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Scalable Kernel k-Means with Randomized
Sketching: From Theory to Algorithm

Rong Yin, Yong Liu*, Weiping Wang, and Dan Meng

Abstract—Kernel k-means is a fundamental unsupervised learning in data mining. Its computational requirements are typically at least
quadratic in the number of data, which are prohibitive for large-scale scenarios. To address these issues, we propose a novel
randomized sketching approach SKK based on the circulant matrix. SKK projects the kernel matrix left and right according to the
proposed sketch matrices to obtain a smaller one and accelerates the matrix-matrix product by the fast Fourier transform based on the
circulant matrix, which can greatly reduce the computational requirements of the approximate kernel k-means estimator with the same
generalization bound as the exact kernel k-means in the statistical setting. In particular, theoretical analysis shows that taking the
sketch dimension of 1/ is sufficient for SKK to achieve the optimal excess risk bound with only a fraction of computations, where n is
the number of data. The extensive experiments verify our theoretical analysis, and SKK achieves the state-of-the-art performances on
12 real-world datasets. To the best of our knowledge, in randomized sketching, this is the first time that unsupervised learning makes

such a significant breakthrough.

Index Terms—kernel k-means, randomized sketching, statistical and computational trade-offs, excess risk bound.

1 INTRODUCTION

-MEANS clustering, a popular nonparametric approach in
Kthe knowledge and data engineering community, divides the
datasets into dissimilar groups according to the distance between
data points [1], [2], [3]. The kernel version of k-means projects
data points into a high-dimensional non-linear manifold, which
makes clusters more easily separated [4], [5], [6], [7], [8]. Kernel
k-means has been applied in various practical applications and
made remarkable achievements [9], [10], [11], [12], [13], [14],
[15], [16]. However, with the increasing of the size of datasets,
the computational requirements are prohibitive, typically at least
quadratic in the number of data.

To overcome these limitations, many researchers have made
various explorations. The main popular approaches are as follows.
Parallel computing divides clustering tasks into several small com-
putational parts and then distributed processes them so as to reduce
time complexity [17], [18], [19]. Random features represent the
data points in Hilbert space explicitly and approximately [20],
[21], [22], [23], and the dimension of the approximate data points
is much smaller than the original data dimension in Hilbert space,
which can reduce the computational requirements. Nystrom is
sampling a subset of training set points (landmarks) to approxi-
mate the kernel matrix [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33]. Incremental clustering algorithms utilize progressive
calculation to accelerate the computing speed [34], [35]. And
randomized sketching [25], [36] provides the projection strategy
to approximate the large-scale kernel matrix so as to reduce
the computational requirements. From a theoretical perspective,
the key strategy is to characterize statistical and computational
trade-offs, that is if, or under which conditions, computational
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gains come at the expense of statistical accuracy. Various studies
have shown that randomized sketching successfully projects large
matrices into smaller matrices, which is more efficient and proved
to maintain satisfactory accuracy [25], [36], [37], [38], [39], [40].
However, the existing randomized sketching kernel k-means is
still prohibitive for large-scale scenarios and fails to obtain the
optimal excess risk bound [25], [36].

In this paper, we quantify the efficiency of approximate kernel
k-means from the perspective of theoretical analysis and com-
putational requirements. Arguably, an approximate estimator may
incur some accuracy loss. In fact, our theoretical analysis proves
that there is a favorable mechanism for keeping optimal statistical
accuracy with significantly reducing computational requirements.
The phenomenon was also shown in supervised learning [41], [42],
[43], [44], [45].

The proposed approach SKK considers a randomized sketch-
ing to kernel k-means based on the circulant matrix [46], [47],
[48], [49], which significantly accelerates the calculation of kernel
k-means, reduces the space complexity, and has the optimal excess
risk bound. By constructing the randomized sketching matrices
and utilizing the fast Fourier transform (FFT) based on the
circulant matrix, SKK can quickly obtain a smaller approximate
kernel matrix and greatly reduce the computational cost during
the process of iteration in kernel k-means clustering. From a
computational point of view, while maintaining the optimal excess
risk bound, the proposed approach obtains the time complexity
O(nkt + nlog+/n) and space complexity O(n), which are
the optimal compared to the existing state-of-the-art approximate
kernel k-means estimators, where n, k, and ¢ represent the number
of data points, clusters, and iteration in kernel k-means clustering,
respectively. The statistical analysis shows that SKK maintains
the optimal excess risk bound O(+/k/n)' with only the sketch
dimension of /n. In this case, the corresponding computational
costs are greatly reduced. To the best of our knowledge, in

1. O hides logarithmic term.
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unsupervised learning, this is the first optimal generalization
bound for randomized sketching kernel k-means estimators. Most
importantly, the empirical performances are thoroughly tested on
real-world datasets. An extensive experimental analysis indicates
that SKK can keep the optimal state compared to the existing
state-of-the-art approximate kernel k-means estimators on most
problems both in time consumption and prediction accuracy. The
main contributions are as follows:

1) A novel randomized sketching kernel k-means approach
is proposed, which utilizes the circulant matrix to get a smaller
variant kernel matrix, thus bringing the benefits of computational
requirements. _

2) An optimal excess risk bound O(y/k/n) for randomized
sketching kernel k-means is achieved with the sketch dimension
v/n. To the best of our knowledge, this is the first time that kernel
k-means with randomized sketching achieves such an optimal
statistical accuracy (see Theorem 4).

3) Compared to the state-of-the-art approximate estimators in
kernel k-means, while keeping the optimal statistical accuracy,
the proposed approach achieves the time complexity O(nkt +
nlog+/n) and space complexity O(n), which are the optimal
(see RELATED WORK).

4) The empirical performances on 12 real-world datasets
shows that SKK significantly outperforms the state-of-the-art
approximate kernel k-means estimators in terms of time, while
maintaining satisfactory accuracy.

In sections 2 and 3, we introduce the related work and
the background of kernel k-means. In the following section,
the approximate kernel k-means estimator SKK is proposed. In
section 5, the statistical guarantees and the related discussion
of the proposed approach are presented. Finally, the extensive
experiments, proof, and conclusion are presented.

2 RELATED WORK

To deal with the computational requirements bottleneck of kernel
k-means, practical approximate kernel k-means estimators are
developed [17], [22], [24], [25], [27], [36]. Although there have
been many studies on the approximate kernel k-means estimators,
the excess risk bound is mainly obtained in the papers [36], [27],
and [24]. For example, the paper [25] established the 1+« relative-
error bound for Nystrom approximation to kernel k-means instead
of excess risk bound, where £ € (0,1). The proposed approach
in this paper is based on randomized sketching to accelerate the
computation and provides the excess risk guarantees for approxi-
mate kernel k-means. Therefore, in this part, we mainly introduce
the most relevant approximate kernel k-means with excess risk
guarantees: [36] based on randomized sketching and [24], [27]
based on Nystrom.

