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Abstract. In a multi-party machine learning system, different parties
cooperate on optimizing towards better models by sharing data in a
privacy-preserving way. A major challenge in learning is the incentive
issue. For example, if there is competition among the parties, one may
strategically hide his data to prevent other parties from getting better
models.
In this paper, we study the problem through the lens of mechanism
design and incorporate the features of multi-party learning in our setting.
First, each agent’s valuation has externalities that depend on others’
types and actions. Second, each agent can only misreport a type lower
than his true type, but not the other way round. We call this setting
interdependent value with type-dependent action spaces. We provide the
optimal truthful mechanism in the quasi-monotone utility setting. We
also provide necessary and sufficient conditions for truthful mechanisms
in the most general case. We show the existence of such mechanisms is
highly affected by the market growth rate. Finally, we devise an algorithm
to find the desirable mechanism that is truthful, individually rational,
efficient and weakly budget-balance.
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1 Introduction

In multi-party machine learning, a group of parties cooperates on optimizing
towards better models. This concept has attracted much attention recently [12,
22, 23]. The advantage of this approach is that, it can make use of the distributed
datasets and computational power to learn a powerful model that anyone in the
group cannot achieve alone.

To make multi-party machine learning practical, a large body of works focus
on preserving data privacy in the learning process [1, 26, 22]. However, the incen-
tive issues in the multi-party learning have largely been ignored in most previous
studies, which results in a significant reduction in the effectiveness when putting
their techniques into practice. Previous works usually let all the parties share the
same global model with the best quality regardless of their contributions. This
allocation works well when there are no conflicts of interest among the parties.
For example, an app developer wants to use the users’ usage data to improve
the user experience. All users are happy to contribute data since they can all
benefit from such improvements [16].

When the parties are competing with one another, they may be unwilling to
participate in the learning process since their competitors can also benefit from
their contributions. Consider the case where companies from the same industry
are trying to adopt federated learning to level up the industry’s service qualities.
Improving other companies’ services can possibly harm their own market share,
especially when there are several monopolists that own most of the data.

Such a cooperative and competitive relation poses an interesting challenge
that prevents the multi-party learning approach from being applied to a wider
range of environments. In this paper, we view this problem from the multi-agent
system perspective, and address the incentive issues mentioned above with the
mechanism design theory.

Our setting is a variant of the so-called interdependent value setting [18]. A
key difference between our setting and the standard interdependent value set-
ting is that each agent cannot “make up” a dataset that is of higher quality than
his actual one. Thus the reported type of an agent is capped by his true type.
We call our setting interdependent value with type-dependent action spaces. The
setting that agents can never over-report is common in practice. One straight-
forward example is that the sports competitions where athletes can show lower
performance than their actual abilities but not over-perform. The restriction on
the action space poses more constraints on agents’ behaviors, and allows more
flexibility in the design space.

We first formulate the problem mathematically, and then apply techniques
from the mechanism design theory to analyze it. Our model is more general
than the standard mechanism design framework, and is also able to describe
other similar problems involving both cooperation and competition.

We make the following contributions in this paper:
– We model and formulate the mechanism design problem in multi-party ma-

chine learning, and identify the differences between our setting and the other
mechanism design settings.
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– For the quasi-monotone externalities setting, we provide the revenue-optimal
and truthful mechanism. For the general valuation functions, we provide both
the necessary and the sufficient conditions for all truthful and individually
rational mechanisms.

– We analyze the influence of the market size on mechanisms. When the market
grows slowly, there may not exist a mechanism that achieves all the desirable
properties we focus on.

– We design an algorithm to find the mechanisms that guarantee individual
rationality, truthfulness, efficiency and weak budget balance simultaneously
when the valuation functions are given.

1.1 Related Works

A large body of literature studies mechanisms with interdependent values [18],
where agents’ valuations depend on the types of all agents and the intrinsic qual-
ities of the allocated object. Roughgarden et al. [21] extend Myerson’s auction
to specific interdependent value settings and characterize truthful and rational
mechanisms. They consider a bayesian setting while we do not know any prior
information. Chawla et al. [5] propose a variant of the VCG auction with reserve
prices that can achieve high revenues. They consider value functions that are
single-crossing and concave while we consider environments with more general
value functions. Mezzetti [17] gives a two-stage Groves mechanism that guar-
antees truthfulness and efficiency. He requires agents to report their types and
valuations before the final monetary transfer are made while in our model, agents
can only report their types.

In our setting, agents have restricted action spaces, i.e., they can never re-
port types exceeding their actual types. There is a series of works that focus
on mechanism design with a restricted action space [3, 4, 2]. The discrete-bid as-
cending auctions [7, 6, 2] specify that all bidders’ action spaces are the same bid
level set. Several works restrict the number of actions, such as bounded commu-
nications [4]. Previous works focus on mechanisms with independent values and
discrete restricted action spaces, while we study the interdependent values and
continuous restricted action spaces setting.

The learned model can be copied and distributed to as many agents as pos-
sible, so the supply is unlimited. A line of literature focuses on selling items in
unlimited supply such as digital goods [11, 10, 9]. However, the seller sells the
same item to buyers while in our setting we can allocate models with different
qualities to different agents.

