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Abstract

The theoretical analysis of spectral clustering is mainly de-
voted to consistency, while there is little research on its gen-
eralization performance. In this paper, we study the excess
risk bounds of the popular spectral clustering algorithms: re-
laxed RatioCut and relaxed NCut. Our analysis follows the
two practical steps of spectral clustering algorithms: contin-
uous solution and discrete solution. Firstly, we provide the
convergence rate of the excess risk bounds between the em-
pirical continuous optimal solution and the population-level
continuous optimal solution. Secondly, we show the funda-
mental quantity influencing the excess risk between the em-
pirical discrete optimal solution and the population-level dis-
crete optimal solution. At the empirical level, algorithms can
be designed to reduce this quantity. Based on our theoretical
analysis, we propose two novel algorithms that can penalize
this quantity and, additionally, can cluster the out-of-sample
data without re-eigendecomposition on the overall samples.
Numerical experiments on toy and real datasets confirm the
effectiveness of our proposed algorithms.

Introduction
Spectral clustering is one of the most popular algorithms in
unsupervised learning and has been widely used for many
machine learning applications (Von Luxburg 2007; Dhillon
2001; Kannan, Vempala, and Vetta 2004; Shaham et al.
2018; Liu et al. 2018). Given a set of data points inde-
pendently sampled from an unknown underlying probabil-
ity distribution, also referred to as population distribution,
spectral clustering algorithms aim to divide all data points
into several disjoint sets based on some notion of similarity.
Spectral clustering originates from the spectral graph parti-
tioning (Fiedler 1973). One way to understand spectral clus-
tering is to view it as a relaxation of searching for the best
graph-cut since the latter is known as an NP-hard problem
(Von Luxburg 2007). The core method of spectral cluster-
ing is the eigendecomposition on the graph Laplacian, and
the matrix composed of eigenvectors can be interpreted as a
lower-dimensional representation that preserves the group-
ing relationships among data points as much as possible.
Subsequently, various methods such as k-means (Ng, Jor-
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dan, and Weiss 2001; Shi and Malik 2000), dynamic pro-
gramming (Alpert and Kahng 1995), or orthonormal trans-
form (Stella and Shi 2003) can be employed to get the dis-
crete solution on the matrix and therefore the final group
partitions.

However, compared with the prosperous development of
the design and application, the generalization performance
analysis of spectral clustering algorithms is scarce. Hith-
erto, the theoretical analysis of spectral clustering almost
focuses on consistency (Von Luxburg, Belkin, and Bous-
quet 2008; Von Luxburg, Bousquet, and Belkin 2004; Cao
and Chen 2011; Trillos and Slepčev 2018; Trillos et al.
2016; Schiebinger et al. 2015; Terada and Yamamoto 2019).
Consistency means that if it is true that as the sample size
collected goes to infinity, the partitioning of the data con-
structed by spectral clustering converges to a certain mean-
ingful partitioning on the population level (Von Luxburg,
Belkin, and Bousquet 2008), but consistency alone does not
reveal the sample complexity (Vapnik 1999). To our best
knowledge, there is only one research that investigates the
generalization performance of kernel NCut (Terada and Ya-
mamoto 2019). They adopt the relationship between NCut
and the weighted kernel k-means (Dhillon, Guan, and Kulis
2007), based on which they establish the excess risk bounds
for kernel NCut. However, Terada and Yamamoto (2019)
study the graph-cut solution, not the solution of spectral
clustering that we used in practice.

In this paper, we are interested in the generalization per-
formance of the practical solution. We investigate the excess
risk bound of two popular spectral clustering algorithms: re-
laxed RatioCut and relaxed NCut. Notably, to compare with
the RatioCut and NCut without relaxation, we refer to spec-
tral clustering as relaxed RatioCut and relaxed NCut in this
paper. It is known that spectral clustering typically consists
of two steps (Von Luxburg 2007): (1) to obtain the opti-
mal continuous solution by the eigendecomposition on the
graph Laplacian; (2) to obtain the optimal discrete solution,
also referred to as discretization, from the continuous so-
lution by some heuristic algorithms, such as k-means and
orthonormal transform. Consistent with the two steps, we
first investigate the excess risk bound between the empirical
continuous optimal solution and the population-level contin-
uous optimal solution. In deriving this bound, an immediate
emerging difficulty is that the empirical continuous solution



and the population-level continuous solution are in different
dimensional spaces, making the empirical solution impos-
sible to substitute into the expected error formula. To over-
come this difficulty, we define integral operators, and use the
spectral relationship between the integral operator and the
graph Laplacian to extend the finite-dimensional eigenvector
to the infinite-dimensional eigenfunction. Thus the analysis
can be continued. We show that for both relaxed RatioCut
and relaxed NCut, their excess risk bounds have a conver-
gence rate of the order O(1/

