

E[δT ] ≤
T − 1

n

[√√√√T−1∑
s=1

E[η2s△2
s|Bs] +

2

n

T−1∑
s=1

ηs

√
E[θ̄2s |Bs−1]

]
.

Proof. Note that Bt is the event that the index i is sampled at least once in the first t iterations. Denote
by Bt the complement of Bt. Then for any t ∈ [T ], we have

P[Bt] = 1− P[Bt] = 1− (1− 1

n
)t ≤ 1− (1− t

n
) ≤ min(1,

t

n
).

Then we have
E[δT ] =E[δT |BT−1] · P[BT−1] + E[δT |BT−1] · P[BT−1]

=E[δT |BT−1] · P[BT−1] ≤ min(1,
T − 1

n
)E[δT |BT−1].

(10)

For the rest of the proof we bound E[δT |BT−1]. To this end, we need to derive recurrence for
E[δt+1|Bt]. For convenience we consider bounding E[δ2t+1|Bt]. As shown in Eq. (8), we have

δ2t+1 ≤ ||vt − wt − ηt[∂f(vt, zit)− ∂f(wt, z
′
it)]||2

≤ δ2t + η2t ||∂f(vt, zit)− ∂f(wt, z
′
it)||2 + 2ηt||vt − wt|| · ||∂f(vt, zit)− ∂f(vt, z

′
it)||

= δ2t + η2t△2
t + 2ηtδtθt.

Note that Bt =
(
{it = i} ∩Bt−1

)
∪
(
Bt−1

)
. Then by the law of total expectation, we have

E[δ2t+1|Bt]

=E[δ2t+1|it = i, Bt−1] · P[it = i, Bt−1|Bt] + E[δ2t+1|Bt−1] · P[Bt−1|Bt]

≤E[η2t△2
t |it = i, Bt−1] · P[it = i, Bt−1|Bt] + E[δ2t + η2t△2

t + 2ηtδtθt|Bt−1] · P[Bt−1|Bt]

≤E[η2t△2
t |Bt] + E[δ2t |Bt−1] + 2ηtE[δtθt|Bt−1].

(11)

For simplicity, denote by it1 = (i1, ..., it) the indices vector in the first t iterations. For the term
E[δtθt|Bt−1] in the right-hand-side of the above inequality, using the independence between it and
δt, as well as the independence between it and Bt−1, we have

E[δtθt|Bt−1] = Eit1
[δtθt|Bt−1]

= Eit−1
1

[δtEit [||∂f(vt, zit)− ∂f(vt, z
′
it)||]

∣∣Bt−1]

=
1

n
Eit−1

1
[δt||∂f(vt, zi)− ∂f(vt, z

′
i)||

∣∣Bt−1]

=
1

n
Eit−1

1
[δtθ̄t

∣∣Bt−1].

Plug the above result into Eq. (11), and unravel the recursion, we have

E[δ2t+1|Bt] ≤E[η2t△2
t |Bt] + E[δ2t |Bt−1] +

2ηt
n

E[δtθ̄t
∣∣Bt−1]

≤
t∑

s=1

E[η2s△2
s|Bs] +

2

n

t∑
s=1

ηsE[δsθ̄s
∣∣Bs−1]

≤
t∑

s=1

E[η2s△2
s|Bs] +

2

n

t∑
s=1

ηs
(
E[δ2s

∣∣Bs−1]
) 1

2
(
E[θ̄2s |Bs−1]

) 1
2 ,

(12)
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where the last inequality holds due to the Hölder inequality.
We next proceed to prove the following claim by induction.√

E[δ2t+1|Bt] ≤

√√√√ t∑
s=1

η2sE[△2
s|Bs] +

2

n

t∑
s=1

ηs

(
E[θ̄2s |Bs−1]

) 1
2

. (13)

For the base case t = 0, the claim clearly holds. Assume the claim holds for any t ∈ [T − 1]. For the
(t+ 1)-th step, we consider two separate cases as follow.

(I):
√
E[δ2t+1|Bt] ≤ maxs∈[t]

√
E[δ2s |Bs−1].

By the induction hypothesis, we have√
E[δ2t+1|Bt] ≤ max

s∈[t]

√
E[δ2s |Bs−1]

≤

√√√√t−1∑
s=1

η2sE[△2
s|Bs] +

2

n

t−1∑
s=1

ηs

(
E[θ̄2s |Bs−1]

) 1
2

≤

√√√√ t∑
s=1

η2sE[△2
s|Bs] +

2

n

t∑
s=1

ηs

(
E[θ̄2s |Bs−1]

) 1
2

.

(II):
√

E[δ2t+1|Bt] > maxs∈[t]

√
E[δ2s |Bs−1].

For this case, we use the result in Eq. (12).