Redko et al. [20] study the optimal strategies of agents for collaborative ma-
chine learning problems. Both their work and ours capture the cooperation and
competition among the agents, but they only consider the case where agents
reveal their total datasets to participate while agents can choose to contribute
only a fraction in our setting. Kang et al. [14] study the incentive design problem
for federated learning, but all their results are about a non-competitive environ-
ment, which may not hold in real-world applications.
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Our work contributes to the growing body of literature on incentive mech-
anism design for federated learning [27, 15]. Jia et al. and Song et al. [13, 24]
design mechanisms based on the Shapley value and Ding et al. [8] apply the
contract theory. However, the existing works do not consider the interdependent
values of participants and type-dependent action space as our model does.

2 Preliminaries

In this section, we introduce the general concepts of mechanism design and
formulate the multi-party machine learning as a mechanism design problem. A
multi-party learning consists of a central platform and several parties (called
agents hereafter). The agents serve their customers with their models trained
using their private data. Each agent can choose whether to enter the platform.
If an agent does not participate, then he trains his model with only his own
data. The platform requires all the participating agents to contribute their data
in a privacy-preserving way and trains a model for each participant using a
(weighted) combination of all the contributions. Then the platform returns the
trained models to the agents.

We assume that all agents use the same model structure. Therefore, each
participating agent may be able to train a better model by making use of his
private data and the model allocated to him. One important problem in this
process is the incentive issue. For example, if the participants have conflicts of
interest, then they may only want to make use of others’ contributions but are
not willing to contribute with all their own data. To align their incentives, we
allow the platform to charge the participants according to some predefined rules.

Our goal is to design allocation and payment rules that encourage all agents
to join the multi-party learning as well as to contribute all their data.

2.1 Valid Data Size (Type)

Suppose there are n agents, denoted by N = (1, 2, . . . , n), and each of them has
a private dataset Di where Di ∩ Dj = ∅,∀i 6= j. For ease of presentation, we
assume that a model is fully characterized by its quality Q (e.g., the prediction
accuracy), and the quality only depends on the data used to train it. We have
the following observation:

Observation 1 If the agents could fake a dataset with a higher quality, any
truthful mechanism would make agents gain equal final utility.

Suppose that two agents have different true datasets D1 and D2. We assume that
all other agents truthfully report datasetsD−i. If truthfully reporting datasetD1

and D2 finally leads to different utility, w.l.o.g, we let u(D1, D−i) < u(D2, D−i),
then if an agent has true dataset D1, he would report D2 and use the dataset
allocated by the platform in the market. All his behavior is the same as that of
an agent with real dataset D2. Thus if a mechanism is truthful, any reported
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dataset would lead to the same final utility and it is pointless to discuss the
problem. Hence, we make the assumption that the mechanism is able to identify
the quality of any dataset. All agents can only report a dataset with a lower
quality.

For simplicity, we measure the contribution of a dataset to a trained model
by its valid data size. Thus we have the following assumption:

Assumption 1 The model quality Q is bounded and monotone increasing with
respect to the valid data size s ≥ 0 of the training data:

1. Q(0) = 0 and Q(s) ≤ 1, ∀s;
2. Q(s′) > Q(s), ∀s′ > s.

The valid data size of every contributor’s data is validated by the platform in
a secure protocol (which we propose in the full version ). Let ti ∈ R+ be the
valid data size of agent i ’s private dataset Di. We call ti the agent’s type. The
agent can only falsify his type by using a dataset of lower quality (for example,
using a subset of Di, or adding fake data), which decreases the contribution to
the trained model as well as the size of valid data. As a result, the agent with
type ti cannot contribute to the platform with a dataset higher than his type:

Assumption 2 Each agent i can only report a type lower than his true type ti,
i.e., the action space of agent i is [0, ti].

2.2 Learning Protocol

In this section, we describe the learning protocol that could enable the implemen-
tation of our mechanism. We assume that the platform has a validation dataset.
The platform requires the agents to report their valid data size ti. This could be
done by asking each agent to submit the best model that he can possibly obtain
by using his own dataset. Then the platform computes the model quality qi using
the validation dataset and get the agent’s valid data size ti by ti = Q−1(qi). The
agent type ti will be used in the training process (e.g., aggregate weighted model
updates), as well as to determine the the final allocation, which is a model with
quality xi.

The platform should also guarantee to deliver to each agent the promised
model. However, it is possible that an agent reports ti in the beginning but
only contribute t′i < ti in the actual training process. In the extreme case where
all agents contribute nothing to the training process, the platform will fail to
allocate a model to each agent with the quality determined by the mechanism.
To address this issue, the platform can train n additional models simultaneously,
with the i-th model trained only using the data from agent i. During the training
process, the platform can apply secure multi-party computation techniques, such
as homomorphic encryption [26, 25], to prevent the agent from knowing which
model is sent to him to compute the update. And after the training, the platform
can compute the quality t′i of the i-th model again using the validation dataset.
If the qualities t′i and ti match, we know with high probability that the dataset
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contributed by the agent is consistent with the type he reports. Otherwise, the
platform can just exclude the agent and start over the training process again.

The above protocol only ensures that the type reported by each agent is the
same as the type he uses in the actual training process with. To encourage all
agents to join and contribute all their data, we still need to design mechanisms
with desirable properties, to which we devote the rest of the paper.