√
n). Secondly, we investigate

the excess risk bound between the empirical discrete optimal
solution and the population-level discrete optimal solution.
We observe the fundamental quantity in influencing this ex-
cess risk, whose presence is caused by the heuristic algo-
rithms used in step (2). This fundamental quantity motivates
us to design algorithms to penalize it from the empirical per-
spective, reducing it as small as possible. Meanwhile, we ob-
serve that the orthonormal transform (Stella and Shi 2003)
is an effective algorithm for penalizing this term, whose op-
timization objective corresponds to the empirical form of
this fundamental quantity. Additionally, an obvious draw-
back of spectral clustering algorithms (relaxed NCut and re-
laxed RatioCut) is that they fail to generalize to the out-of-
sample data points, requiring re-eigendecomposition on the
overall data points. Based on our theoretical analysis, we
propose two algorithms, corresponding to relaxed NCut and
relaxed RatioCut, respectively, which can cluster the unseen
samples without the eigendecomposition on the overall sam-
ples, largely reducing the time complexity. Moreover, when
clustering the unseen samples, the proposed algorithms will
penalize the fundamental quantity for searching for the op-
timal discrete solution, decreasing the excess risk. We have
numerical experiments on the two algorithms, and the ex-
perimental results verify the effectiveness of our proposed
algorithms. Our contributions are summarized as follows:

• We provide the convergence rate of the excess risk
bounds for the continuous solution of spectral clustering.

• We show the fundamental quantity influencing the excess
risk for the discrete solution of spectral clustering. We
then propose two algorithms that can penalize this term
and, additionally, can generalize to the new samples.

• Numerical experiments on toy and real datasets demon-
strate the effectiveness of our proposed algorithms.

Related Work
This section introduces related work on the theoretical anal-
ysis of spectral clustering algorithms. Existing theoreti-
cal research of spectral clustering almost focuses on con-
sistency. Specifically, Von Luxburg, Belkin, and Bousquet
(2008) establish consistency for the embedding by proving
that as much as the eigenvectors of the Laplacian matrix
converge uniformly to the eigenfunctions of the Laplacian
operator. Rosasco, Belkin, and De Vito (2010) provide the
simpler proof of this convergence. Cao and Chen (2011)
construct the consistency of regularized spectral clustering.
Rohe et al. (2011) analyze the consistency for stochastic
block models, Ting, Huang, and Jordan (2011) focus on the
spectral convergence, Pelletier and Pudlo (2011) study the

convergence of graph Laplacian, and Singer and Wu (2017)
analyze the convergence of the connection graph Laplacian.
Trillos et al. (2016) propose a framework and improves the
results in (Arias-Castro, Pelletier, and Pudlo 2012) by min-
imizing the discrete functionals over all possible partitions
of the data points, while the latter just minimizes a specific
family of subsets of the data points. Based on the frame-
work in (Trillos et al. 2016), Trillos and Slepčev (2018) pro-
vide a variational approach known as Γ-convergence, prov-
ing the convergence of the spectrum of the graph Laplacian
towards the spectrum of a corresponding continuous opera-
tor. Terada and Yamamoto (2019) investigate the kernel nor-
malized cut. They establish the consistency by the weighted
k-means on the reproducing kernel Hilbert space (RKHS)
and derive the excess risk bound for kernel NCut. However,
as we discussed before, they study the graph-cut solution,
not the practical solution of spectral clustering. Unlike the
above research, we study the excess risk bound of the popu-
lar spectral clustering algorithms (relaxed RatioCut and re-
laxed NCut), instead of consistency. Our analysis is based
on the practical steps of spectral clustering and spans two
perspectives: the continuous solution and discrete solution.

Preliminaries
In this section, we introduce some notations and have a brief
introduction to spectral clustering. For more spectral clus-
tering’s details, please refer to Von Luxburg (2007).

We consider the real space in this paper. Let X be a subset
of Rd, ρ be a probability measure onX , and ρn be the empir-
ical measure. Given a set of samples X = {x1,x2, ...,xn}
independently drawn from the population distribution ρ,
the weighted graph constructed on X can be specified by
G = (V,E,W), where V denotes the set of all nodes,
E denotes the set of all edges connecting the nodes, and
W := (Wi,j)n×n = ( 1

nW (xi,xj))n×n is a weight ma-
trix calculated by the weight function W (x, y). Let |V| = n
denotes the number of all data points to be grouped. To clus-
ter n points intoK groups is to decompose V intoK disjoint
sets, i.e., V = ∪Kl=1Vl and Vk ∩ Vl = ∅, ∀k 6= l. We de-
fine the degree matrix D to be a diagonal matrix with entries
di =

∑n
j=1 Wi,j . Then, the unnormalized graph Laplacian

is defined as L = D −W, and the asymmetric normalized
graph Laplacian is defined as Lrw = D−1L = I−D−1W.