In the paper [36], a typical randomized sketching approxima-
tion approach, called PKK, was proposed in kernel clustering. It
constructed an unstructured matrix to act as a sketch matrix, which
is used to project data one-time. PKK extracted features from the
data in Hilbert space by the sketch matrix, then performed cluster-
ing operations on them. As its sketch matrix is unstructured, PKK
cannot accelerate kernel k-means by FFT. Meantime, the scale
of the projected data matrix is still large so that the computational
requirements are still high. PKK assumed that data in Hilbert space
are explicit and infinite-dimensional, but did not give any specific
expression. For analyzing its complexity, one can use the columns
of the kernel matrix, whose dimension is obviously smaller than
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that of data in Hilbert space [50], as the object of randomized
sketching. The space and time consumption of PKK is O (n2)
and O (nmkt + n?m) with the excess risk bound O(k/\/n),
under the sketch dimension?> m = Q(log(n)/e?). Compared to
it, the proposed approach improves the excess risk bound from
O(k/+/n) of PKK to the optimal O(+/k/n), reduces the space
complexity by a factor of n, and reduces the time complexity by
a factor of ktffoﬁ . 1052".

The state-of-the-art Nystrom approach to kernel k-means [27]
employed the uniform sampling technique to obtain the Nystrom
landmarks that can be used to approximate the kernel matrix.
Combined with probabilistic results to show that excess risk bound
O(k/+/n) can be obtained considering (/1) Nystrém land-
mark points. The corresponding space complexity is O (n+/n)
and the time complexity is O (ny/nkt 4+ n?). Compared to [27],
the proposed approach improves the excess risk bound from
O(k/+/n) to the optimal O(1/k/n). In computational require-
ments, the proposed approach reduces the time complexity by
a factor of ]ﬁ)ﬁ and space complexity by a factor of \/n
respectively, while maintaining the better excess risk bound.

Subsequently, based on the Nystrom approach in [27], Liu et
al. [24] further improved the excess risk bound from O(k//n) to
the optimal O(\/k/n), which is linearly dependent on \/F instead
of k, with the number of Nystrom landmark points Q(\/?%)

The corresponding space and time complexity is O (n\/ nk)
and O (nk\/ nkt + nzk). Although Liu et. al obtain the op-
timal excess risk bound for kernel k-means, the corresponding

landmarks increased to Q(\/ nk) which causes the higher time
and memory costs. Compared to [24], the proposed approach

: vnkkt+nk
reduces the space and time cost by factors of v/nk and Tt+log v

at the same optimal statistical accuracy. Therefore, the existing
approaches need to be further improved in terms of computational
requirements with high theoretical accuracy.

In this paper, a novel approximate kernel k-means estimator is
proposed, which is based on the randomized sketching techniques
and the structured matrix to approximate kernel k-means with
high computation gains and sound statistical guarantees. More
precisely, we utilize the sketch matrices to project the kernel
matrix left and right to obtain a smaller approximate kernel
matrix. In addition, the proposed sketch matrices are based on
the circulant matrix, which is a structured matrix, to process
data. In terms of time complexity of the circulant matrix, it can
realize loglinear computation in the matrix-matrix product by
FFT. In terms of space complexity, it can realize linear storage
due to the structural characteristics. By carefully constructing the
sketch matrix and randomized sketching approach for kernel k-
means clustering, SKK only costs space complexity of O (n)
and time complexity of O (nkt+ nlog+/n) for approximate
kernel k-means estimator with the optimal excess risk bound,
which significantly outperforms other randomized sketching and
the classical Nystrom approaches. Compared to the exact kernel k-
means, SKK reduces the space requirement from O(n?) to O(n),
and the time requirement from O(n2kt) to O(nkt + nlog+/n).
From a theoretical perspective, this paper shows a provable
guarantee for the proposed approach SKK. Given the sketch
dimension of \/ﬁ, SKK obtains the same statistical accuracy of
the exact kernel k-means, improving the excess risk bound by
a factor of Vk compared to [36] and [27]. SKK is the first

2. {2 hides logarithmic term.



YIN et al.: SCALABLE KERNEL K-MEANS WITH RANDOMIZED SKETCHING: FROM THEORY TO ALGORITHM 3

TABLE 1
Comparison of the classical approximate kernel k-means approaches. The third and fourth columns represent the space and time complexity of
each approach. The fifth and sixth columns correspond to the excess risk bounds and the corresponding m. m denotes the sketch dimension in
randomized sketching approaches such as PKK and SKK, and Nystrém landmark points in Nystrém approaches such as NKK- and NKK. n and &
represent the number of data points and clusters respectively. ¢ represents the number of iteration in kernel k-means. € € (0, 1).

Reference Approach Space Time Excess Risk Bound m
Kernel k-Means KK O (n?) O (n?kt) o <\/§> /
[36] PKK O (n?) O ((nkt +n?) - 1257 0 (L logn
[27] NKK- O (ny/n) O (nkt\/n +n?) (% NG
[24] NKK O (nvnk) O (nktv/nk +n?k) Ok vk
This Paper SKK O (n) O (nkt +nlog/n) Ok vn

to achieve the optimal excess risk bound with only a fraction
of computations in randomized sketching kernel k-means. The
detailed time complexity, space complexity, excess risk bound,
and the corresponding value of m of the classical approximate
kernel k-means estimators mentioned above are summarized in
TABLE 1. The empirical results on 12 common datasets indicate
that SKK outperforms other approximate approaches, which verify
our theoretical analysis.

3 BACKGROUND
3.1

Given a fixed but unknown probability distribution x on the input
space X and a feature map () : X — H, one draws a sample
X = {x1,...,X,} i.id from g and maps X into a Reproducing
Kernel Hilbert Space (RKHS) # [50], [51] by ©(-). Therefore, one
has ¢ = ¢(x) for any x € X. The n clustering data ¢1, ..., ¢,
are independent in a separable Hilbert space H with distribution
(. By the kernel trick one has that (¢;, ;) = K(x;,%;), K is the
kernel function associated with H, (.,.) denotes the notation of
inner product. We denote with K;; = (¢;, ¢;) = K(x;,%;) the
kernel matrix.

Notation

3.2 Kernel k-Means

The key idea of k-means clustering is to obtain k clustering
centroid c, then partition the data ¢, ..., @, into the k clusters
according to the similarity with c;. This can be described by the
following mathematical expression:

n
U3 min | e |1
n = jclk]

W(c, pn) = (D

where ¢ = {c1,...,cr} € H” denote the clustering centers, fi,,
denotes the empirical distribution of the data. That is to say, if
the least empirical squared norm of point ¢; corresponding to the
clustering center c;, ¢; belongs to the j-th cluster.

The quality of a clustering scheme is usually measured by the
clustering risk [27], [36], the form of which is as follows.

Definition 1 ( [27], [36]). Define the clustering risk as

Wie) = [min [ o=c; [ du(e). @

For introducing the theoretical target, we first show the notions
of the empirical risk minimizer and the optimal clustering risk.