2.3 Mechanism

Let t = (t1, t2, . . . ,tn) and t−i = (t1, . . . , ti−1, ti+1, . . . , tn) be the type profile
of all agents and all agents without i, respectively. Given the reported types
of agents, a mechanism specifies a numerical allocation and payment for each
agent, where the allocation is a model in the multi-party learning. Formally, we
have:

Definition 1 (Mechanism). A mechanismM = (x, p) is a tuple, where

– x = (x1, x2, · · · , xn), where xi: Rn+ 7→ R is the allocation function for agent i,
which takes the agents’ reported types as input and decides the model quality
for agent i as output;

– p = (p1, p2, · · · , pn), where pi: Rn+ 7→ R is the payment function for agent i,
which takes the agents’ reported types as input and specifies how much agent
i should pay to the mechanism.

In a competitive environment, a strategic agent may hide some of data and does
not use the model he receives from the platform. Thus the final model quality
depends on both the allocation and his actual type. We use valuation function
vi(x(t

′), t) to measure the profit of agent i.

Definition 2 (Valuation).We consider valuation functions vi(x(t′), t) that de-
pend not only on the allocation outcome x(t′) where t′ is the reported type profile,
but also on the actual type profile t.

We assume the model agent i uses to serve customers is:

qi = max{xi(t′), Q(ti)},

where Q(ti) is the model trained with his own data. The valuation of agent i
depends on the final model qualities of all agents due to their competition. Hence
vi can also be expressed as vi(q1, . . . , qn).

We make the following assumption on agent i’s valuation:

Assumption 3 Agent i’s valuation is monotone increasing with respect to true
type ti when the outcome x is fixed.

vi(x, ti, t−i) ≥ vi(x, t̂i, t−i),∀x, ∀ti ≥ t̂i,∀t−i,∀i.
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This is because possessing more valid data will not lower one’s valuation. Oth-
erwise, an agent is always able to discard part of his dataset to make his true
type t′i. Suppose that each agent i’s utility ui(t, t′) has the form:

ui(t, t
′) = vi(x(t

′), t)− pi(t′),

where t and t′ are true types and reported types of all agents respectively. As we
mentioned above, an agent may lie about his type in order to benefit from the
mechanism. The mechanism should incentivize truthful reports to keep agents
from lying.

Definition 3 (Incentive Compatibility (IC)). A mechanism is said to be
incentive compatible, or truthful, if reporting truthfully is always the best response
for each agent when the other agents report truthfully:

ui(x(ti, t−i), t) ≥ ui(xi(t′i, t−i), t),∀ti ≥ t′i,∀t−i,∀i.

For ease of presentation, we say agent i reports ∅ if he chooses not to partic-
ipate (so we have xi(∅, t−i) = 0 and pi(∅, t−i) = 0). To encourage the agents to
participate in the mechanism, the following property should be satisfied:

Definition 4 (Individual Rationality (IR)). A mechanism is said to be in-
dividually rational, if no agent loses by participation when the other agents report
truthfully:

ui(x(ti, t−i), t) ≥ ui(x(∅, t−i), t),∀ti, t−i,∀i.

The revenue and welfare of a mechanism are defined to be all the payments
collected from the agents and all the valuations of the agents.

Definition 5. The revenue and welfare of a mechanism (x, p) are:

Rev(x, p) =
∑n
i=1 pi(t

′), Wel(x, p) =
∑n
i=1 vi(x, t).

We say that a mechanism is efficient if

(x, p) = argmax(x,p) Wel(x, p),

A mechanism is weakly budget-balance if it never loses money.

Definition 6 (Weak Budget Balance). A mechanism is weakly budget-balance
if:

Rev(x, p) ≥ 0,∀t.

Definition 7 (Desirable Mechanism). We say a mechanism is desirable if it
is IC, IR, efficient and weakly budget-balance.
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2.4 Comparison with the Standard Interdependent Value Setting

Although each agent’s valuation depend on both the outcome of the mechanism
and all agent’s true types, our interdependent value with type-dependent action
spaces setting, however, fundamentally different from standard interdependent
value settings:

– In our setting, the type of each agent is the “quality” of his dataset, thus each
agent cannot report a higher type than his true type. While in the standard
interdependent value setting, an agent can possibly report any type.

– In our setting, the agents do not have the “exit choice” (not participating in
the mechanism and getting 0 utility) as they do in the standard setting. This
is due to the motivation of this paper: companies from the same industry
are trying to improve their service quality, and they are always in the game
regardless of their choices. A non-participating company may even have a
negative utility if all other companies improved their services.

– To capture the cooperation among the agents, the item being sold, i.e., the
learned model, also depends on all agents types. The best model learned by
the multi-party learning platform will have high quality if all agents con-
tribute high-quality datasets. However, the objects for allocation are usually
fixed in standard mechanisms instead.

3 Quasi-Monotone Externality Setting

In the interdependent value with type-dependent action spaces setting, each
agent’s utility may also depend on the models that other agents actually use.
Such externalities lead to interesting and complicated interactions between the
agents. For example, by contributing more data, one may improve the others’
model quality, and end up harming his own market share. In this section, we
study the setting where agents have quasi-monotone externalities.

Definition 8 (Quasi-Monotone Valuation). Let qi be the final selected model
quality of the agent and q−i be the profile of model qualities of all the agents ex-
cept i. A valuation function is quasi-monotone if it is in the form:

vi(qi, q−i) = Fi(qi) + θi(q−i),

where Fi is monotone and θi is an arbitrary function.