We now present some facts about spectral clustering. Let
U = (u1, ...,uK) ∈ Rn×K , where u1, ...,uK are K vec-
tors. We define the following empirical error:

F̂ (U) :=
1

2n(n− 1)

K∑
k=1

n∑
i,j=1,i6=j

Wi,j(uk,i − uk,j)
2,

(1)
where uk,i means the i-th component of the k-th vector uk.
The optimization objective of RatioCut can be written as:

min
U

F̂ (U) s.t.

{
ui,j =

1√
|Vj |

if vi ∈ Vj , otherwise 0

}
,

(2)
where |Vj | denotes the number of vertices of a subset Vj of
a graph. The optimization objective of NCut can be written



as:

min
U

F̂ (U), s.t.

{
ui,j =

1√
vol(Vj)

if vi ∈ Vj , otherwise 0

}
,

(3)
where vol(Vj) denotes the summing weights of edges of a
subset Vj of a graph. Since searching for the optimal solu-
tion of RatioCut and NCut is known as an NP-hard problem
(Von Luxburg 2007), spectral clustering often involves a re-
laxation operation, which allows the entries of U to take ar-
bitrary real values (Von Luxburg 2007). Thus the optimiza-
tion objective of relaxed RatioCut can be written as:

min
U=(u1,...,uK)

F̂ (U), s.t. UTU = I, (4)

where I is the identity matrix. The optimal solution of
relaxed RatioCut is given by choosing U as the ma-
trix which contains the first K eigenvectors of L as
columns (Von Luxburg 2007). Similarly, the optimization
objective of relaxed NCut can be written as:

min
U=(u1,...,uK)

F̂ (U), s.t. UTDU = I. (5)

The optimal solution of relaxed NCut is given by choosing
the matrix U which contains the firstK eigenvectors of Lrw
as columns (Von Luxburg 2007).

Excess Risk Bounds
Let W : X × X → R be a symmetric continuous weight
function such that

0 < W (x, y) ≤ C x, y ∈ X , (6)

measuring the similarities between pairs of data points
x, y ∈ X . Since W : X × X → R is not necessary to be
positive definite and positiveW is more common in practice,
we assume that W to be positive in this paper. We now de-
fine the degree function as m(x) =

∫
X W (x, y)dρ(y), and

then define the function: p(x, y) = m(x) if x = y and 0
otherwise, which is the population counterpart of the degree
matrix. Let L2(X , ρ) denotes the space of square integrable
functions with norm ‖f‖2ρ = 〈f, f〉ρ =

∫
X |f(x)|2dρ(x).

Relaxed RatioCut
Based on the weight function W , we define the function L :
X × X → R

L(x, y) = p(x, y)−W (x, y) x, y ∈ X ,

which is symmetric. When L is restricted to samples ∀X =
{x1,x2, ...,xn} for any positive integer n, the correspond-
ing matrix L is positive semi-definite (refer to proposition
1 in (Von Luxburg 2007)), thus L(x, y) is a kernel function
and associated with a RKHS H with scalar product (norm)
〈·, ·〉 (‖ · ‖). For relaxed RatioCut, we assume

κ = sup
x∈X

L(x, x) (7)

and L(x, y) to be continuous, which are common assump-
tions in spectral clustering. The elements in H are thus

bounded continuous functions, and the corresponding inte-
gral operator LK : L2(X , ρ)→ L2(X , ρ)

(LKf)(x) =

∫
X
L(x, y)f(y)dρ(y)

is thus a bounded operator. The operator LK is the limit
version of the Laplacian L (Rosasco, Belkin, and De Vito
2010). In other words, the matrix L is an empirical version
of the operator LK .

To study the excess risk bound, we need to define the
population-level error, a limit version of Eq. (1):

F (U) :=
1

2

K∑
k=1

∫∫
W (x, y)(uk(x)− uk(y))2dρ(x)dρ(y),

whereU = (u1, ..., uK) consists ofK functions uk. Further,
the optimization objective of the population-level error of
relaxed RatioCut, analogous to Eq. (4), can be defined as:

min
U

F (U) s.t. 〈ui, uj〉ρ = 1 if i = j, otherwise 0. (8)

Let Ũ∗ = (ũ∗1, ..., ũ
∗
K) be the optimal solution of Eq. (8).

Actually, ũ∗1, ..., ũ
∗
K are eigenfunctions of the operator LK

(Rosasco, Belkin, and De Vito 2010), that is LK ũ
∗
k =

λk(LK)ũ∗k for k = 1, ...,K, where λk(LK) is an eigen-
value of the operator LK , k = 1, ...,K.