E[δ2t+1|Bt] ≤
t∑

s=1

E[η2s△2
s|Bs] +

2

n

t∑
s=1

ηs
(
E[δ2s

∣∣Bs−1]
) 1

2
(
E[θ̄2s |Bs−1]

) 1
2

≤
t∑

s=1

E[η2s△2
s|Bs] +

2

n

(
E[δ2t+1

∣∣Bt]
) 1

2

t∑
s=1

ηs
(
E[θ̄2s |Bs−1]

) 1
2 .

Rearrange the terms in the above inequality, we have(√
E[δ2t+1

∣∣Bt]−
1

n

t∑
s=1

ηs
(
E[θ̄2s |Bs−1]

) 1
2

)2

≤
t∑

s=1

E[η2s△2
s|Bs] +

( 1

n

t∑
s=1

ηs
(
E[θ̄2s |Bs−1]

) 1
2

)2

.

Taking square root of both sides and using the subadditivity of function t →
√
t finish the proof for

the claim in Eq. (13). From the Jensen inequality we have E[δt+1|Bt] ≤
√
E[δ2t+1|Bt]. Plugging the

above results into Eq. (10) completes the whole proof. □

Remark C.1 (Compare the upper bounds in Lemmas C.1-C.2 for convex and Lipschitz loss)
Recall Lemma C.1 and Lemma C.2, we have

T > n : E[δT ] ≤

√√√√T−1∑
s=1

η2sE△2
s + 2

T−1∑
s=1

ηsEθs =

√√√√T−1∑
s=1

η2sE△2
s +

2

n

T−1∑
s=1

ηsEθ̄s,

T ≤ n : E[δT ] ≤
T − 1

n

[√√√√T−1∑
s=1

E[η2s△2
s|Bs] +

2

n

T−1∑
s=1

ηs

√
E[θ̄2s |Bs−1]

]
.

where △t = ||∂f(vt, zit) − ∂f(wt, z
′
it
)||, θt = ||∂f(vt, zit) − ∂f(vt, z

′
it
)||, θ̄t = ||∂f(vt, zi) −

∂f(vt, z
′
i)||, δt = ||vt−wt||. If we further assume that the convex loss function f(w, z) is σ-Lipschitz

w.r.t. w, then we have ||∂f(w, z)|| ≤ σ, for any z ∈ Z . Then △t ≤ 2σ, θ̄t ≤ 2σ. Plug these results

into the above two inequalities, we have when T > n: E[δT ] ≤ 2σ
√∑T−1

s=1 η2s + 4σ
n

∑T−1
s=1 ηs;

when T ≤ n: E[δT ] ≤ T−1
n

[
2σ

√∑T−1
s=1 η2s +

4σ
n

∑T−1
s=1 ηs

]
. The above inequalities indicates that

E[δT ] ≤ 4σ
(
min {1, T

n }
√∑T

s=1 η
2
s +

1
n

∑T
s=1 ηs

)
, which recovers the result in [2, Theorem 3.3].

And such upper bound is truly tight when compared with the lower stability bound in Lemma C.5. □
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Remark C.2 (Compare the upper bounds in Lemmas C.1-C.2 for convex and α-Hölder smooth
loss (α ∈ (0, 1)))
When T ≤ n, we can obtain a sharper stability bound for convex and σ-Lipschitz loss function in
Lemma C.2 than that in Lemma C.1. Concretely speaking, the sharper in Lemma C.2 is obtained
by using the law of total expectation E[δT ] = E[δT |BT−1] · P[BT−1] to obtain the less-than-one
factor T−1

n , (i.e., P[BT−1] ≤ T−1
n ), and using the subgradient boundedness to bound the conditional

expectation E[△2
s|Bs] ≤ 4σ2. However, for convex and α-Hölder smooth function, we have no more

the subgradient boundedness assumption, and hence could not bound the conditional expectation
E[△2

s|Bs] directly. By using the upper bound in Lemma C.2, and the total expectation formula
E[△2

s|Bs]P(Bs) = E[△2
s], we have

E[δT ] ≤ P(BT−1)
[√√√√T−1∑

s=1

η2s
E[△2

s]

P(Bs)
+

2

n

T−1∑
s=1

ηs

√
E[θ̄2s |Bs−1]

]
.