Definition 2 ( [36]). Define the empirical risk minimizer (ERM)

as
c, = arg min W(c, pi,). 3
g 1in Wi(e, ) 3)
Definition 3 ( [27]). Define the optimal clustering risk as
W*(u) = inf W(c,p). 4
ceHFE

From a theoretical perspective, this paper aims to bound the
excess risk £(cy,) of the ERM:

E(cn) =E[W(cn, )] = W*(u).

3.3 The Lower and Upper Bounds of Kernel k-Means

The upper bound on excess risk of the ERM to kernel k-means is
(nearly) the same as the lower bound, which means that the upper
bound is (nearly) the optimal excess risk bound to kernel k-means.
In the following, we introduce the detail of the excess risk bound.

Theorem 1 (Lower Bound [8]). There exists ||¢|| < 1 and a
constant C' such that

BV (e, )] - W) = 0y

®)

where d is the dimension of ¢.

In general, the dimension d of ¢ is very large or even infinite.
Therefore, Theorem 1 shows that the lower bound on excess risk
k

to kernel k-means is 2 =
For a long time, the excess risk of ERM to kernel k-means

kept the following upper bound [27], [36]:

k k
E[W(cy,, - W <C—=0|(—),
W (e ] =W () < €52 =0 (=)
where C' is a constant, which is linearly related to the number of
clusters k.
Recently, Liu et al. [24] further improved the upper bound to
kernel k-means, which is shown as below.
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Theorem 2 (Upper bound [24]). Given § € (0, 1) and ||¢]| < 1.
We have, with the probability at least 1 — 6,

E[W(cn, p)] = W*(p)
SC\/%log +3 (‘{f) +C
—0 ( ’4) 7

where C' is a constant.

log %
n (6)

[N

Theorem 2 shows that the upper excess risk bound of kernel
k-means can reach O \/g , that is, it improves the upper bound
from k-related to v/k-related. Combining Theorem 1 and Theorem

2, we know that the lower excess risk bound and upper excess risk
bound of kernel k-means are of the same order, which indicates

that O (\/g ) is the (nearly) optimal excess risk bound to kernel

k-means.

3.4 The Computation of Kernel k-Means

From a computational perspective, the clustering center ¢; in
Eq.(1) cannot be directly computed since that the points ¢; cannot
be directly represented. To solve the problem, combining the key
idea of kernel k-means and the kernel trick, one has

Proposition 1 (Proposition 2 of [27]). Let K be the kernel
matrix. Denote the i-th column of K by K;. Then

. 1 . u !
ICIélLlW(cvﬂn) = ﬁmlnz Z ‘kl - m sg' ks

j=14€S;
where S; denotes the Voronoi cell (namely, j-th cluster) and |S;|
denotes the number of data in S;.

2

» (D

Proposition 1 shows that the point-oriented {¢; } kernel clus-
tering problem in Hilbert space can be transformed into the related
kernel matrix column-oriented {k;} problem. The space and time
complexity of computing the kernel matrix K are all O(n?) due
to the n X n scale of kernel matrix. When n is very large, the
requirements of calculation is prohibitive.

4 KERNEL k-MEANS WITH RANDOMIZED SKETCH-
ING (SKK)

The proposed approach SKK uses a novel randomized sketching
method based on the circulant matrix to approximate kernel k-
means clustering, which has the same statistical accuracy as the
exact kernel k-means clustering, the optimal time complexity and
the optimal space complexity compared to the state-of-the-art
estimators. In this section, we mainly introduce the proposed ap-
proximate kernel k-means estimator in detail. This paper assumes
that E||¢[|? < oo.

4.1 Randomized Sketching

We use the randomized sketching method to accelerate the com-
putation of kernel k-means, which is mainly to construct a novel
sketch matrix S, then project the kernel matrix to a smaller scale.
The specific form of the proposed randomized sketching approach
is as follows. A

K = SKST ¢ rm™*™, (8)
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with
S =DAQ, ©)]

where D € R™*™ is a diagonal matrix, A € R™*™ is a
circulant matrix, and Q € R™*" is a sampling matrix.

The diagonal elements of D are i.i.d, which belong to
{+1,—1} with the same probability. The first column a; of A
obeys the normal distribution with expectation 0 and variance
1/m, namely a; ~ N(0,1/m). Sample m different rows with
the same probability from the identity matrix I € R™*", then
construct the sampling matrix Q by the m rows of L.

The circulant matrix is the key technique to construct the
proposed randomized sketching approach, which generates the
complete matrix by cycling the elements of the first column. The
form of A is as below,

al Qo Am—1 . as
ag ay Am, Am—1
a a a
A— 2 1 m (10)
Am—1
am
L Ay Qm—1 e a9 aq ]

The complete information of the circulant matrix can be preserved
by only storing the first column. Therefore, its space complexity
is O(m), which can save the storage space.

One can transform the circulant matrix into the form of
discrete Fourier transform [52], A = %G*diag(Ga)G, where
G = [ei%kt]ztzl and a = [ay,a9,...,a,]7 is the first
column of A. G*'is conjugate transpose of G. We can use FFT to
accelerate a matrix-vector product (Av, v € R™ is a vector) [52].
The corresponding time complexity is O(m log m). Nevertheless,
if A is a traditional unstructured matrix, the time consumption of
Av is O(m?). Therefore, the circulant matrix can greatly save
time and space complexity during the process of matrix operation.

4.2 Kernel k-Means with Randomized Sketching

In the following, we introduce the proposed algorithm SKK based
on the randomized sketching method mentioned above.

After generating the matrix K we bring the columns l;l of K
into k-means algorithm to determine a collection of clustering
centers €, = (Cp1,-..,Cnk) Which minimizes the empirical
clustering risk in R™. And their associated Voronoi cells are
expressed as S1, ..., Sk C R™. Let the clustering centers be

m
S klle s
~ =1 "7k, €S .
Cnj=———%——,j = [k], an
|55
where ¢,, denotes the collection of these k centers and ]Ifqe s is
the ind.icator function. qu s, = 1if lA(z € Sj and Hﬁie § = 0
otherwise.
Here we introduce the theoretical guarantee for the clustering
centers and the proposed randomized sketching mentioned above.

Theorem 3. The clustering risks of K and SKS” are denoted
by W (cp, ftn) and W (€, fin,). Given any €,0 € (0,1), let

4logn — 2logd
e—log(l+e) "
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We have, with probability at least 1 — 6,

. 4e
W (&n; pin) = Wen, pin) < =D (12)
Proof. The proof is shown in the section of PROOF. O

Remark 1. ¢ is a small value between 0 and 1. Theorem 3 shows
that the theoretical loss in clustering risk, caused by the proposed
randomized sketching method and the carefully constructed clus-
tering centers, is %, which is a small value and is a part of
excess risk bound in SKK. This means that the designed clustering
centers based on the randomized sketching method are sound and
the proposed randomized sketching method to clustering estimator
is effective.