With the population-level error, we begin to analyze the
excess risk bound. Excess risk measures on the population-
level how the difference between the error of the empiri-
cal solution and the error of the population optima performs
(Biau, Devroye, and Lugosi 2008; Liu 2021; Li and Liu
2021), formalized as

F (Ũ∗)− F (Ũ∗),

where Ũ∗ = (ũ∗1, ..., ũ
∗
K) is the optimal solution of the

empirical error of relaxed RatioCut, i.e., Eq. (4), and,
actually, ũ∗1, ..., ũ

∗
K are the eigenvectors of Laplacian L

(Von Luxburg 2007).
However, an immediate difficulty to derive the bound of

F (Ũ∗) − F (Ũ∗) is that Ũ∗ and Ũ∗ are in different spaces.
Specifically, Ũ∗ ∈ Rn×K related to sample size n is in
finite-dimensional space, while Ũ∗ is in infinite-dimensional
function space. The fact that for different sample size n, the
elements in Ũ∗ live in different spaces, making the term
F (Ũ∗) impossible to be calculated. To overcome this chal-
lenge, we define operator Tn : H → H:

Tn =
1

n

n∑
i=1

〈·, Lxi〉Lxi ,

where Lxi
= L(·,xi). And we denote Ǔ = (ǔ1, ..., ǔK)

as the first K eigenfunctions of the operator Tn. Rosasco,
Belkin, and De Vito (2010) show that Tn and L have the
same eigenvalues (up to zero eigenvalues) and their cor-
responding eigenfunctions and eigenvectors are closely re-
lated. If λk is a nonzero eigenvalue and ũ∗k, ǔk are the cor-



responding eigenvector and eigenfunction of L and Tn (nor-
malized to norm l in Rn andH) respectively, then

ũ∗k =
1√
λk

(ǔk(x1), ..., ǔk(xn)) ;

ǔk(x) =
1√
λk

(
1

n

n∑
i=1

ũ∗ik L(x,xi)

)
,

(9)

where ũ∗ik is the i-th component of ũ∗k.
From Eq. (9), one can see that the eigenvectors of L are

the empirical version of the eigenfunctions of Tn. In other
words, if the eigenfunction ǔk(x) is restricted to the dataset
X, it can be mapped into the eigenvector ũ∗k. Meanwhile,
the eigenfunctions of Tn are the extensions of the eigen-
vectors of L, which are infinite-dimensional. Back to the
term F (Ũ∗) − F (Ũ∗), we can replace the vectors in Ũ∗

by its corresponding extended eigenfunctions in Ǔ . There-
fore, we now can investigate the excess risk bound be-
tween the empirical continuous optimal solution and the
population-level continuous optimal solution by bounding
the term F (Ǔ)−F (Ũ∗). Additionally, the relations between
the eigenvectors in Ũ∗ and the eigenfunctions in Ǔ can be
applied to cluster out-of-sample data points. One can ap-
proximately calculate the eigenvectors of the out-of-sample
data by the eigenfunctions in Ǔ . We will show the details in
the Algorithms Section.

We now present the first risk bound for relaxed RatioCut.

Theorem 1. Suppose for any ǔ ∈ H such that ‖ǔ‖∞ ≤
√
B

with an absolute constant B > 0, then for any δ > 0, with
probability at least 1− 2δ, we have

F (Ǔ)− F (Ũ∗)

≤8CBK

√ 1

n
+ 2

√
2 log 1

δ

n

+K
2κ
√

2 log 2
δ√

n
,

where C and κ are positive constants, and where K is the
clustering number.

Remark 1. Theorem 1 suggests that the excess risk bound
of relaxed RatioCut between the empirical continuous op-
timal solution and the population-level continuous optimal
solution has a convergence rate of the order O

(
1√
n

)
if we

assume that the eigenfunctions ǔ ∈ H of operator Tn are
bounded, i.e., ‖ǔ‖∞ ≤

√
B. This assumption is mild. Since

we assume the kernel function L(x, y) ≤ κ and is continu-
ous, the elements inH associated with L(x, y) are bounded.
The definition of operator Tn is: H → H, so it is reason-
able to assume the eigenfunctions of Tn are bounded, i.e.,
‖ǔ‖∞ ≤

√
B. C and κ are constants in Eqs. (6) and (7,

respectively. We provide the proof of Theorem 1 in the Ap-
pendix1.

Remark 2. We highlight that we study the excess risk of
spectral clustering. Compared with the generalization error

1https://arxiv.org/abs/2205.00281v2.

bound F̂ (Ũ∗) − F (Ũ∗) that measures the difference be-
tween the empirical error of the empirical solution and the
population-level error of the population-level solution, ex-
cess risk analysis is much more difficult because Ũ∗ can
not be calculated in expectation F (Ũ∗). The generalization
error bound of relaxed RatioCut is easier to obtain since
Ũ∗ can be directly substituted into F̂ (·) to calculate, and
its proof indeed is included in the proof of Theorem 1. We
show the generalization error bound as a corollary below.