Since the term P(BT−1)√
P(Bs)

may be greater than 1, the bound for α-Hölder smooth function in Lemma C.2

is not necessarily sharper than that in Lemma C.1 when T ≤ n. Actually, the "total-expectation-
expansion" demonstration strategy in Lemma C.2 can lead to the same upper bound in Lemma C.1
for convex and α-Hölder smooth function (α ∈ (0, 1)). Recall Eq. (11) we have

E[δ2t+1] =E[δ2t+1|Bt]P(Bt)

=
(
E[δ2t+1|it = i, Bt−1] · P[it = i, Bt−1|Bt] + E[δ2t+1|Bt−1] · P[Bt−1|Bt]

)
P(Bt)

≤
(
E[η2t△2

t |it = i, Bt−1] · P[it = i, Bt−1|Bt] + E[δ2t + η2t△2
t + 2ηtδtθt|Bt−1] · P[Bt−1|Bt]

)
P(Bt)

=E[η2t△2
t ] + E[δ2t ] + 2ηtE[δtθt]

≤
t∑

s=1

E[η2s△2
s] +

2

n

t∑
s=1

E[δsθ̄s],

which is the same as the upper stability bound in Lemma C.1. □

C.2 Proof of Stability Bounds for Convex and Hölder Smooth Losses

Lemma C.3 [5, Theorem 3.61] Let f : W → (−∞,+∞] be a proper and convex function. Denote
by ∂f(w) the set of subgradients of f at w ∈ W . Then if ||g|| ≤ σ for any g ∈ ∂f(w), we have
|f(u)− f(v)| ≤ σ||u− v|| for any u, v ∈ W .

Lemma C.4 [33, Lemma A.1] Define

cα =

{
(1 + 1/α)

α
1+αG

1
1+α , if α ∈ (0, 1]

supz ||∂f(0, z)||+G, if α = 0.
(14)

Assume for all z ∈ Z , the map w 7−→ f(w, z) is nonnegative, and w 7−→ ∂f(w, z) is (α,G)-Hölder
continuous with α ∈ [0, 1]. Then for cα defined as in (14) we have

||∂f(w, z)|| ≤ cαf
α

1+α (w, z), ∀w ∈ W, z ∈ Z.

Lemma C.5 [2, Theorem 4.2] Let W ⊆ Rd be a space uniformly bounded by θ, f : W → R be
a σ-Lipschitz function (hence f(w) ∈ [−θσ, θσ]). For the sampling-with-replacement stochastic
(sub)gradient descent algorithm with constant step size η > 0, there exist neighboring datasets S ≃ S′

of size n such that the uniform argument stability satisfies EδA(S, S′) ≥ σ
(
min{1, T

n }η
√
T + ηT

n

)
.

C.2.1 Proof of Sharp Stability Bounds for Convex and Hölder Smooth Losses

Proposition C.1 Let S ≃ Si be neighboring datasets, with S = (z1, ..., zi, ..., zn), S =
(z′1, ..., z

′
i, ..., z

′
n) and zi ̸= z′i. Let the empirical loss RS(w) = 1

n

∑n
i=1 f(w, zi), where

f : W ×Z → [0,+∞) is a (α,G)-Hölder smooth function (α ∈ [0, 1)) w.r.t. w for any fixed z ∈ Z
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. Let the random sequence of indices used by the stochastic subgradient descent (SSD) algorithm
(it)t≥0

i.i.d.∼ Unif([n]) . Under the conditions of Lemma C.1, let ft(·) = f(·, zit), f ′
t(·) = f(·, z′it).

Then the uniform argument stability of SSD can be bounded as follow:

EASSD
δ(S, Si) ≤

[
2c2α

T∑
s=t0

η2sE
[
R

2α
1+α

S (vs)+R
2α

1+α

Si (ws)
]] 1

2

+
2cα
n

T∑
s=t0+1

ηsE
[
f

α
1+α (vs, zi)+f

α
1+α (vs, z

′
i)
]

Proof. Recalling Lemma C.1, and using the Jensen’s inequality of square root function, we have

EA||vT − wT || ≤

√√√√T−1∑
s=t0

η2sEA△2
s + 2

T−1∑
s=t0+1

ηsEAθs,

where △s = ||∂f(vs, zis)− ∂f(ws, z
′
is
)||, θs = ||∂f(vs, zis)− ∂f(vs, z

′
is
)||. We next bound E△2

s

and Eθs respectively. For E△2
s, using inequality (a + b)2 ≤ 2(a2 + b2) and the self-bounding

property of Hölder smooth function in Lemma C.4, we have △2
s = ||∂f(vs, zis)− ∂f(ws, z

′
is
)||2 ≤

2
(
||∂f(vs, zis)||2 + ||∂f(ws, z

′
is
)||2

)
≤ 2c2α

(
f

2α
1+α (vs, zis) + f

2α
1+α (ws, z

′
is
)
)
. Then we have

E△2
s ≤ 2c2αE

[
f

2α
1+α (vs, zis) + f

2α
1+α (ws, z

′
is)

]
,

≤ 2c2α
[(
Ef(vs, zis)

) 2α
1+α +

(
Ef(ws, z

′
is)

) 2α
1+α

]
= 2c2α

[(
ERS(vs)

) 2α
1+α +

(
ERSi(ws)

) 2α
1+α

]
,

where the second inequality uses Jensen’s inequality of the concave function t → t
2α