Example 1. Let’s consider a special quasi-monotone valuation: the linear exter-
nality setting, where the valuation for each agent is defined as vi =

∑
j αijqj

with qj being the model that agent j uses. The externality coefficient αij means
the influence of agent j to agent i and captures either the competitive or cooper-
ative relations among agents. If the increase of agent j’s model quality imposes
a negative (positive) effect on agent i’s utility (e.g. major opponents or collabo-
rators in the market), αij would be negative (positive). Additionally, αii should
always be positive, naturally.
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In the linear externality setting, the efficient allocation is straightforward.
For each agent i, we give i the training model with best possible quality if∑
j αji ≥ 0. Otherwise, agent i are not allocated any model if

∑
j αji < 0.

We introduce a payment function called maximal exploitation payment, and
show that the mechanism with efficient allocation and the maximal exploitation
payment guarantees IR, IC, efficiency and revenue optimum.

Definition 9 (Maximal Exploitation Payment (MEP)). For a given al-
location function x, if the agent i reports a type t′i and the other agents report
t′−i, the maximal exploitation payment is to charge agent i

pi(t
′
i, t
′
−i) = vi(x(t

′
i, t
′
−i), t

′
i, t
′
−i)− vi(x(∅, t′−i), t′i, t′−i).

We emphasize that our MEP mechanism and the VCG are quite different. The
VCG charges each agent for the harm he causes to others due to his participation
while the MEP charges each agent the profit he gets from the mechanism due to
his participation. We will show that the MEP is truthful in the quasi-monotone
valuation setting in the following theorem, while it is already known that VCG
cannot guarantee truthfulness in the interdependent setting [17].

Theorem 1. Under the quasi-monotone valuation setting, any mechanism with
MEP is the mechanism with the maximal revenue among all IR mechanisms,
and it is IC.

Corollary 1. Any efficient allocation mechanism with MEP under the linear
externality setting with all the linear coefficients αji ≥ 0 should be IR, IC, weakly
budget-balance and efficient.

In the standard mechanism design setting, the Myerson-Satterthwaite Theorem
[19] is a well-known classic result, which says that no mechanism is simultane-
ously IC, IR, efficient and weakly budget-balance. The above Corollary 1 shows
that in our setting, the Myerson-Satterthwaite Theorem fails to hold.

4 General Externality Setting

In this section, we consider the general externality setting where the valuations
of agents can have any forms of externalities. The restrictions on the action space
and the value functions make the IC and IR mechanisms hard to characterize.
It is possible that given a allocation rule, there exist several mechanisms with
different payments that satisfy both IC and IR constraints. To understand what
makes a mechanism IC and IR, we analyze some properties of truthful mech-
anisms in this section. For ease of presentation, we assume that the functions
v(·), x(·) and p(·) are differentiable.

Theorem 2 (Necessary Condition). If a mechanism (x, p) is both IR and IC,
for all possible valuation functions satisfying Assumption 3, then the payment
function satisfies ∀ti ≥ t′i,∀ti,∀t−i,∀i,

pi(0, t−i) ≤ vi(x(0, t−i), 0, t−i)− vi(x(∅, t−i), 0, t−i), (1)
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pi(ti, t−i)− pi(t′i, t−i) ≤
∫ ti

t′i

∂vi(x(s
′, t−i), s, t−i)

∂s′

∣∣∣∣
s=s′

ds′, (2)

where we view vi(x(t
′
i, t−i), ti, t−i) as a function of ti, t′i and t−i for simplicity.

The partial derivative in Equation (2) is computed using the chain rule, i.e.,

∂vi(x(t
′
i, t
′
−i), ti, t−i)

∂t′i
=

n∑
j=1

∂vi(x(t
′
i, t
′
−i), ti, t−i)

∂xj(t′i, t
′
−i)

∂xj(t
′
i, t
′
−i)

∂t′i

Theorem 2 describes what the payment p is like in all IC and IR mechanisms.
In fact, the conditions in Theorem 2 are also crucial in making a mechanism
truthful. However, to ensure IC and IR, we still need to restrict the allocation.

Theorem 3 (Sufficient Condition). A mechanism (x, p) satisfies both IR and
IC, for all possible valuation functions satisfying Assumption 3, if for each agent
i, for all ti ≥ t′i, and all t−i, Equations (1) and the following two hold

t′i =argmin
ti:ti>t′i

∂vi(x(t
′
i, t−i), ti, t−i)

∂t′i
(3)

pi(ti, t−i)− pi(t′i, t−i)

≤
∫ ti

t′i

∂vi(x(s
′, t−i), s, t−i)

∂s′

∣∣∣∣
s=s′

ds′ −
∫ ti

t′i

∂vi(x(∅, t−i), s, t−i)
∂s

ds. (4)

5 Market Growth Rate

In this section, we will analyze a factor, the market growth rate, for the existence
of the desirable mechanism. Expanding the market size would reduce competition
among the agents, meaning that the damage to an agent’s existing market caused
by joining the mechanism is more likely to be covered by the market growth.
Thus our intuition is that if the market grows quickly, a desirable mechanism is
more likely to exist.

As mentioned above, each agent’s valuation is the profit made from the mar-
ket, so formally we define the market size to be the sum of the valuations of all
the agents. Let M(q) be the agents’ total valuations where q = (q1, q2, . . . , qn)
is the set of actual model qualities they use. We have:

M(q) =
∑n
i=1 vi(x, t).