Corollary 1. Under the above assumptions, for any δ > 0,
with probability at least 1− δ,

F̂ (Ũ∗)− F (Ũ∗) ≤ K
2
√

2κ
√

log 2
δ√

n
,

where κ is a positive constant, and whereK is the clustering
number.

In practice, after obtaining eigenvectors of the Laplacian
L, spectral clustering uses the heuristic algorithms on the
eigenvectors to obtain the discrete solution. In analogy to
this empirical process, we define the population-level dis-
crete solution Ü = (ü1, ..., üK), which are K functions in
RKHS H and are sought through H by the population-level
continuous solution Ǔ . Let U∗ = (u∗1, ..., u

∗
K) be the opti-

mal solution of the minimal population-level error of Ratio-
Cut, i.e., optimal solution of the population-level version of
Eq. (2). We then study the excess risk between the empirical
discrete optimal solution and the population-level discrete
optimal solution by bounding the term F (Ü)− F (U∗).

Theorem 2. Denoted by ε :=
∑K
k=1 ‖ük − ǔk‖2. Suppose

for any ǔ ∈ H such that ‖ǔ‖∞ ≤
√
B with an absolute

constant B > 0, then for any δ > 0, with probability at
least 1− 2δ, we have

F (Ü)− F (U∗)

≤4Cε+ 8CBK

√ 1

n
+ 2

√
2 log 1

δ

n

+
2Kκ

√
2 log 2

δ√
n

,

where C and κ are positive constants, and where K is the
clustering number.

Remark 3. In the proof of Theorem 2, we make an er-
ror decomposition: F (Ü) − F (U∗) = F (Ü)− F (Ǔ)︸ ︷︷ ︸

A

+

F (Ǔ)− F̂ (Ũ∗)︸ ︷︷ ︸
B

+ F̂ (Ũ∗)− F (Ũ∗)︸ ︷︷ ︸
C

+ F (Ũ∗)− F (U∗)︸ ︷︷ ︸
D

.

Term B is proved by the empirical process theory, term C
is proved by spectral properties of the integral operator and
the operator theory, while term D ≤ 0 can be revealed eas-
ily. Combining the bounds of terms B and C gives the result
of Theorem 1. For term A, we show that it can be bounded
by 4C

∑K
k=1 ‖ük − ǔk‖2 (The proof is provided in the Ap-

pendix). We denote this quantity as ε, and the upper bound
implies that

∑K
k=1 ‖ük − ǔk‖2 is a fundamental quantity in

influencing the excess risk between the empirical discrete



optimal solution and the population-level discrete optimal
solution, which motivates us to penalize it as much as pos-
sible at the empirical level. We thus propose new algorithms
in the next Section. Additionally, since searching for the best
graph-cut is known as an NP-hard problem (Von Luxburg
2007), we investigate the generalization performance of the
discrete solution obtained from the continuous solution, con-
ducted in the practical spectral clustering process rather than
the agnostic graph-cut solution. We hope that the theoretical
study on such a kind of discrete solution can guide the de-
sign of novel spectral clustering algorithms.

Relaxed NCut
We consider relaxed NCut related to the asymmetric nor-
malized Laplacian Lrw. The analysis of relaxed NCut fol-
lows the similar pattern to relaxed RatioCut. Bound (6) im-
plies the corresponding integral operator L : L2(X , ρ) →
L2(X , ρ)

(Lf)(x) = f(x)−
∫
X

W (x, y)f(y)

m(x)
dρ(y)

is well defined and continuous. To avoid the notation abuse,
we use symbols provided in relaxed RatioCut. Correspond-
ing minimal population-level error similar to Eq. (8) can
be easily written from the empirical version of Eq. (5). For
brevity, we omit it and just give some notations here. Let
Ũ∗ = (ũ∗1, ..., ũ

∗
K) be the optimal solution of the minimal

population-level error of relaxed NCut, which are eigen-
functions of the operator L (Rosasco, Belkin, and De Vito
2010). We denote Ũ∗ = (ũ∗1, ..., ũ

∗
K) as the optimal so-

lution of minimal empirical error of relaxed NCut, i.e.,
Eq. (5), which actually are eigenvectors of the Laplacian
Lrw(Von Luxburg 2007).

Firstly, we bound the term F (Ǔ) − F (Ũ∗). However,
another immediate difficulty is that the methods described
in relaxed RatioCut are not directly applicable for relaxed
NCut. The operator corresponding to Tn in the previous sub-
section appears to be impossible to be defined for relaxed
NCut becauseW is not necessarily positive definite, so there
is no RKHS associated with it. Moreover, even if W is pos-
itive definite, the operator L involves a division by a func-
tion, so there may not be a map from the RKHS H to itself.
To overcome this challenge, we use an assumption on W
introduced in (Rosasco, Belkin, and De Vito 2010) to con-
struct an auxiliary RKHS H associated with a continuous
real-valued bounded kernel K. Here is the assumption:

Assumption 1. Assume that W : X ×X → R is a positive,
symmetric function such that

W (x, y) ≥ c > 0 x, y ∈ X ; W ∈ Cd+1
b (X × X ),

whereCd+1
b (X×X ) is a family of continuous bounded func-

tions such that all the (standard) deviations of orders exist
and are continuous bounded functions.