1+α (α ∈ [0, 1]),
the last equality holds since the random variable vs(ws) is independent of is.
For Eθs, notice that with probability 1 − 1

n , zis = z′is , and then ||∂f(vs, zis) − ∂f(vs, z
′
is
)|| = 0;

with probability 1
n , zis ̸= z′is (i.e., zis = zi, z

′
is

= z′i), and then ||∂f(vs, zis) − ∂f(vs, z
′
is
)|| ≤

||∂f(vs, zis)||+ ||∂f(vs, z′is)|| ≤ cα
(
f

α
1+α (vs, zi) + f

α
1+α (vs, z

′
i)
)
. Therefore we have

Eθs ≤
cα
n
E
(
f

α
1+α (vs, zi) + f

α
1+α (vs, z

′
i)
)
.

Combining the above analysis completes the whole proof. □

Proof of Theorem 2 in the main paper. For the first part of the result, the proof can be found in
Proposition C.1. For the second part of the result when the loss function is uniformly bounded by M ,
we first give the upper stability. Recalling Proposition C.1 and letting t0 = 1, we have,

EδT ≤

√√√√4c2α

T∑
s=1

η2sM
2α

1+α +
4M

α
1+α cα
n

T∑
s=1

ηs ≤ 4cαM
α

1+α

(√√√√ T∑
s=1

η2s +
1

n

T∑
s=1

ηs

)
. (15)

Actually, when the loss function R̂(w, S) is bounded by M and convex (α,G)-Hölder smooth,
we can use the self-bounding property of the (α,G)-Hölder smooth function in Lemma C.4, and
derive the subgradient bounded norm ||∂R̂(w, S)|| ≤ cαM

α
1+α . Recalling Lemma C.3, we know

that the bounded convex (α,G)-Hölder smooth function also satisfies cαM
α

1+α -Lipschitz property.
Therefore, R̂(w, S) is a convex Lipschitz but nonsmooth function (i.e., α-Hölder smooth (α ∈ [0, 1))
is nonsmooth), and we can use the results in Lemma C.5 and Remark C.1 to derive lower and upper
stability bounds for convex (α,G)-Hölder smooth function R̂(w, S): cαM

α
1+α (min{1, T

n }η
√
T +

ηT
n ) ≤ supS≃S′,Str EAδA(S,S′;Str) ≤ 4cαM

α
1+α (min{1, T

n }
√∑T

j=1 η
2
j + 1

n

∑T
j=1 ηj). Note

that such upper bound also match the upper bound obtained in Eq. (15) by directly setting R̂(w, S) ≤
M in Proposition C.1 without using the Lipschitz property of the bounded convex Hölder smooth
function, somewhat implying the tightness of the upper bound in Eq. (15). □

C.2.2 An Alternative Proof of Upper Stability Bounds for Convex and Hölder Smooth Losses

In this subsection, we use the technique from [33] to derive upper stability bounds for convex and
α-Hölder smooth function. We will derive two upper bounds, where the former is likely to be sharper
when T <= n, and the second one will be a little sharper when T > n.
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Lemma C.6 [33, Lemma D.3] Assume for all z ∈ Z , the map w → f(w, z) is convex, and

w → ∂f(w, z) is (α,G)-Hölder continuous with α ∈ [0, 1). Define Gα ≜
√

1−α
1+α (2

−αG)
1

1−α . Then
for all u, v ∈ W and η > 0 there holds

||u− η∂f(u, z)− v + η∂f(v, z)||2 ≤ ||u− v||2 + η
2

1−αG2
α.

Theorem C.1 ∀ fixed S ∈ Zm, let R̂(·, S) be a convex and (α,G)-Holder smooth function, where
α ∈ [0, 1). Let A be a meta learning algorithm, S ≃ Si be any neighboring meta samples that differ
only on the i-th entry. Denote by wj and w′

j the outputs after j(j ∈ [T ]) steps of SGD on S and Si,
respectively. Then ∀Str ∈ ZK ,

EA||A(S)(S)−A(Si)(S)|| ≤ Gα

T∑
j=1

η
1

1−α

j +
cα
n

T∑
j=1

ηjEA

[
R̂

α
1+α (wj , Si) + R̂

α
1+α (wj , S

′
i)
]
.

If we set ηt = η, for any t ∈ [T ], and assume the loss function R̂ is bounded by M , we have

EA||A(S)(S)−A(Si)(S)|| ≤ O
(
Gαη

1
1−αT +

cαM
α

1+α ηT

n

)
.