The detailed process of SKK is summarized in Algorithm 1.
Instead of using all the data directly to generate a complete kernel
matrix K, we sample the data points to construct a variant kernel
matrix K for subsequent sketching, as step 4. Note that in the
mathematical expression, K is equivalent to QKQ', but we do
not explicitly calculate the kernel matrix K. As the kernel matrix is
dense, this way can greatly reduce the computational requirements
of the kernel matrix. Meanwhile, due to the proposed sketch matrix
is based on the circulant matrix, one can use FFT to compute
sketch liernel matrix K, as step 5. Then, we use the sketch kernel
matrix K to calculate iteratively in k-means algorithm, which can
significantly reduce the time complexity, as step 6. Step 7 obtains
the clustering centers based on Eq.(11).

Algorithm 1 randomized sketching kernel k-means (SKK)

Input: {x;}" ,, k, kernel parameter and sketch dimension m.
Output: centroids &,

1: Construct the matrices D € R™*™ and Q € R™*"
described in Eq.(9),

2: Construct a vector a; € R™, the entries of which obey the
standard normal distribution,

3: Generate the circulant matrix A € R™*™_ where a; acts as
the first column of A,

4: Sample m data points by the sampling matrix Q then con-
struct a val;iant kernel matrix K € RMXxm,

5. Compute K = 2 (DAK')ATDT € R™*"™ with FFT,

6: Perform k-means over the columns of K

7. Compute centroids ¢,, in Eq.(11).

4.3 Complexity Analysis

The proposed approach reduces the number of data involved in the
k-means iteration and reduces the corresponding time and storage
space by utilizing the randomized sketching method to construct a
smaller variant kernel matrix. The detailed consumption of SKK
in terms of time and space is as follows.

4.3.1 Space Complexity

The determinant of space complexity in kernel k-means is the
scale of the kernel matrix. To avoid this bottleneck, we firstly
sample the datasets and then generate the kernel matrix based
on the sampled data, which can save space cost from O(n?) to
O(m?).

Additionally, the proposed sketch matrix is constructed based
on the circulant matrix, whose space complexity is O(m). Finally,
the space complexity of the proposed approach can be abbreviated

as O(m?), which has an n? /m? improvement over the n? space
of the exact kernel k-means.

4.3.2 Time Complexity

Because of the introduction of the circulant matrix, FFT can
be used to calculate the multiplication of correlation matrices
in SKK. In order to minimize the time cost, the expression
K = SKS” € R™*™ can be rewritten as S(SK)7. Then, we
can utilize FFT multiple times during the calculation. Due to early
sampling, the time complexity of S(SK)T is O(m? logm). The
time complexity of bringing the processed data into the subsequent
t steps of k-means algorithm is O(m?kt).

Therefore, the time complexity in the proposed approach can
be simplified into O(m?kt +m? logm). Once the sketching data
Ri are computed they can be manipulated in m?, with an n?/m?
improvement over the n? time required by the exact embeddings
k;. The proposed approach can also be implemented by parallel
operation, and the corresponding time cost will be reduced by
a certain multiple. However, this paper is mainly to validate the
effectiveness of the randomized sketching-based approximation
for kernel k-means with circulant matrix. Therefore, we do not
consider bringing in parallel in this paper.

5 THE EXCESS RISk BOUND oF SKK

This section mainly describes the generalization properties of SKK
showing it achieves the same generalization error as exact kernel
k-means, with dramatically reduced computations. This result is
given in Theorem 4. In particular, with sketch dimension \/ﬁ,
SKK has essentially the same optimal excess risk bond as exact
kernel k-means [24].
Theorem 4. Given any n data and €, € (0,1). Let

4logn — 2logd
e —log(1+¢)

and the clustering centers C,, are found by the clustering algorithm
based on randomized sketching in Eq.(8). Then, with probability
at least 1 — 6, we have

E[W (&0, 1)] = W* (1)
14
Proof. The proof is shown in the section of PROOF. O

A

Remark 2. According to Theorem 2, the upper excess risk bound
of the exact kernel k-means is (’)(\/%) Note that € is a small

value. Choosing € = ﬁ (In general, n > 100), the solution

C,, achieves the excess risk bound O \/E) From a statistical

point of view, Theorem 4 shows that, with the suitable sketch
dimension, the proposed SKK achieves the same optimal excess
risk bound as the exact kernel k-means [24]. Compared to the
representative randomized sketching method [36], we improve the

excess risk bound from O (%) to O <\/§> with the smaller

sketch dimension. This paper is the first result of the optimal
excess risk bound based on the randomized sketching method. This
illuminates that the approximate approach is sound.

Remark 3. From a computational point of view, Theorem 4 shows
that taking the sketch dimension of \/n is sufficient for optimal



TABLE 2
The main information of datasets used in this paper.

Datasets Instance Feature Class
dna 2000 180 3
segment 2310 19 7
mushrooms 8124 112 2
pendigits 10992 16 10
protein 17766 357 3
a8a 32561 123 2
w7a 49749 300 2
connect-4 67557 126 3
mnist 60000 780 10
SVHN 73257 3072 10
skin-nonskin 245057 3 2
covtype 581012 54 7

ol
n

Clustering risk
o o«

=

0 20 40 60
# iteration

Fig. 1. Clustering risk and different number of iterations of PKK, UNKK,
NKK, KK and SKK (ours) approaches on protein datasets with m = 150.

statistical accuracy, which greatly reduces the scale of kernel
matrix from O(n?) to O(n). Each iterations of approximate
k-means algorithm only requires O(n) time instead of O(n?).
Compared to the exact kernel k-means clustering, the proposed
SKK reduces the space and time all by a factor of n, with the
same excess risk bounds. The detailed comparison with the related
works is shown in TABLE 1 and RELATED WORK.

The result shows that the proposed approach takes a substan-
tial step in provably reducing the computational requirements with
the optimal generalization statistical accuracy.

Note that, Theorem 1 and Theorem 2 show the lower and
upper bounds on excess risk of the exact kernel k-means. Theorem
3 shows that the proposed clustering centers and the proposed
randomized sketching method are sound and effective, which is a
part of the excess risk bound of the proposed SKK in Theorem 4.
Combining Theorem 1 and Theorem 2, Theorem 4 shows that the
proposed SKK achieves the same optimal excess risk bound as the
exact kernel k-means with the suitable sketch dimension.

6 EXPERIMENTS

This section empirically verifies the effectiveness of SKK and
compares the performance of SKK with the state-of-the-art
approaches of approximate kernel clustering on 12 real-world
datasets. The hardware configuration of each experiment is 32
cores (2.40GHz), and RAM is 32 GB.
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In this paper, each experimental value is the average of 30
experiments to avoid randomness. The statistical significance of
differences among approaches in performance can be estimated
by multiple training/prediction partitions. In partition ¢, let the
error of method 7 be 7; and the error of method p be p;.
Let w; = 7, — piyi € {1,...,30}. Denote the mean and
standard deviation of w; as @ and p. Under p-test, if the p-
statistic 5 /% > 1.699, then with confidence level 95%, p
is obviously better than 7. In the following, we use the 95%
level of significance as the statistical significance. In addition,
Friedman test [53], [54] compares the average ranks of algorithms.
To measure the algorithms performance more comprehensively,
we also use Friedman test to examine. Given 7"17 be the rank of
the j-th of u algorithms on i-th of v datasets. Under the null-
hypothesis, which states that all the algorithms are equivalent,

— 2 . . . .
Friedman statistic Fr = % is distributed according to

the F'-distribution with v — 1 andF(u — 1)(v — 1) degrees of

freedom, where x% = % S (i m)? = Bvu(u+1).