According to (Rosasco, Belkin, and De Vito 2010), As-
sumption 1 implies that there exists a RKHS H with
bounded continuous kernel K such that: Wx,

1
mn

Wx ∈ H,

where Wx = W (·, x) and mn = 1
n

∑n
i=1Wxi . This al-

lows us to define the following empirical operators Ln, An :
H → H

An =
1

n

n∑
i=1

〈·,Kxi
〉H

1

mn
Wxi

; Ln = I −An,

where Kx = K(·, x). Let Ǔ = (ǔ1, ..., ǔK) be the first
K eigenfunctions of the operator Ln. Rosasco, Belkin, and
De Vito (2010) show that Ln, An and Lrw have closely re-
lated eigenvalues and eigenfunctions. The spectra of Lrw
and Ln are the same up to the eigenvalue 1. Moreover, if
λk 6= 1 is an eigenvalue and ũ∗k, ǔk are the eigenvector and
eigenfunction of Lrw and Ln, respectively, then

ũ∗k = (ǔk(x1), ..., ǔk(xn));

ǔk(x) =
1

1− λk
1

n

n∑
i=1

W (x,xi)

mn(x)
ũ∗ik ,

(10)

where ũ∗ik is the i-th component of the eigenvector ũ∗k. From
Eq. (10), one can observe that the eigenvectors of Lrw are
the empirical version of the eigenfunctions of Ln. Moreover,
the eigenfunctions of Ln are the extensions of the eigen-
vectors of Lrw, which are infinite-dimensional. Therefore,
given the eigenvectors of Lrw, we can extend it to the corre-
sponding eigenfunctions. With this relationship, we can now
investigate the excess risk between the empirical continuous
optimal solution and the population-level continuous opti-
mal solution by bounding the term F (Ǔ)−F (Ũ∗). The fol-
lowing is the first theorem of relaxed NCut.

Theorem 3. Under Assumption 1, suppose for any ǔ ∈ H
such that ‖ǔ‖∞ ≤

√
B with an absolute constant B > 0,

then for any δ > 0, with probability at least 1− 2δ, we have

F (Ǔ)− F (Ũ∗)

≤8CBK

√ 1

n
+ 2

√
2 log 1

δ

n

+KC

√
log 2

δ

n
.

whereC is a positive constant, and whereK is the clustering
number.

Remark 4. Theorem 3 suggests that the excess risk of re-
laxed NCut has a convergence rate of the order O

(
1√
n

)
.

The proof techniques used in Theorem 3 conclude spectral
properties of integral operators, operator theory, and empiri-
cal processes. C in Theorem 3 comes from Eq. (6). We pro-
vide the proof of Theorem 3 in the Appendix. Moreover, the
generalization error bound of relaxed NCut is shown below.

Corollary 2. Under the above assumptions, for any δ > 0,
with probability at least 1− δ,

F̂ (Ũ∗)− F (Ũ∗) ≤ KC

√
log 2

δ

n
,

whereC is a positive constant, and whereK is the clustering
number.



Remark 5. For the lower bound of relaxed NCut, Dhillon,
Guan, and Kulis (2007) have constructed the relationship
between NCut and the weight kernel k-means. The lower
bound of k-means is of orderO

(
1√
n

)
(Bartlett, Linder, and

Lugosi 1998). Building a connection between relaxed NCut
and weight kernel k-means is probably a method to investi-
gate the lower bound of relaxed NCut, whose lower bound
may be of the order O

(
1√
n

)
as well.

As discussed before, the continuous solution of spectral
clustering typically involves a discretization process, thus
we then study the excess risk bound between the empiri-
cal discrete optimal solution and the population-level dis-
crete optimal solution for relaxed NCut. In analogy to the
previous subsection, we investigate F (Ü) − F (U∗), where
Ü = (ü1, ..., üK) are K functions in RKHS H and are
sought through H by the continuous eigenfunctions Ǔ , and
where U∗ = (u∗1, ..., u

∗
K) is the optimal solution of the min-

imal population-level error of NCut, i.e., optimal solution of
the population-level version of Eq. (3).