Proof. With probability (1− 1
n ), it ̸= i, and

||wt+1 − w′
t+1|| ≤||wt − ηt∂R̂(wt, Sit)− w′

t + ηt∂R̂(w′
t, Sit)||

≤||wt − w′
t||+Gαη

1
1−α

t ,

where the second inequality holds due to Lemma C.6.
With probability 1

n , it = i, and

||wt+1 − w′
t+1|| ≤||wt − ηt∂R̂(wt, Si)− w′

t + ηt∂R̂(w′
t, S

′
i)||

≤||wt − w′
t||+ ηt||∂R̂(wt, Si)||+ ηt||∂R̂(w′

t, S
′
i)||

≤||wt − w′
t||+ ηtcα

[
R̂

α
1+α (wt, Si) + R̂

α
1+α (wt, S

′
i)
]
,

where the last inequality holds due to the self-bounding property of (α,G)-Hölder smooth function
in Lemma C.4. Combining the above results and the iteration rules, we have

EA||wt+1 − w′
t+1||

≤EA||wt − w′
t||+

ηtcα
n

EA

[
R̂

α
1+α (wt, Si) + R̂

α
1+α (wt, S

′
i)
]
+ (1− 1

n
)Gαη

1
1−α

t

]
≤(1− 1

n
)Gα

t∑
j=1

η
1

1−α

j +
cα
n

t∑
j=1

ηjEA

[
R̂

α
1+α (wj , Si) + R̂

α
1+α (wj , S

′
i)
]
. □

Theorem C.2 Under the same conditions of Theorem C.1, if we set the step size ηt = η, for any
t ∈ [T ], and assume the loss function R̂ is bounded by M , we have

EA||A(S)(S)−A(Si)(S)|| ≤ O
(
Gαη

1
1−α

√
T +

cαM
α

1+α η
√
T√

n

)
Proof. With probability (1 − 1

n ), it ̸= i, and hence ||wt+1 − w′
t+1||2 ≤ ||wt − w′

t||2 + Gαη
2

1−α

t ,
where the inequality holds due to Lemma C.6.
With probability 1

n , it = i, and

||wt+1 − w′
t+1||2 ≤||wt − ηt∂R̂(wt, Si)− w′

t + ηt∂R̂(w′
t, S

′
i)||2

≤(1 + p)||wt − w′
t||2 + 2(1 + p−1)η2t

(
||∂R̂(wt, Si)||2 + ||∂R̂(w′

t, S
′
i)||2

)
,

where the second inequality holds due to (a+ b)2 ≤ (1 + p)a2 + (1 + p−1)b2, for any p > 0. Then,

E||wt+1 − w′
t+1||2

≤(1 +
p

n
)
(
E||wt − w′

t||2 +G2
αη

2
1−α

t

)
+

2(1 + p−1)c2αη
2
t

n
E
[
R̂

2α
1+α (wt, Si) + R̂

2α
1+α (w′

t, S
′
i)
]
.
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Multiply both sides with (1 + p
n )

−(t+1), and denote by ξt = E
[
R̂

2α
1+α (wt, Si) + R̂

2α
1+α (w′

t, S
′
i)
]

for
simplicity, we have

E(1 +
p

n
)−(t+1)||wt+1 − w′

t+1||2

≤ (1 +
p

n
)−t

(
E||wt − w′

t||2 +G2
αη

2
1−α

t

)
+

2(1 + p−1)c2αη
2
t (1 +

p
n )

−(t+1)

n
ξt

≤
t∑

s=1

(1 +
p

n
)−sG2

αη
2

1−α
s +

t∑
s=1

2(1 + p−1)c2αη
2
s(1 +

p
n )

−(s+1)

n
ξs.

Therefor, we have

E||wt+1 − w′
t+1||2 ≤

t∑
s=1

(1 +
p

n
)t+1−sG2

αη
2

1−α
s +

t∑
s=1

2(1 + p−1)c2αη
2
s(1 +

p
n )

t−s

n
ξs.

Take the Jensen inequality of the function t →
√
t, we have

E||wt+1 − w′
t+1|| ≤

√
E||wt+1 − w′

t+1||2

≤ Gα

√√√√ t∑
s=1

(1 +
p

n
)t+1−sη

2
1−α
s +

cα√
n

√√√√ t∑
s=1

2(1 + p−1)η2s(1 +
p

n
)t−sξs.

Plug the step size ηs = η, and R̂ ≤ M into the above inequality, we have

E||wt+1 − w′
t+1|| ≤ Gαη

1
1−α

√√√√ t∑
s=1

(1 +
p

n
)t+1−s +

2
√

(1 + p−1)ησα√
n

√√√√ t∑
s=1

(1 +
p

n
)t−s

≤ Gαη
1

1−α

√
n+ p

p
(1 +

p

n
)t +

2
√

(1 + p−1)ησα√
n

√
n

p
(1 +

p

n
)t.