In general, the multi-party learning process improves all agents’ models. So we do
not consider the case where the market shrinks due to the agents’ participation,
and assume that the market is growing.

Assumption 4 (Growing Market) q � q′ implies M(q) ≥M(q′).

A special case of the growing market is the non-competitive market where
agent’s values are not affected by others’ model qualities, formally:
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Definition 10 (Non-competitive Market). A market is non-competitive iff
∂vi(q)

∂qj
≥ 0,∀i, j.

Theorem 4. In a non-competitive market, there always exists a desirable mech-
anism, that gives the best possible model to each agent and charges nothing.

Since the efficient mechanism both redistributes existing markets and enlarges
the market size by giving the best learned model when the market is growing, it
is difficult to determine whether a desirable mechanism exists if the competition
exists. We will give the empirical analysis of the influence of the growth rate of
competitive growing markets for desirable mechanisms in Appendix G.

6 Finding a Desirable Mechanism

In the linear externality setting, we provide a mechanism that satisfies all the
desirable properties. But this mechanism is not applicable to all valuation func-
tions in the general setting, since the existence of a desirable mechanism depends
on the agents’ actual valuation functions. We provide an algorithm, that given
the agents’ valuations, computes whether such a mechanism exists, and outputs
the one that optimizes revenue, if any.

Since each agent can only under-report, according to the IR property, we
must have:

ui(x(ti, t−i), t) ≥ ui(x(∅, t−i), t),∀t,∀i.

Equivalently, we get ∀t, ∀i,

ui(x(∅, t−i), t) ≤ vi(x(ti, t−i), t)− pi(ti, t−i),
pi(ti, t−i) ≤ vi(x(ti, t−i), t)− ui(x(∅, t−i), t),
pi(t) ≤ vi(x(ti, t−i), t)− ui(x(∅, t−i), t).

For simplicity, we define the upper bound of p(t′) as

p(t) , {vi(x(ti, t−i), t)− ui(x(∅, t−i), t).

The IC property requires that ∀ti ≥ t′i,∀t−i,∀i,

ui(x(ti, t−i), t) ≥ ui(x(t′i, t−i), t).

A little rearrangement gives:

pi(ti, t−i)− pi(t′i, t−i) ≤ vi(x(ti, t−i), t)− vi(x(t′i, t−i), t) , Gapi(t
′
i, ti, t−i).

Note that the inequality correlations between the payments form a system of
difference constraints. The form of update of the payments is almost identical
to that of the shortest path problem. Therefore, we make use of this observation
to design the algorithm.
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We assume that all the value functions are common knowledge, the efficient
allocation is then determined because the mechanism always chooses the one
that maximizes the social welfare. Thus it suffices to figure out whether there
is a payment rule p(t′) which makes the mechanism IR, IC and weakly budget-
balance. Since the valid data size for each agent is bounded in practice, we
assume the mechanism only decides the payment functions on the data range
[0, D], and discretize the type space into intervals of length ε, which is also the
minimal size of the data. Thus each agent’s type is a multiple of ε. Note that
since the utility function is general, all the points in the action space would
influence the properties and existence of the mechanism, thus it is necessary to
enumerate all the points in the space. The exponential value function space, i.e.,
the exponential input space, determines that the complexity of our algorithm is
exponential in D.

We give the following algorithmic characterization for the existence of a de-
sirable mechanism.

Algorithm 1: Finding desirable mechanisms
input: Agents’ valuation functions v.
Use the function vi to calculate all the Gapi(t′i, ti, t−i) and pi(ti, t−i) for each i;
Initialize all pmax

i (ti, t−i) to be pi(ti, t−i) for each i;
for i = 1 to n do

for t−i = (∅, ∅, · · · , ∅) to (D,D, · · · , D) (increment = ε on each
dimension) do

Build an empty graph;
For each pi(ti, t−i), construct a vertex Vtit−i and insert it into the
graph;

Construct a base vertex V Bt−i which denotes the payment zero into
the graph;

for ti = 0 to D (increment = ε) do
Add an edge from V Bt−i to Vtit−i with weight p(ti, t−i);
for t′i = 0 to ti (increment = ε) do

Add an edge with weight Gapi(t′i, ti, t−i) from Vt′it−i
to Vtit−i ;

Use the Single-Source Shortest-Path algorithm to find the shortest
path from V Bt−i to all the other vertices. These are the maximum
solutions pmax

i (ti, t−i) for each payment case;
if

∑n
j=1 p

max
j (t) < 0 then

return There is no desirable mechanism.

return pmax
i as the payment functions.

The following theorem proves the correctness of Algorithm 1.

Theorem 5. Taking agents’ valuation functions as input, Algorithm 1 outputs
the answer of the decision problem of whether there exists a mechanism that guar-
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antees IR, IC, efficiency and weak budget balance simultaneously, and specifies
the payments that achieve maximal revenue if the answer is yes.