Theorem 4. Denoted by ε :=
∑K
k=1 ‖ük − ǔk‖2. Under

Assumption 1, suppose for any ǔ ∈ H such that ‖ǔ‖∞ ≤√
B with an absolute constant B > 0, then for any δ > 0,

with probability at least 1− 2δ, we have

F (Ü)− F (U∗)

≤4Cε+ 8CBK

√ 1

n
+ 2

√
2 log 1

δ

n

+KC

√
log 2

δ

n
.

whereC is a positive constant, and whereK is the clustering
number.
Remark 6. From Theorem 4, one can see that the term∑K
k=1 ‖ük − ǔk‖2 is also a fundamental quantity in influ-

encing the excess risk of relaxed NCut between the empir-
ical discrete optimal solution and the population-level dis-
crete optimal solution, which motivates us to propose al-
gorithms in the next section to penalize this term to make
the risk bound as small as possible. In addition to the dif-
ficulties mentioned above, proving excess risk bounds also
has the following difficulties: (1) The objective function of
spectral clustering (see Eq (1)) is a pairwise function, which
can not be written as a summation of independent and identi-
cally distributed (i.i.d.) random variables so that the standard
techniques in the i.i.d. case can not apply to it. We use the
U -process technique introduced in (Clémençon et al. 2008)
to overcome this difficulty. (2) The operator L involves a
division by a function, thus the term C can not be bounded
directly by the proof technique of Theorem 2. We must intro-
duce equivalent probability measures to construct equivalent
vector space (please refer to the proof).
Remark 7. A positive point of Theorems 1-4 is that these
bounds are dimension-independent, which allows the results
to be applicable to high-dimensional problems. Although
dimension-independent excess risk bounds have been given
for some clustering algorithms, e.g., k-means (Biau, De-
vroye, and Lugosi 2008; Liu 2021) and kernel-NCut (Terada

and Yamamoto 2019), the results of this paper are novel for
spectral clustering.
Remark 8. This remark discusses why we use the asym-
metric normalized Laplacian, not the symmetric normalized
Laplacian. Using the asymmetric normalized graph Lapla-
cian, we can analyze relaxed NCut in a unified form of the
empirical error (i.e., Eq. (1)). While for the normalized sym-
metric Laplacian, we need to transform Eq. (1) to

F̂ (U) :=
1

2n(n− 1)

K∑
k=1

n∑
i,j=1,i6=j

Wi,j

(
uk,i√
di
− uk,j√

dj

)2

.

Please refer to Proposition 3 and Eq. (11) in (Von Luxburg
2007) for details.
Remark 9. This remark discusses the relationship between
this paper and (Li and Liu 2021). Li and Liu (2021) study the
clustering algorithm through a general framework and then
give excess risk bounds based on this framework. Specif-
ically, the excess risk in (Li and Liu 2021) is of the form
F (Ũ∗) − F (Ũ∗). However, we have discussed that F (Ũ∗)
is impossible to be calculated for spectral clustering due to
the dimensional issue. Thus, the bounds of F (Ũ∗)−F (Ũ∗)
established in (Li and Liu 2021) do not hold for the specific
spectral clustering problem, and that’s also the reason why
we introduce the integral operator tool to revisit the spec-
tral clustering problem. Hence, we highlight that the results
of this paper, both the bounds and the algorithms, are novel
compared to (Li and Liu 2021).

Algorithms
According to Theorems 2 and 4, the imperative is to penalize∑K
k=1 ‖ük − ǔk‖2 to make it as small as possible. Towards

this aim, we should solve the following optimization objec-
tive to find the optimal discrete solution Ü :

Ü := arg min
U=(u1,...,uK)

K∑
k=1

‖uk − ǔk‖2

s.t. uk(x) ∈ {0, 1}, (11)

where U = (u1, ..., uK) is any set of K functions in RKHS
H. In empirical clustering process, (11) implies that we
should optimize this term

∑K
k=1 ‖ük − ũ∗k‖2. It can be

roughly equivalent to optimize ‖Ü − Ũ∗‖F , to find the op-
timal discrete solution Ü = (ü1, ..., üK), where F denotes
the Frobenius norm. Stella and Shi (2003) propose an iter-
ative fashion to optimize ‖Ü − Ũ∗‖F to get the discrete
solution closest to the continuous optimal solution Ũ∗. At a
high level, this paper provides a theoretical explanation on
(Stella and Shi 2003) from the population view.

The key intuition in (Stella and Shi 2003) is that the
continuous optimal solutions consist of not only the eigen-
vectors but of a whole family spanned by the eigenvectors
through orthonormal transform. Thus the discrete optimal
solution can be searched by orthonormal transform. With
this idea, we can solve the following optimization objec-
tive to find the optimal discrete solution Ü and orthonormal



transform:

(Ü,R∗) := arg min
U,R

‖U− Ũ∗R‖

s.t. U ∈ {0, 1}n×K ,U1K = 1n,RRT = IK ,

where 1n is a vector with all one elements, U is any set ofK
discrete vectors in the eigenspace, and R ∈ RK×K is an or-
thonormal matrix. The orthonormal transform program finds
the optimal discrete solution in an iterative fashion. This it-
erative fashion is shown below:
(1) given R∗, solving the following optimization objective:

arg min
U
‖U− Ũ∗R∗‖,

s.t. U ∈ {0, 1}n×K ,U1K = 1n.