Setting p = n
t−1 to minimize n

p (1 +
p
n )

t, we obtain

E||wt+1 − w′
t+1|| ≤ O

(
Gαη

1
1−α

√
t+

ηcαM
α

1+α
√
t√

n

)
. □

C.3 Proof of Stability Bounds for Convex and Smooth Losses

Lemma C.7 [25, Lemma 3.6] Assume for all z ∈ Z , the map w 7−→ f(w, z) is G-smooth. Then for
all u, v ∈ W ,
(1) ||u− η∂f(u, z)− v + η∂f(v, z)|| ≤ (1 + ηG)||u− v||.
(2) If in addiction the map w 7−→ f(w, z) is convex, then for any η ≤ 2/G we have:

||u− η∂f(u, z)− v + η∂f(v, z)|| ≤ ||u− v||.

Lemma C.8 [51, Theorem 1][25, Theorem 3.8] Assume for all z ∈ Z , f(·, z) is convex, G-smooth,
σ-Lipschitz. Let wt, w

′
t be the outputs of SGD on neighboring datasets S, S′ respectively, with the

step size ηt ≤ 2/G. Then the uniform stability parameter β of SGD satisfies

σ

n

T∑
t=1

ηt ≤ β ≤ 2σ2

n

T∑
t=1

ηt

Proof of Theorem 3 in the main paper. We analyze the situation at the (t+ 1)-th iteration of SGD.
According to the sampling-with-replacement strategy, with probability (1− 1

n ) we have it ̸= i, and

||wt+1 − w′
t+1|| ≤||wt − ηt∂R̂(wt, Sit)− w′

t + ηt∂R̂(w′
t, Sit)|| ≤ ||wt − w′

t||,
where the first inequality holds due to the nonexpansiveness of the projection operator ProjW(·), and
the last inequality holds due to Lemma C.7.
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With probability 1
n , it = i, and

||wt+1 − w′
t+1|| ≤||wt − ηt∂R̂(wt, Sit)− w′

t + ηt∂R̂(w′
t, Sit)||

≤||wt − w′
t||+ ||ηt∂R̂(wt, Sit)− ηt∂R̂(w′

t, Sit)||
≤||wt − w′

t||+ ηt||∂R̂(wt, Si)||+ ηt||∂R̂(w′
t, S

′
i)||

≤||wt − w′
t||+

√
2Gηt

(√
R̂(wt, Si) +

√
R̂(w′

t, S
′
i)
)
,

where the last inequality holds due to the self-bounding property of smooth function in Lemma C.4.
Combining the above analysis and the iteration rules, we have

EA||wt+1 − w′
t+1|| ≤EA||wt − w′

t||+
√
2Gηt
n

EA

(√
R̂(wt, Si) +

√
R̂(w′

t, S
′
i)
)

≤
√
2G

n

t∑
j=1

ηjEA

(√
R̂(wj , Si) +

√
R̂(w′

j , S
′
i)
)
,

which finishes the proof of the first part.
For the second part of the proof, if we additionally assume the loss function R̂(w, S) is uni-
formly bounded by M , then from Lemma C.4, we have α = 1 and ∀w ∈ W, ||∂R̂(w, S)|| ≤
cαR̂

α
1+α (w, S) ≤

√
2GM . Recalling Lemma C.3 and the convexity of the loss function, R̂(w, S)

is a
√
2GM -Lipschitz function w.r.t. w. Combining the

√
2GM -Lipschitzness, G-smoothness of

R̂(·, S), and Lemma C.8, we obtain lower and upper bounds of uniform argument stability of A. □

C.4 Proof of Stability Bounds in Non-Convex Case

Lemma C.9 [51, Theorems 4-6] Assume f(·, z) is G-smooth and σ-Lipschitz for all z ∈ Z . Running
T ≥ n iterations of SGD with step size ηt =

a
Gt , then the uniform stability γ of SGD satisfies

σT a

6n1+a
≤ γ ≤ 11 ln (n)σ2 T a

n1+a
.

Proof of Theorem 4 in the main paper. Note that the loss function R̂(w, S) is σ-Lipschitz and
G-smooth. Then using the techniques from Lemma C.9, we can obtain the lower and upper bound of
uniform argument stability of A. □

D Proof of High Probability Transfer Error Bounds for Meta Learning

In this section, we just present the transfer error bounds for deterministic meta algorithm A with
the following form: ∀δ ∈ (0, 1),PS{S : er(A(S), τ) ≤ Π(δ,S)} ≥ 1 − δ. If A is a randomized
meta learning algorithm, for any neighboring meta samples S,S′, we suppose the uniform argument
stability random variable satisfies PA[δA(S,S′;S) > β] ≤ δ0. Then, we can obtain the following
probability bound for randomized meta learning algorithm A with union bound technique:

PA,S{er(A(S), τ) ≥ Π(δ,S)} ≤ δ + δ0.