7 Conclusion

In this paper, we study the mechanism design problem for multi-party machine
learning. We restrict the action space of each agent where he can only misreport a
lower type than his actual type and consider the valuation function that is about
the allocation outcome and the true types of all agents. The VCG mechanism
does not guarantee IR and DSIC and the Myerson-Satterthwaite Theorem in the
standard mechanism design setting does not hold in our setting, implying the de-
sirable mechanisms that are both IR, DSIC, efficient and weakly budget-balance
exist in our setting. We propose a maximal exploitation payment mechanism and
show that this mechanism is truthful and revenue-optimal in the quasi-monotone
externalities setting. Then we give sufficient and necessary conditions for design-
ing a truthful mechanism for the general setting. These conditions restrict both
the allocation function and the payment function. We show that the data size
disparity between agents and the market growth rate highly affect the existence
of the desirable mechanism. If the market grows fast and the disparity is small,
a desirable mechanism is more likely to exist. Finally, we devise an algorithm to
find desirable mechanisms that are truthful, individually rational, efficient and
weakly budget-balance simultaneously.
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Appendix

A Proof of Theorem 1

Proof. Intuitively, the MEP rule charges agent i the profit he gets from an model
that the mechanism allocates to him. If the mechanism charges higher than the
MEP, an agent would have negative utility after taking part in. The IR constraint
would then be violated. So it’s easy to see that the MEP is the maximal payment
among all IR mechanisms.

Then we prove that this payment rule also guarantees the IC condition. It
suffices to show that if an agent hides some data, no matter which model he
chooses to use, he would never get more utility than that of truthful reporting.
We suppose that agent i’s type is t′i and he untruthfully reports t′i.

Suppose that the agent i truthfully reports the type t′i = ti, since the payment
function is defined to charge this agent until he reaches the valuation when he
does not take part in the mechanism, the utility of this honest agent would be

u0i (t
′) = Fi(Q(ti)) + θi(q−i(∅, t′−i)).

If the agent does not report truthfully, we suppose that the agent reports t′i
where t′i ≤ ti. According to the MEP, the payment function for agent i would be

pi(t
′
i, t
′
−i) = Fi(qi(t

′
i, t
′
−i)) + θi(q−i(t

′
i, t
′
−i))− Fi(Q(t′i))− θi(q−i(∅, t′−i)).

It can be seen that the mechanism would never give an agent a worse model
than the model trained by its reported data, otherwise the agents would surely
select their private data to train models. Hence it is without loss of general-
ity to assume that the allocation xi(t

′
i, t
′
−i) ≥ Q(t′i), ∀t′i, t′−i,∀i. Thus we have

q−i(t
′
i, t
′
−i) = x−i(t

′
i, t
′
−i). We discuss the utility of agent i by two cases of choos-

ing models.
Case 1: the agent chooses the allocation xi. Since agent i selects the

allocated model, we have qi = xi(t
′
i, t
′
−i). Then the utility of agent i would be

u1i =vi(t
′
i, t
′
−i)− pi(t′i, t′−i)

=Fi(xi(t
′
i, t
′
−i)) + θi(x−i(t

′
i, t
′
−i)) + Fi(Q(t′i))

+ θi(x−i(∅, t′−i))− Fi(xi(t′i, t′−i))− θi(x−i(t′i, t′−i))
=Fi(Q(t′i)) + θi(x−i(∅, t′−i)).

Because both Fi and Q are monotone increasing functions and ti ≥ t′i, we have

u1i ≤ Fi(Q(ti)) + θi(x−i(∅, t′−i)) = u0i .

Case2: the agent chooses Q(ti). Since agent i selects the model trained
by his private data, we have qi = Q(ti). The final utility of agent i would be

u2i =vi(t
′
i, t
′
−i)− pi(t′i, t′−i)

=Fi(Q(ti)) + θi(x−i(t
′
i, t
′
−i)) + Fi(Q(t′i))

+ θi(x−i(∅, t′−i))− Fi(xi(t′i, t′−i))− θi(x−i(t′i, t′−i))
=Fi(Q(ti)) + Fi(Q(t′i)) + θi(x−i(∅, t′−i))− Fi(xi(t′i, t′−i)).
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Subtract the original utility from the both sides, then we have

u2i − u0i =Fi(Q(ti)) + Fi(Q(t′i)) + θi(x−i(∅, t′−i))
− Fi(xi(t′i, t′−i))− Fi(Q(ti))− θi(x−i(∅, t′−i))

=Fi(Q(t′i))− Fi(xi(t′i, t′−i)).

Because xi(t′i, t′−i) ≥ Q(t′i), ∀t′i, t′−i,∀i and because Fi is a monotonically in-
creasing function, we can get u2i − u0i ≤ 0. Therefore max{u1i , u2i } ≤ u0i , lying
would not bring more benefits to any agent, and the mechanism is IC.

B Proof of Corollary 1

Proof. In Theorem 1 we know that the MEP mechanism is IR and IC. Since
the linear coefficients are all positive and the externality setting is linear, any
efficient mechanism would allocate the best model to all the agents. Since each
agent gets a model with no less quality than his reported one and the payment
is equal to the value difference between the case an agent truthfully report and
the case he exit the mechanism. The agent’s value is always larger than the
value when he exits the mechanism. Then the payment is always positive and
the mechanism should satisfy all of the four properties.

C Proof of Theorem 2

Proof. We first prove that Equation (1) holds. Observe that

ui(x(ti, t
′
−i), ti, t−i)− ui(x(t′i, t′−i), t′i, t−i)

=[vi(x(ti, t
′
−i), ti, t−i)− pi(ti, t′−i)]− [vi(x(t

′
i, t
′
−i), t

′
i, t−i)− pi(t′i, t′−i)]

≥[vi(x(ti, t′−i), ti, t−i)− pi(ti, t′−i)]− [vi(x(t
′
i, t
′
−i), ti, t−i)− pi(t′i, t′−i)]

=ui(x(ti, t
′
−i), ti, t−i)− ui(x(t′i, t′−i), ti, t−i)

≥0, (5)

where the first inequality is because of Assumption 3, and the last inequality is
because of the DSIC property.