6.1 Baselines and Parameter Settings

In this part, we mainly introduce parameter settings and the
compared approaches, which include the representative random-
ized sketching kernel k-means approaches and the state-of-the-art
Nystrom kernel k-means approximation. The details are shown as
follows.

1) PKK: PKK approach employed randomized sketching tech-
nique for approximate kernel k-means clustering [36].

2) UNKK: It is a representative approach combining random-
ized sketching and Nystrom [25]. Its time complexity and space
complexity are O (nmkt + an) and O (nc) respectively with
the uniform sampling, where c is the sketch size and ¢ > m.
Compared to it, we reduce the space complexity by a factg)r of
nc/ m? and the time complexity by a .factor of #%
with the same m. Although UNKK did not get the excess risk
bound and there is no comparability with it in theoretical accuracy,
to fully validate the performance of the proposed approach, we
make comparisons between SKK and UNKK in the experiment.
According to [25], taking the parameter of sketch size ¢ = 2m.
Other parameters are the same as those in [25].

3) NKK: NKK is the state-of-the-art approach Nystrom ap-
proximation to kernel k-means clustering [24].

4) KK: It is the abbreviation of the exact kernel k-means. The
code is from websites®.

5) SKK: SKK represents the proposed approach which uses
the randomized sketching based on the circulant matrix to approx-
imate kernel k-means.

In the experiments, we utilize the Gaussian kernel for the
approximate kernel k-means estimators on 12 real-world datasets.
The kernel bandwidth o of the Gaussian kernel is expressed in

the following form, which is related to the average interpolation
Zq‘,j llx: —x;1I2

distance between data points, o = -

6.2 Datasets

The experiments compare SKK with the state-of-the-art approxi-
mate kernel k-means approaches on 12 conventional and widely
used datasets: dna, segment, mushrooms, pendigits, protein, a8a,
w7a, connect-4, mnist, SVHN, skin-nonskin, and covtype datasets,

3. www.cad.zju.edu.cn/home/dengcai/Data/data.html
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Fig. 2. Clustering accuracy and different dimensions m of PKK, UNKK, NKK, and SKK (ours) approaches on dna, pendigits, protein, a8a, w7a, and

connect-4 datasets.

which are from LIBSVM website*. TABLE 2 shows the main
information of the datasets. All datasets are normalized. Each
datasets is divided into two parts. The first part is used for training
experiments, accounting for 70 percent of the instances. The
second part is used for prediction experiments. Each dataset is
randomly divided into training set and prediction set according
to the same rules in every approach. And the training/prediction
partitions are the same given a specific approach.

6.3 Evolution Methodologies and Results

We use the clustering risk and the number of iterations to verify
the convergence of kernel k-means estimators.

Fig.1 shows the relationship between the clustering risk and
the number of iterations of PKK, UNKK, NKK, KK and SKK
(ours) approaches on protein datasets with m = 150. When
the number of iterations is very small, SKK has converged. The
clustering risk of SKK is better than that of PKK, UNKK, and
NKK.

We use the clustering accuracy and running time to evaluate
the effectiveness of kernel k-means estimators.

Define the clustering accuracy as Acc = =
where 71 is the number of data in prediction experiments, 3 and
y are the real label and the derived label of the ¢th data. If p =
g, function v(p,q) = 1, otherwise v(p,q) = 0. The mapping
function map(-) represents the best mapping to match ¢ and y.
The formula of accuracy is the same as that in [33]. The higher
the accuracy, the better the approach. For the sake of fairness, in
Fig.2 and Fig.3, we use the default iteration number 100 and the

Yy v(@map(y))

4. http://www.csie.ntu.edu.tw/~cjlin/libsvm.

same cluster centers initialization method on each approximation
algorithm.

Fig.2, Fig.3, and TABLE 3 show the detail numerical re-
sults. The Y-axes represent clustering accuracy and logarithmic
to running time (in seconds) of the training process. m denotes
the sketch dimension in randomized sketching approaches such
as PKK and SKK, and Nystrom landmark points in Nystrom
approaches such as NKK and UNKK. The X-axes are the value
of m. For the convenience of expression, we call m as “dimen-
sions” in the figures. TABLE 3 shows the detailed accuracy and
time numerical results of approximate kernel k-means approaches
when m = 150 on every dataset. The missing experimental data
in TABLE 3 are due to the too long running time (more than 90
seconds) of the algorithms or the inability of server memory to
support them. See 3) below for specific explanation.

Based on the experimental results, we have the following
analysis:

1) From Fig. 2 we know that the proposed approach always
keeps the best or approximate best accuracy between approximate
kernel k-means approaches. On protein datasets, the clustering
accuracy of Nystrom approach (NKK) is poor within the interval
of m (the value of m < v/nk) in this Figure. This is consistent
with its theoretical analysis that when m > \/nk, NKK obtains
the optimal excess risk bound. Under the same conditions, the
proposed approach has an advantage over the state-of-the-art
Nystrom approach NKK in most cases. Especially, when m is
a very small value, our algorithm has reached a high accuracy on
datasets such as protein, a8a, and w7a. Namely, for a small m,
SKK has obtained the satisfactory accuracy, and there is no need
to further increase the number of m for accuracy, which will cause
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Fig. 3. Running time and different dimensions m of PKK, UNKK, NKK, and SKK (ours) approaches on dna, pendigits, protein, a8a, w7a, and

connect-4 datasets.

TABLE 3

Clustering accuracy and Time in solving kernel k-means between PKK, UNKK, NKK and SKK (ours) approaches on 12 datasets with m = 150.
The missing experimental values are due to the too long running time of the approaches or the inability of server memory to support them. If the

running time of the approach is more than 90 seconds, the experiment will be stopped. “I"O” is short for the timeout. “OM” is short for out of

memory. The bold values represent the best experimental results. The underlined values indicate that the results of this approach in accuracy are
not significantly worse than those of the best approach.