We next give an example to illustrate how to obtain the probability bound PA[δA(S,S′;S) > β] ≤ δ0,
where δ0 = exp{−n

2 }, n is the number of training episodes.
Example D.1 Under the same conditions of Lemma C.1, we further assume the function f(·, z)
is bounded by M and has (α,G)-Hölder continuous subgradient. We run stochastic subgradient
descent with constant step size η on neighboring datasets S and Si. Then with probability at least
1− exp{−n

2 }, we have ||vT − wT || ≤ O
(
cαM

α
1+α η(

√
T − 1 + T−1

n )
)
.

Proof. From Section C.2, we know f(·, z) has a subgradient bounded by cαM
α

1+α . Then from
Lemma C.1 we have ||vT − wT || ≤ 2cαM

α
1+α η

√
T − 1 + 4cαM

α
1+α η

∑T−1
j=1 rj . Define random

variable rj = 1{ij=i}, we have the expectation Erj = 1
n , and the variance D(rj) = 1

n (1− 1
n ). Then

according to the Bernstein inequality for rv with Gaussian behavior [39, Section D.4], we have

P[
T−1∑
j=1

rj −
T − 1

n
≥

√
T − 1] ≤ exp{−

(T − 1)( 1√
T−1

)2

2 1
n (1− 1

n )
} ≤ exp{−n

2
}.
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Therefore, with probability at least 1− exp{−n
2 }, we have

∑T−1
j=1 rj ≤ T−1

n +
√
T − 1, and

||vT − wT || ≤ 2cαM
α

1+α η
√
T − 1 + 4cαM

α
1+α η

(T − 1

n
+
√
T − 1

)
. □

D.1 Proof of Bound with Near Optimal Rate

Definition D.1 (Uniformly Stable Algorithm [7]) An algorithm is called γ-uniformly stable if for
any S, S′ that differ only at most one entry, for any z ∈ Z , |f(A(S), z)− f(A(S′), z)| ≤ γ.

Lemma D.1 [8, Corollary 8 and Proposition 9] Let A be a γ-uniformly stable algorithm. Let f(·, ·)
be a loss function uniformly bounded by M . Then ∀δ ∈ (0, 1), with probability at least 1− δ over
the sample S,

γ ln
1

δ
+

M√
n

√
ln

1

δ
≲ L(A(S), D)− L̂(A(S), S) ≲ γ lnn ln

1

δ
+

M√
n

√
ln

1

δ
.

Proof of Theorem 5 in the main paper. The result clearly holds for σ-Lipschitz and G-smooth
function. Next, just consider the convex and (α,G)-Hölder smooth function. By utilizing the
self-bounding property of (α,G)-Hölder smooth function in Lemma C.4, we have

||∂R̂(w, S)||2 ≤ cαR̂
α

1+α (w, S) ≤ cαM
α

1+α .

Therefore, R̂(w, S) has a bounded subgradient. Then recalling the convexity of the loss function and
Lemma C.3, we know R̂(w, S) is a cαM

α
1+α -Lipschitz function w.r.t. w. Thus, for any neighboring

meta samples S,S′, ∀Str ∈ ZK ,

R̂(A(S)(S), S)− R̂(A(S′)(S), S) ≤ cαM
α

1+α ||A(S)(S)−A(S′)(S)|| ≤ cαM
α

1+α β.

Denote by σα = cαM
α

1+α for simplicity. Thus, the meta leanring algorithm A is also uniformly
σαβ-stable w.r.t. the loss function L̂ as defined in Definition 2. Recalling the relationship between
generalization error bound for single-task learning and transfer error bound for meta learning in
Table B.1, and utilizing the near optimal bound in Lemma D.1, we obtain the following near-optimal
high probability bound for transfer error:

σαβ ln
1

δ
+

M√
n

√
ln

1

δ
≲ er(A(S), τ)− êr(A(S),S) ≲ σαβ ln

n

δ
+

M√
n

√
ln

1

δ
. □

D.2 Proof of Bound with Fast Rate O(lnn/n)

Definition D.2 (Generalized Bernstein Condition for Single-Task Learning) Assume that W∗ =
Argminw∈WL(w,D) is a set of risk minimizers in a closed set W . We say that W together with the
measure D and the loss function f satisfy the generalized Bernstein assumption if for some B > 0
for any w ∈ W , there is a w∗ ∈ W∗ such that

Ez∼D

(
f(w, z)− f(w∗, z)

)2 ≤ B
(
L(w,D)− L(w∗, D)

)
.

Definition D.3 (Quadratic Growth Condition [40]) Any function f : W → R satisfies the quadratic
growth (QG) condition on W with parameter µ > 0 if for all w ∈ W , f(w)−f(w∗) ≥ µ

2 ||w−w∗||22,
where w∗ denotes the Euclidean projection of w onto the set of global minimizer of f in W .