Let t′i = 0 in Equation (5). We have

ui(x(ti, t
′
−i), ti, t−i) ≥ ui(x(0, t′−i), 0, t−i).

The IR property further requires that ui(x(0, t′−i), 0, t−i) ≥ ui(x(∅, t′−i), 0, t−i),
which Equation (1) follows.

To show Equation (2) must hold, we rewrite Equation (5):

pi(ti, t
′
−i)− pi(t′i, t′−i) ≤ vi(x(ti, t′−i), ti, t−i)− vi(x(t′i, t′−i), t′i, t−i)

=

∫ ti

t′i

dvi(x(s
′, t′−i), s(s

′), t−i)

ds′
ds′. (6)
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Fixing t−i and t′−i, the total derivative of vi(x(s′, t′−i), s, t−i) is:

dvi(x(s
′, t′−i), s, t−i)

=
∂vi(x(s

′, t′−i), s, t−i)

∂s′
ds′ +

∂vi(x(s
′, t′−i), s, t−i)

∂s
ds.

View s as a function of s′ and let s(s′) = s′:

dvi(x(s
′, t′−i), s(s

′), t−i)

ds′

=
∂vi(x(s

′, t′−i), s, t−i)

∂s′

∣∣∣∣
s=s′

+
∂vi(x(s

′, t′−i), s(s
′), t−i)

∂s(s′)

ds(s′)

ds′
.

Plug into Equation (6), and we obtain:

pi(ti, t
′
−i)− pi(t′i, t′−i)

≤
∫ ti

t′i

∂vi(x(s
′, t′−i), s, t−i)

∂s′

∣∣∣∣
s=s′

+

∫ ti

t′i

∂vi(x(s
′, t′−i), s(s

′), t−i)

∂s(s′)
ds′.

Since the above inequality holds for any valuation function with vi(x, ti, t−i) ≥
vi(x, t

′
i, t−i),∀x, ∀t−i,∀ti ≥ t′i, we have:

pi(ti, t
′
−i)− pi(t′i, t′−i) ≤

∫ ti

t′i

∂vi(x(s
′, t′−i), s, t−i)

∂s′

∣∣∣∣
s=s′

ds′.

D Proof of Theorem 3

Proof. Equation (3) indicates that the function ∂vi(x(t
′
i,t
′
−i),ti,t−i)

∂t′i
is minimized

at t′i:

∂vi(x(t
′
i, t
′
−i), s, t−i)

∂t′i

∣∣∣∣
s=t′i

≤
∂vi(x(t

′
i, t
′
−i), ti, t−i)

∂t′i
. (7)

Therefore, we have

ui(x(ti, t
′
−i), ti, t−i)− ui(x(t′i, t′−i), ti, t−i)

=

∫ ti

t′i

∂vi(x(s
′, t′−i), ti, t−i)

∂s′
ds′ − pi(ti, t′−i) + pi(t

′
i, t
′
−i)

≥
∫ ti

t′i

∂vi(x(s
′, t′−i), s, t−i)

∂s′

∣∣∣∣
s=s′

ds′ − pi(ti, t′−i) + pi(t
′
i, t
′
−i)

≥
∫ ti

t′i

∂vi(x(∅, t′−i), s, t−i)
∂s

ds, (8)

where the two inequalities are due to Equation (7) and (4), respectively. Since
vi(x, ti, t−i)≥vi(x, t′i, t−i), ∀x,∀t−i,∀ti ≥ t′i indicates ∂vi(x(∅,t′−i),s,t−i)

∂s ≥ 0, the
above inequality shows that the mechanism guarantees the DSIC property.
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To prove that the mechanism is IR, we first observe that

[ui(x(ti, t
′
−i), ti, t−i)− vi(x(∅, t′−i), ti, t−i)]− [ui(x(t

′
i, t
′
−i), t

′
i, t−i)

− vi(∅, x(t−i), t′i, t−i)]

=ui(x(ti, t
′
−i), ti, t−i)− ui(x(t′i, t′−i), t′i, t−i)−

∫ ti

t′i

∂vi(x(∅, t′−i), s, t−i)
∂s

ds

≥ui(x(ti, t′−i), ti, t−i)− ui(x(t′i, t′−i), ti, t−i)−
∫ ti

t′i

∂vi(x(∅, t′−i), s, t−i)
∂s

ds

≥0,

where the two inequalities are Assumption 3 and Equation (8). Letting t′i = 0
using Equation (2), we get:

ui(x(ti, t
′
−i), ti, t−i)− vi(x(∅, t′−i), ti, t−i)

≥ui(x(0, t′−i), 0, t−i)− vi(x(∅, t′−i), 0, t−i)
=vi(x(0, t

′
−i), 0, t−i)− pi(0, t′−i)− vi(x(∅, t′−i), 0, t−i)

≥0.