Dataset PKK UNKK NKK SKK (Ours)
Time Accuracy Time Accuracy Time Accuracy Time Accuracy

dna | 0.12  0.494+0.0009 | 0.78 0.51+ 0.0034 | 0.09 0.50£0.0031 | 0.04 0.50+0.0101
segment | 0.09  0.45+0.0043 | 0.31 0.394+0.0032 | 0.05 0.43+0.0090 | 0.02 0.37+0.0110
mushrooms | 0.32  0.63+0.0063 | 2.54  0.53+0.0019 | 0.11  0.614+0.0027 | 0.03  0.64+0.0062
pendigits | 0.34  0.11 £0.0005 | 5.76  0.11+0.0013 | 0.21 0.10£ 0.0011 | 0.03  0.11£0.0021
protein | 3.16  0.44+£0.0026 | 234  0.44£0.0005 | 1.09  0.4540.0045 | 0.03  0.46:0.0032
a8a | 3.21  0.73£0.0029 | 27.9  0.75+0.0026 | 1.12 0.73£0.0026 | 0.03  0.75:0.0028
w7a | 153  0.95£0.0055 | 63.3  0.94£0.0041 | 1.36  0.96£ 0.0000 | 0.03  0.97-+0.0043
connect-4 | 0.22  0.60+£0.0017 | 1.25 0.59+£0.0010 | 0.11  0.5940.0230 | 0.03  0.60-£0.0045
mnist | TO TO T0 T0O 095 0.17£0.0096 | 0.06 0.2210.0048
SVHN | OM OM T0 T0O 6.67 0.11£0.0014 | 0.12  0.14+0.0021
skin-nonskin | OM OM TO TO TO TO 0.07 0.63+0.0031
covtype | OM OM TO TO TO TO 0.27  0.32+0.0035

the increase of the computational cost. They are in line with the
theoretical guarantees in this paper and [24]. Due to data noise
or maybe other reasons, the accuracy of SKK is not significantly
better than other algorithms on dna and pendigits datasets, but it
is still at the same level as that of the state-of-the-art approximate
kernel k-means estimators.

2) The empirical results in Fig. 3 show that SKK is sig-
nificantly faster than other approximate approaches in running

time with the same m, which can obviously accelerate the kernel
k-means. The larger m is, the longer the algorithms run. The
proposed approach is even more than 3,000 times faster than
UNKK approach on a8a and w7a datasets. This verifies the
theoretical analysis of computational requirements. The running
time of UNKK is high, which is caused by the high-consuming
operation of multiple matrix decompositions. The running time of
the proposed approach is always smaller than other approximate
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approaches on the small and large scale datasets. This means
that SKK is scalable not only to large scale datasets but also to
small scale datasets for kernel k-means. Combining the results
in Fig. 2 and Fig. 3, we know that at the same m, SKK obtains
satisfactory accuracy with the obviously time advantage over the
state-of-the-art approximate clustering estimators. Therefore, we
obtain that SKK can obviously speed up the kernel k-means
while maintaining sound clustering performance. This verifies the
theoretical analysis.

3) TABLE 3 shows the concrete value of clustering accu-
racy and running time of each approaches on 12 datasets with
m = 150. The bold values in this table represent the best exper-
imental results. The underlined values indicate that the results of
this approach in accuracy are not significantly worse than those of
the best approach. The missing experimental values are due to the
too long running time of the approaches or the inability of server
memory to support them. If the running time of the approach
is more than 90 seconds, the experiment will be stopped. “T'O”
is short for the timeout. “OM™ is short for out of memory in
TABLE 3. With the increase of data points in datasets, due to
the large space and/or time complexity and the limitation of the
hardware machine, some approximate approaches cannot achieve
the experimental results. Firstly, PKK and UNKK cannot obtain
the experimental values on mnist and SVHN datasets due to their
high time cost and high space cost of PKK, subsequently, NKK
cannot obtain them on the larger datasets skin-nonskin and covtype
due to their high time cost. This is in line with the theoretical
results that the computational requirements of PKK and UNKK
are bigger than NKK, and all of them are bigger than SKK.
In particular, processing more than 200000 data points in skin-
nonskin dataset, SKK only needs 0.07 seconds, while the state-of-
the-art kernel k-means estimates cannot even get the results be-
cause of the high computational cost (more than 90 seconds). This
means that SKK accelerates the speed of approximate kernel k-
means by at least 1200 times, which is scalable. This verifies that
the proposed approach is more efficient than other approximate
approaches in time cost. In accuracy, this table shows that there is
no difference between the proposed approach and the best at the 95
percent level of significance except on segment dataset. With four
algorithms and the first 8 datasets in TABLE 3, F' is distributed
with4 —1=3and (4 — 1) x (8 — 1) = 21 degrees of freedom.
The critical value of F'(3,21) for « = 0.05 is 3.07. In accuracy,
F'r is smaller than 3.07 so we accept the null-hypothesis. In time
cost, F'r is bigger than 3.07 so we reject the null-hypothesis. That
is, the proposed approach is more efficient in time cost and has no
difference in accuracy. This is in line with the theoretical analysis.
Those verify that SKK is effective in approximate kernel k-means.

Using less time to obtain sound accuracy highlights the high-
cost performance of the algorithms. Combining with the above
analysis, we know the proposed algorithm can achieve satisfactory
accuracy, prominent advantages in speed and storage space on
datasets. This is consistent with the theoretical results.

7 PROOF

7.1 Preparations

Before proving the theorems mentioned above, we give some
definitions about the circulant matrix and ¢, and provide some
propositions.

Definition 4. Define a k-valued function

'3gck)7

which is about the collection ¢ = {ci,...,cky € HF with
e, (%) = ||¢x — ¢;||*. Define G be a family of ge:

gc = {gc = (gC17"'?g(«'k):C€Hk}'

Definition 5 (Definition 1 in [52]). If the entries in the first
column of a circulant matrix are i.i.d, the circulant matrix is called
a circulant random matrix.

Proposition 2 (Theorem 1 in [55]). Let [ : RF - R satisfy
11V) =1 Mloo < L-llv =7 lloos V7,7 € RE. That is, Lis L-
Lipschitz with respect to the Lo norm. Let G C {g : X — RF}.
If max{|l(g(x))], |l9(x)|lcc} < p, then there exists a constant
C > 0 such that for any b > 0, the following inequality holds:

gec = (gcu'-

pon
max; An (gz) ’

An(10G) < C- LVkmax A, (G;)log2+" (

where Ay, (10G) = Eo [supyeg 1212, il (g (xi))
supx e xn An (Gi)-

Proposition 3 (Lemma 24(a) in [56]). Given ¢1,...,S, € H,

one has
n 2 n
2
Eo | Y oisil| <> llsill®, (15)
i=1 i=1
and
n 1 n
Eo | oisi| = —= | D lsill?, (16)
i=1 V2 i=1
where o1,...,0, be a sequence of independent Rademacher
variables.

7.2 Proof About Randomized Sketching

Here, we theoretically analyze the projection effectiveness of the
proposed randomized sketching method.

Theorem 5. Given any set D of n points in H, and K € R™*™ its
kernel matrix. k; denotes i-th column of K. For any €,0 € (0, 1),
let
¢ 4logn — 2logd

~ e—log(l+e)
There exists a map f: R™ — R™ described in Eq.(8). We have,
with probability at least 1 — 9,

(1—e)lki —k;[* < [ £ (ki) — ()| < (1+e)[[ki — K[
forallk;, k; € K.