(2) given Ü, solving the following optimization objective:

arg min
R
‖Ü− Ũ∗R‖,

s.t. RRT = IK .

We denote this iterative fashion in (Stella and Shi 2003) as
POD (Program of Optimal Discretization). The pseudocode
of POD is shown in Algorithm 3 in the Appendix.

GPOD
We now introduce our proposed algorithms, called Gener-
alized POD (GPOD) algorithm, which can not only penal-
ize the fundamental quantity in influencing the excess risk
of the discrete solution but also allow clustering the unseen
data points.

Firstly, for the samples X, we can use the eigenvec-
tors Ũ∗ of L (or Lrw) to obtain its extensions based on
Eq. (9) (or Eq. (10)), that is to obtain the eigenfunctions
Ǔ of Tn (or Ln). Secondly, when the new data points
X̄ = {x̄1, ..., x̄m} come, we can calculate its eigenvectors
Ū = {ū1, ..., ūK} ∈ Rm×K with the help of the eigenfunc-
tions Ǔ = (ǔ1, ..., ǔK). By mapping the eigenfunctions into
finite dimensional space, we can approximately obtain the
eigenvectors of the new samples X̄. Specifically, we can use
formula

ūk =
1√
λk

(ǔk(x̄1), ..., ǔk(x̄m))

to obtain the eigenvectors of X̄ for relaxed RatioCut and use

ūk = (ǔk(x̄1), ..., ǔk(x̄m)

for relaxed NCut. Note that for relaxed RatioCut, since the
underlying ρ is unknown, the term L(x,xi) can be empiri-
cally approximated by

1

n

n∑
i=1

W (·,xi)−W (·,xi).

After obtaining the eigenvectors of the out-of-sample data
points X̄, we can use the POD iterative fashion to optimize

the following optimization problem to seek the empirical op-
timal discrete solution:

(Ü,R∗) := arg min
U,R

‖U− ŪR‖

s.t. U ∈ {0, 1}m×K ,U1K = 1m,RRT = IK .

This optimization process can penalize the fundamental
quantity for the out-of-sample data points.

The ability of our proposed algorithm in clustering unseen
data points without the eigendecomposition on the overall
data points makes the spectral clustering more applicable,
largely reducing the time complexity. The concrete algo-
rithm steps are presented in the Appendix, where we also
analyze how the time complexity of our proposed algorithm
is significantly improved in Remark 1. Overall, the proposed
algorithms can not only penalize the fundamental quantity
but also cluster the out-of-sample data points.
Remark 10. Eqs. (9) and (10) hold when the denominator
is not 0. This remark discusses the case when the denomi-
nator is 0, i.e., the 0 or 1 eigenvalue. According to the spec-
tral projection view, for the unnormalized Laplacian, respec-
tively the asymmetric graph Laplacian, the 0-eigenvalue, re-
spectively the 1 eigenvalue, doesn’t affect the performance
of spectral clustering, see Proposition 9 and Proposition 14
in (Rosasco, Belkin, and De Vito 2010), respectively. Thus,
the 0 or 1 eigenvalue doesn’t influence the performance of
GPOD in clustering the out-of-sample data.
Remark 11. The excess risk bounds and algorithms pro-
vided in this paper are fundamental, thus it is applicable to
other variants of spectral clustering, e.g., multiview spectral
clustering (Yang et al. 2022b,a). We leave it to the interested
readers.

Numerical Experiments
We have made numerical experiments on both toy and real
datasets for the two proposed algorithms. Considering the
length limit, we leave the experimental settings and results
in the Appendix. The experimental results show that the pro-
posed algorithms can cluster the out-of-sample data points,
verifying their effectiveness.

Conclusions
In this paper, we investigate the generalization performance
of popular spectral clustering algorithms: relaxed RatioCut
and relaxed Ncut, and provide the excess risk bounds. Ac-
cording to the two steps of practical spectral clustering al-
gorithms, we first provide a convergence rate of the order
O (1/

√
n) for the continuous solution for both relaxed Ra-

tioCut and relaxed Ncut. We then show the fundamental
quantity in influencing the excess risk of the discrete solu-
tion. Theoretical analysis inspires us to propose two novel
algorithms that can not only cluster the out-of-sample data,
largely reducing the time complexity, but also penalize this
fundamental quantity to be as small as possible. By numeri-
cal experiments, we verify the effectiveness of the proposed
algorithms. One limitation of this paper is that we don’t pro-
vide a true convergence rate for the excess risk of the empir-
ical discrete solution. We believe that this problem is pretty
important and worthy of further study.
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