Lemma D.2 [29, Theorem 1.2] There is a constant c > 0 such that the following holds. Let A be a
uniformly γ-stable algorithm, and assume that the loss function f(·, ·) is bounded by M and satisfies
the generalized Bernstein condition in Def D.2. Fix any η > 0. Then, with probability at least 1− δ,

L(A(S), D) ≤ (1 + η)L̂(A(S), S) + c(1 +
1

η
)
(
γ lnn+

M

n

)
ln

1

δ
.

Recall that σα = cαM
α

1+α if R̂(w, S) is a convex and (α,G)-Hölder smooth function; σα = σ if
R̂(w, S) is a σ-Lipschitz and G-smooth function. Then we have the following proposition.
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Proposition D.1 Suppose that for any fixed S ∈ Zm, the loss function R̂(w, S) is bounded by
M , has a quadratic growth on w with parameter µ (see Definition D.3), and satisfies one the two
following conditions: (1) (α,G)-Hölder smooth; (2) L-Lipschitz and G-smooth. Then we can derive
the generalized Bernstein condition for meta learning in Definition 4 with parameter B =

2σ2
α

µ .

Proof. Recall the proof for Theorem 5, we know that for any fixed S ∈ Zm, R̂(w, S) is a σα-Lipschitz
function w.r.t. w. Then we have

ES∼Dτ

(
l(A,S)− l(A∗, S)

)2

=ES∼Dτ

(
R̂(A(S), S)− R̂(A∗(S), S)

)2

≤ES∼Dτ
σ2
α||A(S)−A∗(S)||22

≤ES∼Dτ

2

µ
σ2
α

(
R̂(A(S), S)− R̂(A∗(S), S)

)
=
2σ2

α

µ

[
er(A, τ)− er(A∗, τ)

]
,

where the first inequality holds due to the Lipschitz property of function R̂, the second inequality
holds due to the Quadratic Growth of function R̂ w.r.t. its first argument. □

Proof of Theorem 6 in the main paper. We first show that the loss function R̂(w, S) also satisfies
the quadratic growth (QG) condition in Definition D.3. (1) when R̂(w, S) is a convex α-Hölder
smooth function: from [49, Corollary 2] we know that the PL condition is equivalent to the QG
condition. Therefore, R̂(w, S) satisfies the QG condition with parameter µ; (2) when R̂(w, S) is a
non-convex smooth function: the smooth function R̂(w, S) satisfies the PL condition for all w ∈ W ,
R̂(w, S)− R̂(w∗, S) ≤ 1

2µ ||∇R̂(w, S)||22. From [28, Appendix A], we also have R̂(w, S) satisfies

the QG condition in Definition D.3 with parameter µ. From Proposition D.1, we know R̂(·, S)
satisfies generalized Bernstein condition with parameter 2σ2

α

µ . From Theorem 5, we know the meta
leanring algorithm A is uniformly stable with parameter σαβ. Therefore, recalling Lemma D.2, as
well as the ‘equivalence’ relationship between generalization error bound and transfer error bound
listed in Table B.1, we complete the whole proof. □

D.3 Proof of Bound with Dependent Learning Tasks

Lemma D.3 [50, Theorem 4.4] Given a sample S of size n with dependency graph Γ, assume that
the learning algorithm A is γ-uniformly stable. Suppose the maximum degree of Γ is △, and the loss
function f is bounded by M . For any δ ∈ (0, 1), with probability at least 1− δ, it holds that

L(A(S),D) ≤ L̂(A(S), S) + γ(△+ 1) +
(
2γ +

M

n

)√Λ(Γ) ln (1/δ)

2
.

Proof of Theorem 7 in the main paper. According to the proof for Theorem 5, the meta leanring
algorithm A is uniformly (σαβ)-stable w.r.t. the loss function R̂. Combining the above result with
Lemma D.3, we have with probability at least 1− δ over the draw of meta sample S,

er(A(S), τ) ≤ êr(A(S),S) + σαβ
(
△+ 1

)
+

(
2σαβ +

M

n

)√Λ(Γ) ln 1/δ

2
,

which completes the whole proof. □

Example D.2 In the experiment section, we run meta learning algorithms to approximate the distribu-
tion p(α, β) of parameters α and β, with p(α) = U [−5, 5], p(β) = U [0, π]. To construct dependent
episodes, we first independently sample n pairs of parameters (α, β) from p(α, β) to form the first n
training episodes, and set (−α, π − β) with pair (α, β) from the first n training episodes to form the
rest n training episodes. In this problem, the dependency graph Γ = (V,E) of S satisfies: V = [2n],
|E| = n with each edge in E connecting only two vertices. Then we can connect all edges in E in
series to construct a tree F of depth (2n−1) as one forest approximation of Γ. Then the maximum de-
gree △ = 1, the forest complexity of Γ satisfies Λ(Γ) ≤ |F |(1+1)2+1 = 8n−3 = O(n). Thus, the
forest-complexity based bounds for meta algorithms with dependent episodes is of O(β

√
n+M/

√
n).
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