Proof. The circulant matrix A is a circulant random matrix
according to Definition 5. The random diagonal matrix D guar-
antees the independence among the columns of A. The ele-
ments of DA, (DA),; = D;; A, retain Gaussianity. Therefore
(DA) ; is also Gaussian vector, where, for 4,5 € 1,...,m,
E[(DA)Z]} = E[D”Aw] = 0, and

1
=E[DjAj] - E[DiAy)* = —.
Combining the properties of diagonal matrix and circulant matrix,
one can obtain S;; ~ N(0,1/m).
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In the following, SKST is divided into two parts for analysis,
namely KS” and S(KST).

Firstly, analyzing the random projection of KS”', which can
be expressed as a linear map A : R™ — R™.

In this part, the target is to prove the following inequalities:
For any €5 > 0,

(k)| L\~ —mey
Pl——>1 .
[ k2~ e < <1+52> exp ( 2 )
17
[ (k)| L \—m/2 —mey
Pl——<1- .
| A = <(75) e (%)
(18)
We start with the upper tail Eq.(17).
Forj=1,....m,letR;(k;) =k; - ST. Note that
teo g A 3
Es‘.‘.z/ e )\22< )dA——, 19
(S3;) _wmxp( /2) —5 (19
and
E(Sj;) > E(Ri(k:)"), (20)
therefore, we have
3
E(Rq(k:.)*) < s (21)

For any p € [0, m/2), the integral in Eq.(22) is convergent, so
that we have
“+o0 2

reXP( X% /2) exp(p—
\/1 - 2p/m

For any p and any random variable U, E(exp(pU?)) is
bounded. According to the Monotone Convergence Theorem
(MCT), we know that

)dA
(22)

E(exp(pS};)) =

E(exp(pU?))

(% )5 2,

Replacing U with S;;, we obtain

ij

k' (SQk)
(23)
= E(exp(pRu (ki.)?)).
Here, combining Eq.(22) and Eq.(23), we obtain
1

V1-=2p/m’

-87)? = YL Rk

E(exp(pRy(k:.)?)) < (24)

Let (k)| = 3272 (ki.
arbitrary p > 0, we can write

(k)12
Pl — 1
P > e

17 (ki) |12
ki |2

()|
T ) e

;). For

=B exp(pi ) > expp(l )] @)

<E(exp(

—p(1+ 62)).
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Since {R;}7-, areiid, let |[ky.[|* = 1, we have:

[h(k; R}
=t ) = (] H 0 )
(26)
R\ -
= (E (eXP(PHkIQ))) = (E (exp(pRY)))
To optimize the bound, this gives p = (1-7—7252) < 7.
Taking Eq.(24) to Eq.(27). Thus, for any €2 > 0, one can see that
[17(k.)||?
P[inIHQ > 1+62}
<(E (exp(pR%)))m exp ( —p(1+ 52))
1 m 27
S(il = 72p/m> exp ( —p(1+ 52))
. 1 -m/2 —mey
~(172)  ee(50)

The proof of lower bound in Eq.(18) is similar to Eq.(17).
For arbitrary p > 0 and any €2 > 0, we obtain that,

h(k;)|?
RSN,
:P[exp( ” ”i{ ”)2” ) < exp(p(l - 52))} 28)
<E(exp( H li{ ||)2||2 )) exp (p(l - 52)).

= (E (exp(—pR?)))" exp (p(l - 82))

We know that E(S;;) = 0, E(S};) = -, and E(R;) =
E(k;. - STJ) = ki,E(S_Tj) = 0. So, we obtain that

E(R?) =E ((k ' 55)2) - ((i kith) 2)

=D _KLE(SH)?) + D] Y 2kikinE(S])E (sgj)}
t=1 =1 m=1

ki |?
-

(29)
Let us expand exp(—pR?) to get

p [k

———<1l-c
i |2 2}

(—p;!{%)Q))m exp (p(1 B 52)) (30)
_ (1 — pE(R2) + p;E(R%)) exp (p(1 - 25)).

k; ||? < 1, we get Eq.(32).

<(E(1 —pR2 +

Taking p = 7 - (1—6#7252) < 3, and a series of expansion, we get
Eq.(33):

P{HITISH)JP <1- 52} G1)

<(1 — % + %)mexp (p(l - 52)) (32)

<(1 +152>7m/2 exp (7772%‘2). (33)
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Here, we complete the proof of upper and lower bounds.

Let
2x (ljsg)_m/zeXp(

> % Combining Eq.(17) and Eq.(18),

for each of the (%) pairs u,v € {k;.}, the squared norm of the
vector u — Vv, is maintained within a factor of 1 4 €9, with the
probability of 1 — (5) x 2d2/n* > 1 — 5. Because kernel matrix
K is a symmetric matrix, we have k; = k. Therefore we have,
with the probability at least 1 — do, for all k;, k; € K,

(1—e2) ks =k > < 1A (k) = (k)| < (14e2) [ s =k, >

(34)
The relation between h and /' is b (k;) = h(k;.).
Secondly, analyzing the second part S(KS7).
Let S(KST) = SK, which can be expressed as a linear map
g : R™ — R™. The proof is similar to the above. So one can get
the following result. Let

—meg

) < 205 /n?,

we obtain m

4logm — 2log 01

—log(1+¢1) "

We have/, with _t_he probability at least 1 — d7, for all

h (ki) h (kj) c K,
’ ! ’ ’ 2
(1= 20)lln' (k) = ' ()12 < g (W' (k) =9 (n () |

<(L+e)|h (ki) — ' (kj)]|*.

Combining the above conclusions, one can obtain

(1—e)(1 —ea)|ki — k1> < |1 f (ki) —

<(1+e1)(1+e9)| ki — k1.

Lete; = g9, = 8% + 2¢1 € (0,1),51 = 52,5 = 201 — 5% S
(0,1). Here, the conclusion in this Theorem is obtained.

(35)

kj)l|*

O

7.3 Proof of Theorem 3

Proof. The clustering risks of KS” are denoted by W (€, jir,).
Denote by €, = (Cn1,...,Cnk) the clustering centers of
kq,...,k,. Each clustering centers ¢,; is the mean of data in
this cluster gnj. The expression is as follows.

Yimi kil s,y
Yicilies,,)

Fnj = j=1,...,k

Define dj = Z?:l H{Riegw}. Then, we obtain

1 n
W (€, pin) = — min

n P j=1,....k
k
—I3 > |k
TL

2
ki — anH H{f(iES'nj}
=11

1 n
=2 Ina, 12 |

j=1 i2=1

-2
k-

M=

1

.
Il

<.

ki,

—k;

12

“{( o kiy)e82, )

Using the optimality of k-means (see Lemma 1 in Linder [57]),
we know

Cnuun <Z2TLBJ Z )N

71,2 1

where the Snj ’s are the Voronoi cells associated with c,, =

n
(Cn1s---scnk),and Bj = 37 Ty e, ,3- Consequently, we have,
with probability at least 1 —17(5, by Eq.(34),
W (€, un)

n

1+€Z Z Ik;, —
/831112 1

_( + E)W (Cnaﬂn) .