E Proof of Theorem 4

Proof. Suppose that the platform uses the mechanism mentioned in the theo-
rem. Then for each agent, contributing with more data increases all participants’
model qualities. By definition, in a non-competitive market, improving others’
models does not decrease one’s profit. Therefore, the optimal strategy for each
participant is to contribute with all his valid data, making the mechanism truth-
ful. Also because of the definition, entering the platform always weakly increases
one’s model quality. Thus the mechanism is IR. With the IC and IR properties,
it is easy to see that the mechanism is also efficient and weakly budget-balance.

F Proof of Theorem 5

Proof. Suppose that there is a larger payment for agent i such that pi(t′) >
pmax
i (t′) where t′ is the profile of reported types. In the process of our algo-

rithm, the pmax
i (t′) is the minimal path length from V B−i to Vtit−i, denoted

by (V B−i, Vti1t−i, Vti2t−i, · · · , Vtik=t′it−i). By the definition of edge weight, we
have the following inequalities:

pi(ti1, t−i) ≤ pi(ti1, t−i),
pi(ti2, t−i)− pi(ti1, t−i) ≤ Gapi(ti1, ti2, t−i),

...
pi(tik, t−i)− pi(ti(k−1), t−i) ≤ Gapi(ti1, ti2, t−i).
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Adding these inequalities together, we get

pi(t
′) ≤ pi(ti1, t−i) +

k−1∑
j=1

Gapi(tij , ti(j+1), t−i) = pmax
i (t′).

If pi(t′) < pmax
i (t′) holds, this would violate at least 1 of the k inequalities

above. If the first inequality is violated, the mechanism would not be IR, by the
definition of pi(ti1, t−i). If any other inequality is violated, the mechanism would
not be IC, by the definition of Gapi(tij , ti(j+1), t−i).

On the other hand, if we select pmax
i (t′) to be payment of agent i, all the

inequalities should be satisfied, otherwise the shortest path would be updated
to a smaller length.

Therefore the pmax
i (t′) must be the maximum payment for agent i. If the

maximal payment sum up to less than 0, there would obviously be no mechanism
that is IR, IC and weakly budget-balance under the efficient allocation function.

G Experiments

We design experiments to demonstrate the performance of our mechanism for
practical use. We first show the mechanism with the maximal exploitation pay-
ments can guarantee a good quality of trained model and high revenues under
the linear externality cases. Then we conduct simulations to exhibit the rela-
tion of the market growth of competitive markets to the existence of desirable
mechanisms.

G.1 The MEP Mechanism

We consider the valuation with linear externalities setting where αij ’s (defined
in Example 1) are generated uniformly in [−1, 1]. Each agent’s type is drawn
uniformly from [0, 1] independently and the Q(t) is 1−e−t

1+e−t . The performance of a
mechanism is measured by the platform’s revenue and its best quality of trained
model under the mechanism. All the values of each instance are averaged over
50 samples. We both show the performance changes as the number of agents
increases and as the agents’ type changes.

When the number of agents becomes larger, the platform can obtain more
revenues and train better models (see Figure 1). Particularly, the model qual-
ity is close to be optimal when the number of agents over 12. An interesting
phenomenon is that the revenue may surpass the social welfare. This is because
the average external effect of other agents on one agent i tends to be negative
when agent i does not join in the mechanism, thus the second term in the MEP
payment is averagely negative and revenue is larger than the welfare.

To see the influence of type on performance, we fix one agent’s type to be
1 and set the other agent’s type from 0 to 10. It can be seen in Figure 2 that
the welfare and opponent agent’s utility (uti_2) increase as the opponent’s type
increases but the platform’s revenue and the utility of the static agent (uti_1)
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are almost not affected by the type. So we draw the conclusion that the most
efficient way for the platform to earn more revenue is to attract more small
companies to join the mechanism, since in the Figure 1 the revenue obviously
increases as the number of agents increases.

G.2 Existence of Desirable Mechanisms

We assume all the agents’ types lie in [0, D], and the type space can be discretized
into intervals of length ε, which can be viewed as the minimal size of a dataset.
Thus each agent’s type is a multiple of ε. The data disparity is defined as the
ratio of the largest possible data size to the smallest possible data size, namely,
D/ε. We measure the condition for existence of desirable mechanisms by the
maximal data disparity when the market growth rate is given.

To describe the market growth, we use the following form of valuation func-
tion and model quality function:

Q(t) = t and vi(q) =
(∑n

j=1Q(qj)
)γ
·Q(qi),∀i,

where γ indicates the market growth rate. We consider the competitive growing
market case where −1 ≤ γ < 0.6

The algorithm we use to find desirable mechanisms under different valuation
functions is described in Section 6. We enumerate the value of γ from −1 to
−0.668 with step length 0.002 and run the algorithm to figure out the boundary
of D/ε under different γ in a market with 2 agents. The range of γ is determined
by our computing capability, and the disparity boundary has been over 10000
when γ is near −0.66.

Figure 3 shows the boundary of data disparity for existence of desirable
mechanisms under different market growth rates. For every fixed γ, there does
not exist any desirable mechanism when the data disparity is larger than the
point on the red line. It can be seen an obvious trend that when γ becomes
larger, the constraint on data size disparity would become looser. A desirable
mechanism is more likely to exist in a market that grows faster. When the
market is not growing, there would not be such a desirable mechanism at all. On
the other hand, if the market grows so fast such that there does not exist any
competition between the agents, the desirable mechanism always exists.

6 When γ < −1, the market is not a growing market; when γ ≥ 0, the market becomes
non-competitive, therefore by Theorem 4, a desirable mechanism trivially exists.
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