Similarly (1 — &)W (€ks, ptn) < W (€p, fin) as desired. There-
fore, one can obtain

Kia P g e,

nj

1+e¢

Combining Theorem 5 and Eq.(36), one has
1+e€ 1+¢e)?
C <— C <|— .
W (€n, fin) =1 EW(CkmNn) = (1 — €> W(cn, pn)
(37
Changing the form, we have:
4e 4e
WAnan*W nangiw nangia
(€n, pin) (Cns fin) 1 —6)2 (Cns in) (1—¢)2
where ¢ is a small value, W (c,,, 1) < 1. O

7.4 Proof of Theorem 4
For proving Theorem 4, we first introduce some lemmas.

Lemma 1. Let b; := Supycy Sup, g, |9:(x)|. For all x €
X" and ¢ € H*, we have

Vny/max {b;,i=1,...

kY

< A )< )
Yo < max An (Ge,) < 3v/n. (38)
Proof. For all j, we have,
Ge.) = sup E sup 0;9c(x
n( c;) Xean o s, ZZ; Lgc z)
> sup E sup 0ige(
xXeX 7 Lcegcj ; e
> sup 0igc(xX 39)
n
>V el (40)
2 XEX,guegcj
/b
_vn L (41)

V2

Note that, Eq.(39) is obtained by Jensen’s inequality, Eq.(40) is by
Eq.(16) of Proposition 3. One can know that

maxA (G )_f\/max{b\z/,izl k}

In the following, we prove the right inequality of Eq.(38).

(42)
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Note that ||¢x|| < 1 forall x € X. Fori € {1,...,k}, we
have
An (Ge;) =Eo sup ZUJQC (x5)
grégcl j=1
n
2
=Eq sup > o ¢; — |
ceH =1
n
=B sup (Y05 [-2(05,00 + el + 6] @3
ceEH j=1
=Eq sup ZUJ - ¢Ja "’HC” }
ceEH

<2E, sup Z o (@;,c¢)

n
+ Es sup aillc|l?
ceEH =1 UCE”H Z ]” H

Jj=1

According to Eq.(15) of Proposition 3 and ||c|| < 1, we have

n
Eosup,cr, | D oillel?] < Eo
j=1

and

n

a'supCe Z

(¢5,¢)

(45)

Combining Eq.(43), Eq.(44) and Eq.(45), we prove the right
inequality of Eq.(38): max; A, (Gc,) < 3v/n.
O

1), with probability

CVklog?(y/n) + ,/8log

E Sl;lljk |W(C,/~Ln) - W(Cvﬂ’” < \/ﬁ )
ce
(46)

Lemma 2. For every ¢ in H, any 6 € (0,
1 — 9, we have

where C' is a constant.

Proof. Assumed that xll,...,xln be an independent copy of
X1,...,Xp, independent of the o;’s. Therefore, by a standard
symmetrization argument, one has the following inequality.

E sup ‘W(Cap’ﬂ) - W(C,,U,)|
ceHF
<E su o; [ (X/)}
= geed. |n Z i [ge(x) ~ ge 47)
2
<2E sup Zozgc = ZE sup Zozgc
gc€Ge — n gc€Ge i=1

According to [58], we have, with probability 1 — 4,

Z Uzgc Z Uzgc + \/ 2nlog %

=1 =1
(48)

E sup
gc€Ge

< sup
gc€Ge
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In the following, we solve the first term of Eq.(48).

Define a minimum function ! RF — R: I(y) =
min, () 7;, forall v € R*. Assuming that [(y) > I(vy ') and
l('yl) = fy;», we have

L) =1 =1V =% <% =% < Iy =7 [l
Therefore, according to Proposition 2, the function I(7) is 1-
Lipschitz continuous with respect to the L ,-norm.

Note that ||¢x|| < 1. According to Definition 4, one can obtain
that ||¢;|| < 1 and

Ge; (%) < 2|l + 2|5 ]| < 4,

for all x € X'. Therefore, we have ||ge(X)||cc = max; [gc, (x)| <
4, and [1(ge(x))| = | min_ g g, ()| < 4.

According to Proposition 2, let L = 1,p = 4, and b = 0.5,
we obtain that

(49)

A,(Ge) < Co - Vimax A, (G, ) log? <4n> |
? max; (Ge,)

(50)
where Cj is a constant, Ay, (Ge) = SUPyeeg, |2 im Tige(X)].
According to Eq.(49), we obtain that

max {b;,i =1,...,k} <4, (51)
which is a constant.
Combining Eq.(38), Eq.(50), and Eq.(51), we have
sup Z 0ige(x)| < 3C1VEnlog*(vn),  (52)
gc€Ge |,

where C7 is a constant. Substituting Eq.(48) and Eq.(52) for
Eq.(47), we complete this proof. O

Now we begin to formally prove Theorem 4.

Proof. Note that

E (W (@0, 1)) — W (1)
SE [W(érm N) - W(éna ,un)] +E [W(én; Nn) - W(Cna ,Un)]
+E [W(Cru Mn) - W(C’I’H M)] +E [W(Cna M)] - W (M)

(33)

According to the standard application of the bounded differ-
ences concentration inequality [59] and Eq.(46) in Lemma 2, the
first term of Eq.(53) can be written as

E [W(ény ﬂ) - W(énv ,un)}
<E | sup (W(c,pu)—W (C7/’LTL)):|
ceHE (54)

C1Vklog?(y/n) + /81log
<
_— \/ﬁ )
where C is a constant.
The second term of Eq.(53) is proved in Eq.(12) of Theorem
3. That is, let m > 4;"%&0&%5 with probability at least 1 — &,
we have E [W (&, ftn) — W(cp, pin)] < uf%)%
The third term of Eq.(53) uses the same principle as the first
term. According to Theorem 2, the last term of Eq.(53) is

BV (en, =W () < Cay/ £ logi+3 (*:f )+ czﬁ

where C5 is a constant.
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So, combining them, we can get that:
E[W(&n, p)] — W*(n)
201Vklog?(y/n) + 2,/81log L

26 g”(vn) +2,/8log 5

< Jn

k. a5 (yn log $ 4e
+Cg\/;log ( 3 ) +Cs + =2 (5
Cg\/Elog2(\/ﬁ) + C’4\/log% de
< +
: NG TEE

~ k €
=0 —|+0| — |,
)+ (i)
where C'5 and C} are constants. Here, we complete this proof.
O

8 CONCLUSION

Due to the high computational requirements, kernel k-means is not
scalable. To get out of the trouble, this paper carefully constructs a
novel randomized sketching kernel k£-means estimator SKK based
on the circulant matrix. To the best of our knowledge, SKK has the
same statistical accuracy as exact kernel k-means, the optimal time
complexity O(nkt+mnlog+/n) and the optimal space complexity
O(n). More precisely, taking the sketch dimension of \/n is suf-
ficient for optimal statistical accuracy in our approach. Compared
to the state-of-the-art approximate kernel k-means estimates, SKK
reduces the space and running time at least by factor of y/n with

the optimal statistical accuracy @( %) Extensive experiments
on 12 real datasets show that SKK has significant advantages in
running time and memory with satisfactory accuracy. In the future,
based on this approach, we can expand to other approximate
algorithms with higher accuracy.
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